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Abstract: Accurate forecasting of ship motion is of great significance for ensuring maritime oper-
ational safety and working efficiency. A data-driven ship motion forecast method is proposed in
this paper, aiming at the problems of low generalization of a single forecast model and insufficient
forecast accuracy under unknown conditions. First, the fluid dynamics simulations of the ship are
carried out under multiple node conditions based on overset mesh technology, and the obtained
motion data is used for training the Bidirectional Long Short-term Memory network models. One or
more pre-trained forecast models would be selected based on the correlation of condition nodes when
forecasting ship motion under non-node conditions. The Golden Jackal Optimization Algorithm is
used to compute the regression coefficient of each node model in real time, and finally, the dynamic
model average is calculated. The results show that the method proposed in this study can accurately
forecast the pitch and heave of the KCS ship in 5 s, 10 s, and 15 s of forecast duration. The accuracy
of the multi-order forecast model improves more in longer forecast duration tasks compared with
the first-order model. When forecasting ship motion under non-node conditions, the method shows
stronger model generalization capabilities.

Keywords: ship motion forecast; CFD; BiLSTM; Golden Jackal Optimization

1. Introduction

In the course of offshore operations in real maritime environments, ships are affected
by environmental factors such as wind, waves, and currents, resulting in motion with six
degrees of freedom. Abrupt changes in ship motion have the potential to inflict damage
upon equipment, interrupt work processes, or cause harm to personnel [1]. By forecasting
ship motion, measures can be taken in advance to ensure the stability of equipment, thereby
enhancing the safety of offshore operations. Simultaneously, high-precision compensation
for ship motion reduces the impact of waves and currents on the ship, enabling engineering
equipment to operate more stably. In engineering operations necessitating precision, such
as offshore lifting and ship replenishment, the stability of equipment proves crucial for the
execution of operations [2]. Accurate forecasting of ship pitch and heave holds significant
importance for the maritime operations of engineering ships, contributing to enhanced
safety in offshore operations and the reduction of maritime incidents [3]. As a result,
research on ship motion forecasting has consistently garnered significant attention.

Currently, time series forecasts are predominantly categorized into two groups: those
based on mathematical model methods and those utilizing machine learning techniques [4].
Mathematical model methods for forecasts encompass approaches such as the Kalman Filter,
Autoregressive Integrated Moving Average model, and others. Nie, ZH et al. introduced a
detrended autoregressive (AR) model based on detrended fluctuation analysis (DFA) for
forecasting the motion of large ships [5]. Peng, XY et al. proposed an improved unscented
Kalman filter (MUKF) algorithm proficient in mitigating the impact of abnormal data
on dynamic positioning ship motion state estimation [6]. Jiang, H, et al. investigated
hull scale effects in real-time motion using an autoregressive (AR) model, revealing a
negative correlation between prediction accuracy, and spectrum bandwidth, and peak
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frequency [7]. Takami, T et al. utilized the autocorrelation function (ACF) of short-term
measurements for real-time deterministic forecasting of ship motion induced by waves [8].
Mathematical model-based forecasting methods typically exhibit high complexity and
low computational efficiency. Furthermore, the capacity of such mathematical models to
forecast non-stationary nonlinear time series is somewhat restricted, such as ship motion in
irregular waves.

Neural network models demonstrate the ability to learn and capture intricate, nonlin-
ear relationships. In the case of time series data involving multiple variables and interaction
effects, neural networks can perform learning without the need for explicit data prepro-
cessing, showing flexibility in forecasting tasks for nonlinear time series [9]. D’Agostino, D
et al. conducted performance tests on Recurrent Neural Networks (RNN), Long Short-term
Memory Neural Networks (LSTM), and Gate Recurrent Unit models (GRU) using com-
putational fluid dynamics data from self-propelled destroyer-type ships [10]. Silva, K.M
et al. utilized motion data from the DTMB5415 ship model in long-peak irregular waves
to establish a ship motion prediction system based on LSTM, aiming to predict the ship
motion response induced by waves [11]. Diez, M et al. proposed an equation-free ship
motion response prediction method based on dynamic mode decomposition (DMD) and
analyzed the navigation data of the free-sailing DTMB5415 ship and the KRISO ship [12].

Even though neural network models excel at handling complex nonlinear relation-
ships and offer numerous advantages in time series forecasting, deep neural networks are
often considered black-box models, with the internal representations being challenging to
interpret [13]. The lack of interpretability can be a limitation in certain applications where a
clear understanding of the model is essential. Consequently, some studies have emerged
that seek to combine the strengths of mathematical models and neural networks to achieve
comprehensive ship motion forecasts. Suhermi, N et al. combined an autoregressive inte-
gral moving average model with an artificial neural network (ANN) to predict the rolling
motion of a floating production unit (FPU). The findings indicated that the ARIMA model
was more adept at capturing the linear characteristics of motion, while the ANN model
exhibited superior fitting characteristics for the nonlinear aspects of the model [14]. Xu,
WZ et al. utilized second-order wave theory data to employ the LSTM model in predicting
the intricate nonlinear input-output relationships within ocean systems [15]. Additionally,
some researchers have explored using pre-trained neural network models for predicting
new data through transfer learning. Ye R et al. proposed a hybrid algorithm (TrEnOS-
ELMK) based on transfer learning an online sequential extreme learning machine with
a kernel (OS-ELMK), and ensemble learning. This approach effectively leverages latent
knowledge from past data to make predictions about future data [16]. YT Du et al. proposed
AdaRNN for transfer learning on time series regression and prediction tasks, addressing
the Temporal Covariance Shift (TCS) problem [17]. Transfer learning has demonstrated
excellent performance in human activity identification, air quality prediction, and financial
analysis. However, the continuous data distribution in time series poses challenges, leading
to the instability of data distribution. Additionally, the intricate structure and gradient
propagation issues of RNN complicate the direct application of existing transfer learning
methods. These challenges may hinder the effective transfer of pre-trained forecast models
to the task of ship motion forecasting in unknown conditions.

