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Abstract: Underwater Acoustic Target Recognition (UATR) plays a crucial role in underwater de-
tection devices. However, due to the difficulty and high cost of collecting data in the underwater
environment, UATR still faces the problem of small datasets. Few-shot learning (FSL) addresses this
challenge through techniques such as Siamese networks and prototypical networks. However, it
also suffers from the issue of overfitting, which leads to catastrophic forgetting and performance
degradation. Current underwater FSL methods primarily focus on mining similar information within
sample pairs, ignoring the unique features of ship radiation noise. This study proposes a novel
cross-domain contrastive learning-based few-shot (CDCF) method for UATR to alleviate overfitting
issues. This approach leverages self-supervised training on both source and target domains to facili-
tate rapid adaptation to the target domain. Additionally, a base contrastive module is introduced.
Positive and negative sample pairs are generated through data augmentation, and the similarity in
the corresponding frequency bands of feature embedding is utilized to learn fine-grained features of
ship radiation noise, thereby expanding the scope of knowledge in the source domain. We evaluate
the performance of CDCF in diverse scenarios on ShipsEar and DeepShip datasets. The experimental
results indicate that in cross-domain environments, the model achieves accuracy rates of 56.71%,
73.02%, and 76.93% for 1-shot, 3-shot, and 5-shot scenarios, respectively, outperforming other FSL
methods. Moreover, the model demonstrates outstanding performance in noisy environments.

Keywords: underwater acoustic target recognition; few-shot learning; self-supervised learning

1. Introduction

Underwater Acoustic Target Recognition (UATR) is a challenging and significant area
of research in passive sonar, playing a crucial role in both economic development and
military security [1,2]. From an economic perspective, UATR technology can be applied to
marine resource development, seabed exploration, and marine environmental protection.
From a military standpoint, it enables the timely acquisition of target information such as
enemy ships, assisting commanders in accurately assessing the battlefield situation and
making informed decisions.

Given the complex and dynamic marine environment, numerous researchers have
been dedicated to developing various UATR methods. The current UATR methods can be
categorized into two main types. The first category utilizes manually extracted hydroa-
coustic data features for target recognition. For instance, Zhang et al. [3] employed the
MFCC and utilized a backpropagation network for classification. Zhu et al. [4] improved
network performance by analyzing the spectral components of ship-radiated noise through

J. Mar. Sci. Eng. 2024, 12, 264. https://doi.org/10.3390/jmse12020264 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse12020264
https://doi.org/10.3390/jmse12020264
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0003-0377-1022
https://orcid.org/0000-0002-8389-1093
https://doi.org/10.3390/jmse12020264
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse12020264?type=check_update&version=2


J. Mar. Sci. Eng. 2024, 12, 264 2 of 16

the extraction of different frequency band spectral features. Other features include wavelet
decomposition [5–7] and sparse time–frequency representation [8,9].

The second category employs deep learning techniques for target recognition. With
the continuous advancement of deep learning technology, deep neural networks have
become widely used in UATR. Doan et al. [10] utilized time-domain signals as inputs to a
dense convolutional neural network, achieving superior results at a 0 dB signal-to-noise
ratio. Hong et al. [11] proposed 3D fusion features for target classification using ResNet18.
Yang et al. [12] designed a lightweight squeezing and residual network under a ResNet
architecture to ensure recognition accuracy while compressing the model. Jin et al. [13]
utilize raw time-domain data as input to the model and incorporate an attention mecha-
nism in a convolutional neural network to identify different types of ships. Inspired by
visual transformers, Li et al. [14] incorporated transformers into UATR for the first time,
comparing the performance of three features: short-time Fourier transform (STFT), filter
bank (FBank), and mel-frequency cepstrum coefficients (MFCCs). They enhanced model
training stability through pre-training on image and speech datasets and applying time
and frequency masking for data augmentation.

While these deep learning-based methods have shown effectiveness in UATR, their
performance may deteriorate or become invalid when faced with limited hydroacoustic
data samples in practical situations. In recent years, researchers have employed data aug-
mentation and deep generative adversarial networks to address the issue of limited samples
in deep learning. Zhang introduced a data augmentation method based on generative
adversarial networks [15]. Luo et al. [16] designed a conditional deep convolutional gener-
ative adversarial network for high-quality data augmentation, extracting multiple features
of ship-radiated noise by generating spectrograms with different resolutions through a
multi-window spectral analysis method. Gao combined DCGAN [17] and DenseNet [18] to
overcome the limited sample constraint in UATR [19]. However, a significant knowledge
gap still exists between generated samples and real samples, hindering their deployment
in real underwater environments.