In time series forecasting, the predictive performance of a single model is often con-
strained by its structure and parameter selection, leading to limitations such as the absence
of estimates for uncertainty in model outputs. While a model may perform well on training
data, it may underperform in generalizing effectively to new series. Model averaging is a
technique that addresses these challenges by combining predictions from multiple mod-
els [18]. When faced with changing data distributions or uncertainties, model averaging
proves valuable in mitigating the risk of overfitting that a single model may encounter
under specific conditions, thereby enhancing the robustness of the forecasting model. Dar-
bandsari, P et al. proposed an entropy-based Bayesian model averaging (BMA) algorithm,
utilizing it in daily flow prediction across various watersheds [19]. Naser, H used dy-



J. Mar. Sci. Eng. 2024, 12, 291 3 of 22

namic model averaging (DMA) to forecast West Texas Intermediate crude oil (WTI) prices.
The results demonstrated that the dynamic model averaging method outperformed other
alternative models used in the forecasting exercise [20].

Most existing forecast methods for ship motion rely on given ship motion data, uti-
lizing either mathematical models or machine learning techniques to create a priori ship
motion response forecasting models. However, these models often lack generalization abil-
ity under new conditions, leading to a decrease in prediction performance when confronted
with changing ship operation conditions. In ship motion forecasting, the characteristics
and distributions of ship motion time series vary under different conditions. The actual
conditions often differ from those encountered during pre-training, leading to the inabil-
ity of the pre-trained model to accurately forecast new conditions. Due to disparities in
the spatiotemporal characteristics between datasets, the model may overly adapt to the
spatiotemporal features of specific conditions, resulting in a diminished ability to gen-
eralize to other conditions. A data-driven ship motion forecasting method is proposed
in this paper to address this challenge, building on the research conducted by previous
researchers [10,20–23]. The approach employs one or more pre-trained neural network
models to forecast ship motion under unknown conditions. Initially, numerous numerical
simulations are conducted on the target ship in various sea states or wave approach angles,
utilizing overset grid technology. The motion and wave elevation data are then used to
train Bidirectional Long Short-term Memory network models (BiLSTM). When forecasting
pitch and heave under unknown conditions, multiple pre-trained node models are selected.
The Golden Jackal Optimization Algorithm (GJO) is employed to compute the regression
coefficients for each pre-trained node model, and the Dynamic Model Averaging (DMA) is
calculated. The diversity of sea conditions and ship motion states are taken into account in
the method, resulting in more comprehensive and reliable forecasts. The model becomes
better adapted to the complexities of ship motion in diverse sea states by leveraging data
from each node’s conditions. This approach (see Figure 1) holds significant importance for
enhancing offshore operation safety and improving operational efficiency.
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Figure 1. Model Framework.

2. Methods
2.1. Ship Motion Response Model

The irregular motion of a ship is induced by the influence of irregular waves. When
ships perform offshore operations in relatively stable sea conditions, it can be assumed
to function as a time-invariant linear system [24]. In this research, the disturbance is
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represented by the wave passing through the hull. The ship’s 6-dof motion serve as the
system’s responses. The system input and output can be described as:

Y(t) = L[ζ(t)] (1)

where, ζ(t) represents the time series of wave elevation and Y(t) is the ship’s motion
response. When the wave elevation input consists of regular sinusoidal waves, the dynamic
characteristics of the ship can be described using a frequency response function within the
frequency domain. The relationship between the dynamic input ζ(t) and output Y(t) of a
linear system can be expressed using constant-coefficient differential equations:

n

∑
i=0

bn−i
dn−i

Y

dn−i
t

=
m

∑
j=0

am−j
dm−j

ζ

dm−j
t

(2)

The equation above is Laplace transformed and let S = jω, the transfer function of the
linear system can be derived as:

Yyζ(jω) =
Y(jω)

ζ(jω)
=

Y0

ζ0
ejδ (3)

where, Y0/ζ0 represents the amplitude-frequency characteristics of the system and ejδ

denotes the phase-frequency characteristics of the system. Yyζ is the 6-dof motion response
function of the ship. In real maritime conditions, wind and waves are highly irregular, with
the amplitude, wavelength, and period of each wave being subject to random variations.
According to the principle of linear superposition of irregular waves, the energy of irregular
waves is equal to the sum of the energies of individual regular waves [25]. The distribution
of energy across different frequency components of irregular waves can be described using
the wave spectrum density function:

Sζ(ω) =
ζ2

a
2∆ω

(4)

where, Sζ(ω) represents the wave spectrum density function and ζa is the wave amplitude.
Therefore, when the wave elevation input is an irregular wave, the ship’s motion at any
given moment can be considered the superposition of the motion generated under the
input of individual regular waves, expressed as:

Y(t) =
∞

∑
n=1

Yyζ(ωn)ζancos(Knξ − ωnt + εn) (5)

where, ζan is the amplitude of individual regular waves, Kn is the wave number of individ-
ual regular waves, ωn is the circular frequency of individual regular waves, and εn is the
phase of individual regular waves. According to the energy superposition theorem and
referencing the wave spectrum density function, the motion spectrum density function of
the ship under irregular waves is defined as:

Syζ(ω) =
[Y yζ(ω) ζa]

2

2∆ω
= Y2

yζ(ω)·Sζ(ω) (6)

where, Y2
yζ represents the system response amplitude operator. It can be seen from the

equation that the motion response of the ship is simultaneously influenced by both the
ship’s intrinsic factors and environmental factors. In this study, the Pierson-Moskowitz
wave spectrum is used for the numerical simulation of irregular waves. The P-M spectrum
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is a semi-empirical wave spectrum, primarily derived from well-developed waves in the
Atlantic [26].

Sζ(ω) =
0.78
ω5 exp

(
−0.74g4

U4ω4

)
(7)

where, U is the average wind speed at a height of 19.5 m, and the approximate relationship

with the significant wave height is given by U = 6.85
√

ζW . Consequently, the relation-
ship between the Pierson-Moskowitz spectrum and the significant wave height can be
obtained as:

Sζ(ω) =
0.78
ω5 exp

(
− 1

ζW
2 ·

0.74g4

6.854ω4

)
(8)

While a ship is moored at sea for offshore operation, the navigational speed V = 0,
and the encounter frequency ωe of the waves are the same as the original wave frequency
ω. When there is a wave approach angle µ between the wave propagation direction and
the ship’s heading, the wavelength λ1 through the ship’s longitudinal section is given by:

λ1 =
λ

cosµ
(9)

The simultaneous equations of the ship’s pitch and heave motion response can be
expressed as: (

Sψζ

SZζ

)
=

 Fψ,Z

(
µ, ζW

2
)

Mψ,Z

(
µ, ζW

2
) (10)

From the equations above, it is evident that the ship’s motion response equation can
be treated as an implicit function of the wave approach angles µ and the significant wave
height ζW . The time series of ship motions under each condition node are used for training
neural network models, thereby obtaining the respective motion forecasting models. Due
to the fact that ships cannot be treated as a linear system under rough sea conditions, this
research predominantly focuses on the prediction of pitch and heave of ships under the
upper limit of level-6 sea state.

2.2. BiLSTM Network

Bidirectional Long Short-Term Memory (BiLSTM) is a variation of Recurrent Neural
Network (RNN) designed for series processing. BiLSTM incorporates hidden layers in two
directions: one for processing the sequence in chronological order (from past to future)
and the other for processing the sequence in reverse order (from future to past) [27]. This
framework is capable of considering both past and future contextual information, enhanc-
ing its ability to capture long-term dependencies within the sequence. The bidirectional
information flow structure of BiLSTM enables the model to comprehensively capture the
temporal dependencies in series, a crucial aspect for longer time series prediction tasks.
Simultaneously, the bidirectional architecture helps alleviate issues related to gradients
vanishing or exploding, contributing to a more stable training process. This is attributed to
the fact that gradients can propagate from both directions, facilitating a smoother update of
model parameters. For each time step, BiLSTM receives an input and produces an output.
In sequence tasks, the output can be obtained at the last time step or at every time step,
depending on the inherent nature of the task. The structure of a single-layer BiLSTM is
illustrated in Figure 2:
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In contrast to the Gated Recurrent Unit (GRU) model, the BiLSTM model effectively
addresses long-term dependencies through the incorporation of explicit memory units.
Despite the relatively intricate structure and parameter abundance inherent, BiLSTM con-
sistently demonstrates superior performance in the context of intricate sequential tasks,
particularly those demanding the retention of long-term memory. Long Short-Term Mem-
ory (LSTM) is a type of recurrent neural network designed for processing sequential
data [28]. LSTM manages the information flow through gating units, including input
gates, forget gates, and output gates, enabling effective handling of long-term dependen-
cies. Bidirectional LSTM (BiLSTM) enhances the network’s capability to model long-term
dependencies by employing LSTM units in both forward and reverse directions. In this
study, the Dual-channel BiLSTM network (see Figure 3) is employed to train ship motion
forecasting models under various node conditions, with forecast durations of 5 s, 10 s, and
15 s. Subsequently, the method generates pre-trained forecast models corresponding to
each node condition and makes forecasts for ship motion under non-node conditions.
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2.3. Dynamic Model Averaging Based on GJO

The ship’s motion response varies significantly under different conditions, especially
with varying wave approach angles and sea states. A single pre-trained model struggles to
provide accurate predictions for ship motion. Therefore, an effective method is essential
for accurately forecasting the ship’s motion in various conditions. This study employs a
dynamic model averaging based on the Golden Jackal algorithm to forecast ship motion
responses. The main method is to leverage pre-trained ship motion forecast models under
multiple node conditions to forecast the ship’s motion under non-node conditions. By
systematically modeling the ship’s motion response under different node conditions, the
motion characteristics in diverse environments can be captured. These condition nodes
correspond to different sea states and navigational speeds, forming a multidimensional
parameter space for the model database. The Golden Jackal algorithm is utilized to calculate
the dynamic regression coefficients for multiple node condition models under unknown
conditions, facilitating the forecast of ship motion responses.

Dynamic Model Averaging (DMA) is a model ensemble method employed to amal-
gamate predictions from multiple models, thereby enhancing overall performance. In
contrast to conventional model averaging approaches, dynamic model averaging enables
the adaptive adjustment of model weights over time to accommodate alterations in data
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distribution or shifts in model performance [29]. The state space model of dynamic model
averaging encompasses the following components:

yt = xT
t αt + εt (11)

αt = αt−1 + δt (12)

where, yt is the deviation of the output thickness of samples, xT
t is the cor-responding vector

of independent variables of the regression model, αt is a vector of regression parameters,
and the innovations εt, δt are distributed in a Normal distribution with a mean of 0. In
real sea conditions, the significant wave height and wave approach angle of the ship
often deviate from those of the condition nodes. When forecasting ship motion under
such non-node conditions, a thorough assessment must be conducted, taking into account
nearby node conditions. This method employs one or more comparable ship motion
forecast models for predictions, followed by the result of the dynamic model average. The
pseudocode of the condition node selection Algorithm 1 is as follows:

Algorithm 1: Condition Node Select

Input: [m, n], where m and n are parameters of ship motion response functions; Condition
nodes coordinate sets X, Y
Output: Condition Nodes

1 X(m+), Y (n+): Node greater than m or n in that dimension;
2 X(m−), Y (n−): Node less than m or n in that dimension;
3 if m ∈ X and n ∈ Y then
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11 return Condition Nodes

Algorithm 1 outputs one or more node operating conditions that are closest to the
current condition. The pre-trained model is selected according to the node conditions
output by Algorithm 1 in subsequent ship motion predictions. When forecasting ship
motion under non-node conditions, the output of a single pre-trained node model can be
expressed as:

Y(t) =
∼
Y(t) +

∼
ε (t) (13)

where, Y(t) represents the actual ship motion response time series under the specific

condition, while
∼
Y(t) denotes the motion time series predicted by the pre-training model.

The term
∼
ε (t) corresponds to the forecast error. The relationship between the outcomes of

multiple pre-training models and the actual motion series can be expressed as:

Y(t) =
n

∑
i=1

[
αi

∼
Yi(t) +

∼
ε i(t)

]
=

n

∑
i=1

αi
∼
Yi(t) + ε(t) (14)

where, αi represents the regression coefficients for each node forecast model, and n signifies
the model order, indicating the count of participating pre-trained models in the forecast.
The selection of the node model is determined by the correlation between the forecasting
condition and the node conditions. To evaluate the correlation under a consistent standard
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between the node conditions and the forecasting conditions, the significant wave heights
and wave approach angles of the node conditions are subjected to Min–Max normalization.
The normalization process ensures that the values remain characteristic features on the
same scale. The formula for the model normalization calculation is:

x′ =
x − min(x)

max(x)− min(x)
(15)

As the ship motion forecasts in this research are all conducted in relatively stable sea
states, the significant wave height range aligns with the upper limit of sea states from level
0 to level 6. Additionally, the wave approach angles fall within the range [0, π/2]. For pitch
and heave motions, the correlation coefficient RZψ for the condition node is defined as:

RZψ =

√
(µ − µn)

2 +
(
ζ − ζn

)2
(16)

where, µn and ζn represent the wave approach angle and significant wave height, respec-
tively, under normalized node conditions. The selection of the node forecast model is
based on the model correlation coefficient. When the model order n = 1, ship motion is
forecasted solely by the pre-trained model of the node condition with the highest correla-
tion. During this scenario, each ship motion forecast opts for the pre-trained model with
the highest posterior probability, known as the Dynamic Model Selection (DMS) forecast.
The selection of 1st to 4th-order forecast models is illustrated in Figure 4. For ship motion
forecasts involving second-order models and beyond, this research employs the Golden
Jackal optimization algorithm. The optimization process utilizes the absolute mean error
as the objective function to determine and optimize the regression coefficients of each
pre-trained model.
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The Golden Jackal Optimization (GJO) is a global optimization algorithm inspired by
the cooperative hunting behavior of golden jackals [30]. The GJO algorithm computes the
fitness matrix using the prey population position matrix and a designated fitness function.
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In the prey search stage, the mathematical model for the relative position of each individual
in the prey population, inspired by the golden jackal, is expressed as follows:{

Y1i(t) = YM(t)− E·|YM(t)− rl·Xi(t)|
Y2i(t) = YFM(t)− E·|YFM(t)− rl·Xi(t)|

(17)

where, t denotes the current iteration count, Xi represents the position of the i-th prey, YM
and YFM respectively indicates the positions of male and female golden jackals, rl signifies
a random number based on the Levy distribution, and E denotes the prey’s escape energy,
calculated as follows:

rl = 0.05·LF() (18)

E = 3(random[0, 1]− 1)·
(

1 − t
T

)
(19)

where, LF() is the Levy flight function and T is the total number of iterations. During
hunting, the relative position of the golden jackal is as follows:{

Y1i(t) = YM(t)− E·|rl·YM(t)− Xi(t)|
Y2i(t) = YFM(t)− E·|rl·YFM(t)− Xi(t)|

(20)

The regression coefficients of each pre-trained model are determined by the GJO
algorithm according to the errors between real motion and predicted motion from the
previous period. These regression coefficients are then utilized for forecasting the ship’s
motion in the subsequent time period. To maintain the model’s timeliness, the regression
coefficients for each pre-trained model are regularly recalculated at certain intervals.