Few-shot learning (FSL) has emerged as a solution for recognizing new classes with
limited samples and has demonstrated excellent capabilities in computer vision and speech
domains. In the field of speech, Wang et al. [20] introduced a hybrid attention mod-
ule combined with a prototype network for sound classification with fewer samples.
Wang et al. [21] proposed a few-shot music source separation method using a small number
of audio examples from the target instrument to adapt the U-Net model. You et al. [22]
combined audio spectrogram transformers, data augmentation mechanisms, and conduc-
tive inference for sound event detection. FSL has also found successful applications in
underwater tasks. Chen achieved underwater acoustic target recognition using an FSL ap-
proach with Siamese networks [23]. Xue introduced a semi-supervised learning approach
to address the recognition challenge posed by limited samples [24]. Two metric learning-
based approaches were investigated for sonar image classification, allowing the model to
generalize to classes with fewer samples without extensive retraining [25]. Nie proposed a
contrastive learning method for ship recognition with limited samples by comparing the
similarity between pairs of positive and negative samples [26]. Tian utilized unlabeled
samples and a small number of labeled samples to accomplish UATR, proposing a semi-
supervised fine-tuning method to enhance model performance [27]. However, current
FSL methods do not effectively utilize the specific characteristics of ship-radiated noise in
UATR and may suffer from performance degradation due to differences between source
and target domains. Moreover, these methods are prone to overfitting when fine-tuning is
repeatedly performed with limited samples.

In this paper, we present a novel cross-domain contrastive learning-based few-shot
underwater acoustic target recognition method (CDCF) to address the issue of overfitting
in few-shot UATR models. Traditional FSL divides UATR into two stages: pre-training
and fine-tuning. The pre-training phase involves training the model on source domain
data to obtain a pre-trained feature extractor. In the fine-tuning phase, the feature extractor
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is fine-tuned using target domain data. We introduce self-supervised training during the
fine-tuning stage to enhance the fine-tuning process by utilizing samples from the source
domain. Additionally, we propose a base contrastive module to measure the similarity
of corresponding frequency bands between augmented view samples. By leveraging
contrastive self-supervised learning, CDCF efficiently extracts more fine-grained ship
noise features. Including samples from the source domain during fine-tuning alongside
the target domain samples enhances adaptability through gradual knowledge transfer
and integration. We evaluate our method on two datasets, ShipsEar and DeepShip, to
demonstrate its effectiveness. The main contributions of this paper are as follows:

(1) We propose a novel cross-domain contrastive learning-based few-shot underwater
acoustic target recognition method (CDCF) to address the overfitting problem in FSL
approaches. The effectiveness of CDCF is validated through extensive experiments
conducted on two publicly available datasets.

(2) During the fine-tuning process, we incorporate a self-supervised training branch to
assist in the fine-tuning procedure. By feeding the samples from target domains
and a subset of samples from source domains into this branch, knowledge can be
efficiently transferred from the source to the target domain during the fine-tuning
process, facilitating the model’s adaptation to the new domain.

(3) We introduce a frequency band contrastive module aimed at extracting fine-grained
ship noise features, and we validate its effectiveness in real-world scenarios.

The remainder of this paper is organized as follows: Section 2 details our proposed few-
shot underwater acoustic target recognition method. Section 3 introduces the experimental
data and experimental results, and Section 4 concludes the paper.

2. System Overview
2.1. Variable Definitions and Explanations

In few-shot learning, a model is first pre-trained on a large-scale base dataset, denoted
as Dbase. The model is then fine-tuned on a support set, denoted as Dsupp, from a novel
dataset Dnovel, allowing the model to generalize to previously unseen classes. Finally, the
model’s performance is evaluated on a query set, denoted as Dquery, from Dnovel.

In the aforementioned few-shot learning procedure, Dbase =
{(

xbase
i , ybase

i

)}Mbase

i=1

represents the base set, while Dnovel =
{(

xnovel
i , ynovel

i

)}Mnovel

i=1
denotes the novel set. Here,

xbase
i and xnovel

i refer to the samples in the base set and novel set, respectively. Similarly,
ybase

i and ynovel
i represent the corresponding labels for the samples in the base set and

novel set. Mbase and Mnovel indicate the sizes of the base and novel sets, signifying the
number of samples in each dataset. Importantly, Mbase is significantly larger than Mnovel.
Furthermore, let Ybase denote the label space of the base set, meaning ybase

i ∈ Ybase, and
Ynovel denote the label space of the novel set, implying ynovel

i ∈ Ynovel. It is assumed that
Ybase and Ynovel are disjoint, i.e., Ybase ∩ Ynovel = ∅.