3. Experiment
3.1. Numerical Simulation of the KCS Ship

To validate the research methodology, a KCS ship model is employed as the subject
for ship motion forecasting. As a standard ship model, the KCS model finds extensive
application in towing tank experiments and numerical simulations. Figure 5 and Table 1
illustrate the KCS ship model along with its main parameters:
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Table 1. Main Geometric Parameters.

Full Scale Model

Scale 1 80.87
Length between perpendiculars (m) 230 2.844

Design waterline breadth (m) 32.2 0.398
Draught (m) 10.8 0.134

Displacement space(m3) 52,030 0.09836

The entire KCS ship model is used for numerical simulation under specific node
conditions, leading to the establishment of the motion forecast model database. Node
coordinates within the model database are defined based on a wave approach angle of 15◦

and a significant wave height from the sea state level (see Table 2) specified by the National
Marine Environmental Forecasting Center of China [31]. The total number of condition
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nodes is not fixed. The range and density of condition nodes are determined based on
specific usage requirements. A broader range and higher density of nodes imply a more
extensive and accurate forecast capability. However, it also results in a larger computational
workload for simulations. In subsequent calculations, it is assumed that a full-scale ship
is engaged in seaborne operations at a standstill while the waves move in relation to
the ship at a speed of 7.71 m/s (15 kn). Adhering to the Froude similarity criterion and
applying a scale ratio of 80.87, the length of the ship model is set to L = 2.844 m, and
the wave propagation speed is set to V = 0.858 m/s. The motion series obtained from
the simulation were enlarged in equal proportions according to the scale ratio of 80.87
and the Froude similarity criterion and used as the motion data of the full-scale ship for
subsequent research.

Table 2. Sea State Level.

Level Sea State Wave Height

0 Calm-Glassy 0 m
1 Calm-Rippled 0–0.1 m
2 Smooth-Wavelet 0.1–0.5 m
3 Slight 0.5–1.25 m
4 Moderate 1.25–2.5 m
5 Rough 2.5–4.0 m
6 Very Rough 4.0–6.0 m

The mesh of the ship model is shown in Figure 6. According to the ITTC specifications,
the numerical tank velocity inlet is positioned a ship length from the bow, the pressure
outlet is located three ship lengths from the stern, and the side boundaries are set at one
ship length. The total length of the domain is five ship lengths, while the total width is
two ship lengths. Overset mesh is applied to the body and the background, with localized
refinement at the free surface and hull [32]. The total number of mesh cells is 6 million. For
this numerical simulation of irregular waves, the Pierson-Moskowitz wave spectrum is
employed, and a probe is set a half-ship length from the bow to monitor wave elevation.
When ships are navigating or operating at sea, a wave approach angle larger than 75◦ is
uncommon. Beams in the sea or waves close to a 90◦ approach angle can significantly
impact the safety of the ship. In more severe sea conditions, ships would not be qualified
for maritime operations. Therefore, numerical simulations of ship motion based on sea state
levels and a 15◦ angle difference are conducted in subsequent experiments. Figures 7 and 8
display the free surface and wave elevation.
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Figure 8. Wave Elevation at 0.5 L (ζW = 2.5 m).

In each numerical simulation, the time-domain response of the ship model’s pitch
and heave motion under node conditions is sampled at a frequency of 100 Hz, serving as
training data for the neural network model. The duration of the full-scale ship motion data
for each condition is 1200 s. Part of the ship motion series is presented in Figures 9 and 10.
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3.2. Pre-Trained Models under Node Conditions

The wave elevation and ship motion series under each node condition are used to
train the dual-channel BiLSTM network models. The forecast duration is set to 5 s, 10 s,
and 15 s, respectively. Each ship’s motion time series obtained by numerical simulation
is divided into a training set and a test set. The samples of the BiLSTM network model
training set for each condition node are 5000, the test set is 1000. The training set is used for
model training and parameter adjustment, while the test set is utilized to assess the model’s
effectiveness. Since the wave elevation probe is located half a ship length ahead of the bow,
the forecast time window is set to 15 s, aligning with the time for the wave to propagate
to the bow. The dual-channel BiLSTM network structure, depicted in Figure 11, consists
of two layers of BiLSTM with 128 and 64 hidden units, respectively. The output layer is a
Fully Connected Layer with a dimension of 1, producing the forecast motion response. The
loss function adopted is the root mean square error, and the optimizer utilized is Adam.
Additionally, to prevent overfitting, DROPOUT is applied to each layer with a parameter
set to 0.2.
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Figure 11. Dual-channel BiLSTM Model Structure.

To evaluate the performance of the neural network model, ship motion forecasts were
conducted on the test set of each condition node with forecast durations of 5 s, 10 s, and
15 s. The results were then compared with the actual motion series. To enhance the training
efficiency and stability of the model, the Min–Max normalization method was applied to
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standardize the data features to the same scale before training. Figures 12 and 13 depict the
forecast results after denormalization for some condition node models.
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Table 3. Forecast Results of 5 s Duration. 

Wave Approach Angle 

Sea State 

0° 15° 30° 
 

Pitch Heave Pitch Heave Pitch Heave 

··· 

··· 

··· ··· ··· ··· ··· ··· 

··· 

Level-3 

(휁�̅� = 1.25m) 

MAE 0.0077 0.0092 0.0081 0.0110 0.0108 0.0139 

RMSE 0.0098 0.0101 0.0105 0.0137 0.0126 0.0187 

𝑅𝑠 0.9927 0.9901 0.9945 0.9914 0.9901 0.9952 

Level-4 

(휁�̅� = 2.5m) 

MAE 0.0191 0.0173 0.0178 0.0267 0.0133 0.0272 

RMSE 0.0234 0.0218 0.0230 0.0318 0.0168 0.0323 

Figure 12. Pitch Forecast Series (ζW = 4 m, µ = 15◦).
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The Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Spearman
Correlation Coefficient (Rs) were selected to evaluate the forecasting capability of the
models. The denormalized test set was used for evaluations. The formulas for the three
indicators are as follows:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (21)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (22)

Rs = 1 −
6∑n

i=1 d2
i

n(n2 − 1)
(23)

where, yi represents the actual value, ŷi is the forecast value, and di is the grade difference
between the forecast value and the actual value. MAE is the mean absolute value of the
observation error, without considering the square of the error. RMSE is the square root of
the mean square of the forecast errors, assigning greater weight to larger errors. Compared
to MAE, RMSE is more sensitive to large errors. Rs is a rank-based correlation calculation
method for assessing the nonlinear relationship between two series. In the context of
nonlinear and non-stationary time series, such as ship motion, the Spearman correlation
coefficient is robust against outliers and data distribution. Part of the forecast accuracy
evaluation results for some pre-trained models are as follows:
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As illustrated in Tables 3–5, the increase in sea state level corresponds to larger ampli-
tudes of the ship’s pitch and heave, resulting in more substantial changes in both MAE and
RMSE. Simultaneously, the nonlinearity of ship motion intensifies, leading to increased fore-
cast difficulty and a decrease in Rs. With an escalation in forecast duration, the MAE and
RMSE of the forecast results rise, Rs declines, indicating a reduction in accuracy. The change
in forecast accuracy is slightly less pronounced when the forecast duration increases from
5 s to 10 s. However, when the forecast duration extends to 15 s, the forecast accuracy expe-
riences a more noticeable decrease, yet it still remains above 90%. The test set results affirm
that the pre-trained neural network forecast model exhibits robust adaptability to unknown
series, demonstrating its efficacy for motion prediction under non-node conditions.

Table 3. Forecast Results of 5 s Duration.

Wave Approach Angle
Sea State

0◦ 15◦ 30◦

Pitch Heave Pitch Heave Pitch Heave

···

···

··· ··· ··· ··· ··· ···

···

Level-3
(ζW = 1.25 m)

MAE 0.0077 0.0092 0.0081 0.0110 0.0108 0.0139
RMSE 0.0098 0.0101 0.0105 0.0137 0.0126 0.0187

Rs 0.9927 0.9901 0.9945 0.9914 0.9901 0.9952

Level-4
(ζW = 2.5 m)

MAE 0.0191 0.0173 0.0178 0.0267 0.0133 0.0272
RMSE 0.0234 0.0218 0.0230 0.0318 0.0168 0.0323

Rs 0.9923 0.9870 0.9964 0.9933 0.9979 0.9963

Level-5
(ζW = 4.0 m)

MAE 0.0314 0.0352 0.0443 0.0609 0.0343 0.0527
RMSE 0.0411 0.0435 0.0550 0.0755 0.0428 0.0647

Rs 0.9975 0.9937 0.9985 0.9957 0.9981 0.9916
··· ··· ··· ··· ··· ··· ··· ···

Table 4. Forecast Results of 10 s Duration.

Wave Approach Angle
Sea State

0◦ 15◦ 30◦

Pitch Heave Pitch Heave Pitch Heave

···

···

··· ··· ··· ··· ··· ···

···

Level-3
(ζW = 1.25 m)

MAE 0.0093 0.0101 0.0075 0.0139 0.0191 0.0176
RMSE 0.0178 0.0186 0.0165 0.0208 0.0232 0.0254

Rs 0.9891 0.9922 0.9907 0.9854 0.9927 0.9863

Level-4
(ζW = 2.5 m)

MAE 0.0179 0.0231 0.0213 0.0196 0.0198 0.0240
RMSE 0.0214 0.0282 0.0262 0.0260 0.0238 0.0305

Rs 0.9945 0.9783 0.9960 0.9930 0.9978 0.9924

Level-5
(ζW = 4.0 m)

MAE 0.0390 0.0372 0.0529 0.0592 0.0618 0.0871
RMSE 0.0218 0.0476 0.0649 0.0718 0.0777 0.1102

Rs 0.9960 0.9927 0.9984 0.9959 0.9917 0.9762
··· ··· ··· ··· ··· ··· ··· ···

Table 5. Forecast Results of 15 s Duration.

Wave Approach Angle
Sea State

0◦ 15◦ 30◦

Pitch Heave Pitch Heave Pitch Heave

···

···

··· ··· ··· ··· ··· ···

···

Level-3
(ζW = 1.25 m)

MAE 0.0243 0.0324 0.0237 0.0303 0.0294 0.0408
RMSE 0.0377 0.0433 0.0482 0.0502 0.0412 0.0597

Rs 0.9698 0.9742 0.9707 0.9654 0.9662 0.9595

Level-4
(ζW = 2.5 m)

MAE 0.0359 0.0353 0.0549 0.0469 0.0577 0.0515
RMSE 0.0460 0.0431 0.0676 0.0573 0.0698 0.0622

Rs 0.9743 0.9513 0.9732 0.9671 0.9706 0.9615

Level-5
(ζW = 4.0 m)

MAE 0.1455 0.1509 0.1571 0.2017 0.1614 0.1765
RMSE 0.1805 0.2062 0.2075 0.2908 0.1988 0.2185

Rs 0.9785 0.9655 0.9814 0.9423 0.9469 0.9398
··· ··· ··· ··· ··· ··· ··· ···
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3.3. Motion Forecast under Non-Node Conditions

By utilizing the pre-trained motion forecast model under node conditions, ship motion
under non-node conditions is forecasted. In this section, three different cases are used to
evaluate the performance of the model, as illustrated in Table 6.

Table 6. Cases Used to Verify the Algorithm.

Case 1 Case 2 Case 3

ζW (Full Scale, m) 1.617 3.235 3.235
ζW (Model, m) 0.020 0.040 0.040

µ (◦) 5◦ 10◦ 20◦

All other things being equal, numerical simulations of the KCS ship model are con-
ducted in Case 1, 2, and 3. The wave elevation at half a ship’s length ahead of the bow and
the time series of the ship’s pitch and heave are monitored. The numerical simulation of
the full-scale ship motion series length is 135 s. Figures 14–16 illustrate the wave elevation,
KCS ship pitch, and heave series in three cases:
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Ship motion series in three cases are forecasted by the method. Pre-trained node mod-
els are selected based on the correlation between node conditions and current conditions.
The pre-trained model size is shown in Table 7 and selection for the three cases is depicted
in Figures 17–19:

Table 7. Model Size.

First-Order First-Order First-Order First-Order

Params (K) 298.6 597.2 895.8 1194.5
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Pitch and heave motion forecasts with a duration of 5 s, 10 s, and 15 s are conducted
for three cases, respectively. Leveraging the pre-training model selection results, 1-4 order
models are used for each motion forecast. Throughout this experiment, the regression
coefficients of the multi-order forecast model were set to be calculated and updated every
20 s. The forecast pitch series for case 3 is shown in Figures 20–22.
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Figure 22. 1st–4th Pitch Forecast in 15s Duration in Case 3.

MAE, RMSE, and Rs are used to evaluate the forecast accuracy. The forecast results
of three cases are presented in Tables 8–11. The results reveal that the forecast accuracy of
the multi-order model is higher than that of the first-order model. The first-order forecast
model exhibits the largest forecast error and the least accuracy under identical conditions
and forecast durations. However, since the first-order forecasted model is essentially is a
dynamic model selection in the absence of optimal computation, it has the smallest number
of parameters and the fastest forecast speed.

Table 8. First-order Model Forecast.

Case 1 Case 2 Case 3

Pitch Heave Pitch Heave Pitch Heave

5 s
Forecast

MAE 0.0118 0.0109 0.0462 0.0495 0.0360 0.0267
RMSE 0.0291 0.0188 0.0583 0.0627 0.0437 0.0523

Rs 0.9594 0.9531 0.9801 0.9736 0.9821 0.9750

10 s
Forecast

MAE 0.0207 0.0282 0.0542 0.0493 0.0402 0.0415
RMSE 0.0314 0.0340 0.0643 0.0644 0.0478 0.0548

Rs 0.9415 0.9495 0.9764 0.9698 0.9807 0.9522

15 s
Forecast

MAE 0.0387 0.0305 0.0935 0.0753 0.0701 0.0618
RMSE 0.0442 0.0479 0.1163 0.0959 0.0892 0.0784

Rs 0.9139 0.9277 0.9410 0.9105 0.9384 0.9132

Table 9. Second-order Model Forecast.

Case 1 Case 2 Case 3

Pitch Heave Pitch Heave Pitch Heave

5 s
Forecast

MAE 0.0102 0.0103 0.0443 0.0455 0.0349 0.0226
RMSE 0.0265 0.0164 0.0563 0.0572 0.0410 0.0338

Rs 0.9643 0.9562 0.9814 0.9749 0.9847 0.9826

10 s
Forecast

MAE 0.0193 0.0257 0.0465 0.0468 0.0302 0.0397
RMSE 0.0302 0.0339 0.0590 0.0600 0.0368 0.0540

Rs 0.9430 0.9546 0.9790 0.9698 0.9879 0.9545

15 s
Forecast

MAE 0.0346 0.0287 0.0628 0.0654 0.0677 0.0592
RMSE 0.0412 0.0455 0.0788 0.0838 0.0833 0.0745

Rs 0.9315 0.9410 0.9607 0.9233 0.9534 0.9237
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Table 10. Third-order Model Forecast.

Case 1 Case 2 Case 3

Pitch Heave Pitch Heave Pitch Heave

5 s
Forecast

MAE 0.0101 0.0103 0.0442 0.0455 0.0319 0.0220
RMSE 0.0265 0.0164 0.0564 0.0572 0.0391 0.0328

Rs 0.9644 0.9562 0.9814 0.9741 0.9859 0.9833

10 s
Forecast

MAE 0.0193 0.0258 0.0465 0.0467 0.0302 0.0390
RMSE 0.0301 0.0339 0.0590 0.0598 0.0368 0.0540

Rs 0.9430 0.9546 0.9790 0.9698 0.9879 0.9546

15 s
Forecast

MAE 0.0344 0.0295 0.0627 0.0643 0.0677 0.0592
RMSE 0.0412 0.0451 0.0787 0.0832 0.0833 0.0745

Rs 0.9317 0.9413 0.9607 0.9254 0.9534 0.9237

Table 11. Fourth-order Model Forecast.

Case 1 Case 2 Case 3

Pitch Heave Pitch Heave Pitch Heave

5 s
Forecast

MAE 0.0102 0.0103 0.0442 0.0455 0.0319 0.0220
RMSE 0.0265 0.0166 0.0563 0.0572 0.0391 0.0328

Rs 0.9643 0.9562 0.9814 0.9741 0.9858 0.9833

10 s
Forecast

MAE 0.0193 0.0257 0.0465 0.0467 0.0301 0.0397
RMSE 0.0302 0.0339 0.0590 0.0598 0.0368 0.0539

Rs 0.9430 0.9545 0.9790 0.9698 0.9879 0.9545

15 s
Forecast

MAE 0.0344 0.0295 0.0628 0.0643 0.0679 0.0592
RMSE 0.0412 0.0455 0.0788 0.0832 0.0836 0.0745

Rs 0.9315 0.9410 0.9607 0.9254 0.9531 0. 9237

When the multi-order model is used for forecasting, both MAE and RMSE exhibit a 4%
to 15% decrease compared with the first-order model forecast in all forecast durations. In the
5s duration forecast, Rs of the second-order forecast model experiences an approximately
0.5% increase. This is because the forecast duration is relatively short, so the distinctiveness
of series characteristics is not obvious. In the 10s duration forecast, Rs of the second-order
model forecast increases by 0.5% to 1%. In the 15 s duration forecast, the Rs increases
by about 2%. This is because as the forecast duration increases, the distinctiveness of the
series distribution characteristics becomes more significant. Therefore, the improvement
of Rs in forecasting is also greater in second-order model. In the multi-order model
prediction, the MAE and RMSE of the third-order forecast model are reduced by less
than 5% compared with the second-order model, with a slight or no improvement in Rs.
Compared with the third-order prediction model, the fourth-order forecast model exhibits
nearly no improvement across the three evaluation indicators while having the largest
number of parameters.

In conclusion, for ship motion forecasting with a 5-s forecasting duration, the first-
order forecast model demonstrates a quicker response and a smaller model size, making
it more suitable for very short-term forecast tasks with high real-time requirements and
limited resources [33]. The second-order forecast model showcases higher accuracy and
smaller errors. As the forecast duration increases to 10 s and 15 s, the accuracy of the
second-order model improves even more significantly. Although the accuracy of the
third-order model is slightly higher than that of the second-order model, the size of the
model and computation time are also higher. In comparison, the fourth-order model
demonstrates almost no improvement in accuracy, and it has the largest model size. The
selection of different forecast models necessitates trade-offs between forecast performance,
computational efficiency, and model size.
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4. Conclusions

While conducting operations at the actual sea surface, ships frequently encounter
diverse sea conditions, such as waves, tidal currents, and wind forces. A data-driven
ship motion forecast method is proposed in this paper, aiming at the problem of single
application scenarios and the diminished generalization ability of existing methods in ship
motion forecasting. This model integrates machine learning techniques with potential flow
theory methods to enhance forecasting accuracy and broaden its applicability. The main
components are as follows:

(1) Substantial numerical simulations using the KCS ship model are conducted. The
obtained motion response series were then used to train BiLSTM network models, creating
a pre-trained forecast model database with varying forecast durations.

(2) A calculation method of condition correlation is proposed, facilitating the 1–4 order
forecast models, which are determined through the method. The Golden Jackal optimiza-
tion algorithm is employed to compute the regression coefficients for each pre-trained
model. The dynamic model averaging is calculated to forecast the motion of the ship under
non-node conditions.

The results indicate that when forecasting ship motion under non-node conditions,
the first-order forecast model exhibits the lowest accuracy compared with the multi-order
model. As the forecast duration extends, the accuracy of the multi-order forecast model
shows more obvious improvement. While the third-order forecast model demonstrates
slightly superior performance to the second-order model, it comes at the cost of a larger
number of model parameters. The fourth-order prediction model has the largest number of
parameters and almost no improvement in accuracy.

The approach in this study makes forecasting more comprehensive and reliable, con-
sidering the diversity of sea conditions and ship motion states. The pre-training model
can be better adapted to the ship motion forecast under non-node conditions by making
full use of the data under node conditions. The method is of significance for improving
safety and operational efficiency in offshore operations. However, challenges persist in
ship motion and wave elevation detection. The accuracy of a ship motion forecast can be
affected by the presence of missing data and noise. Further enhancements are needed in
the robustness of the forecast model to address these concerns. In subsequent research, the
accurate identification of wave elevations on the sea surface and the model’s adaptability to
ship motion under high sea conditions will also be studied. Additional research methods,
such as Variational Mode Decomposition, may be explored to augment the algorithm’s
capacity for forecasting ship motion in challenging sea conditions.
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