During the fine-tuning process, a pre-trained model is adapted to accommodate

the support set Dsupp =
{(

xsupp
i , ysupp

i

)}Msupp

i=1
⊂ Dnovel, which consists of N novel

classes with K samples per class. Here, xsupp
i and ysupp

i denote the samples and la-
bels in the support set, respectively, and Msupp represents the label space of the sup-
port set. Subsequently, the performance of the model is evaluated using the query set

Dquery =
{(

xquery
i , yquery

i

)}Mquery

i=1
, which is also a subset of Dnovel. xquery

i and yquery
i repre-

sent the samples and their corresponding labels in the query set. Mquery indicates the label
space of the query set. Moreover, let Ysupp and Yquery denote the label spaces of the support
set and the query set, respectively. It should be noted that the classes in the support set and
the query set are the same, i.e., Ysupp = Yquery. However, the samples in the support set
and the query set are distinct.
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2.2. General Formulation of Few-Shot UATR

In this section, we provide a detailed overview of the traditional FSL methods.
Typically, traditional FSL methods consist of two stages: pre-training and fine-tuning.
The model architecture is illustrated in Figure 1.

Figure 1. Traditional few-shot learning framework. The model consists of two phases: pre-training
and fine-tuning. In the pre-training stage, the feature extractor Fϕ and classifier Gθ are trained on
the source domain dataset. In the fine-tuning stage, the parameters of the feature extractor Fϕ′ are
transferred from Fϕ, while the parameters of the classifier Gθ′ are randomly initialized. Fine-tuning is
performed for the target domain.

During the pre-training stage, the model is trained using the source domain data,
denoted as Dbase. The model takes various features of the data, such as STFT, MFCC, mel
spectrograms, etc., as inputs. Through a feature extractor Fϕ, high-dimensional features are
extracted from the input data, resulting in a feature mapping µ ∈ RC×F×T . The formulation
can be expressed as follows:

µ = Fϕ

(
xbase

i

)
. (1)

Subsequently, a pooling layer is applied to aggregate the features, yielding a feature
embedding v ∈ RC. The pooling operation can be represented as follows:

v = pooling(µ). (2)

The final classification results are generated through a classifier Gθ , which takes the
feature embedding v as input. Mathematically, it can be described as

p = Gθ(v). (3)

Finally, the cross-entropy loss function is utilized to compute the loss and update the
parameters of the feature extractor.

In the fine-tuning stage, the model architecture remains the same as in the pre-training
stage. However, the parameters of the feature extractor Fϕ′ are transferred from the pre-
training stage’s feature extractor Fϕ, while the parameters of the classifier Gθ′ are initialized
randomly. The model is fine-tuned using the target domain data Dsupp. Again, the cross-
entropy loss function is employed to calculate the loss and update the parameters of Fϕ′

and Gθ′ . To simplify the expression, the formulation can be expressed as

p = Gθ′

(
pooling

(
Fϕ′

(
xsupport

i

)))
. (4)

Finally, the performance of the model is evaluated on Dquery using the fine-tuned
parameters Fϕ′ and Gθ′ .
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2.3. CDCF Model

The previous section introduces traditional FSL, which demonstrates remarkable
capabilities in computer vision domains. However, in underwater environments, data
samples are severely limited, and repeated model fine-tuning can potentially lead to
overfitting. Moreover, the collected data are often affected by noise conditions, which vary
across different hydrological environments, resulting in significant disparities between the
source and target domains and, consequently, a decline in model performance. In light of
these challenges, we propose CDCF. The model architecture is depicted in Figure 2.

Figure 2. Overall framework for CDCF. In the pre-training phase, the model comprises a feature
extractor Fϕ and a classifier Gθ , trained on the source domain dataset. In the fine-tuning stage, the
feature extractor Fϕ′ initiates its parameters from Fϕ and subsequently adapts to the novel domain by
self-supervised learning in positive and negative sample pairs.

Diverging from traditional FSL, we incorporate a self-supervised training branch
during the fine-tuning stage to facilitate the fine-tuning process. Simultaneously, we
introduce a frequency band contrast loss to assess the similarity between corresponding
frequency bands in the enhanced views of the samples, enabling the model to capture more
refined features. The CDCF model comprises two stages: pre-training and fine-tuning.
The pre-training stage aligns with the traditional FSL illustrated in Figure 1. The classifier in
CDCF employs fully connected layers. During the fine-tuning stage, CDCF consists of two
branches: Fine-tune1, representing the traditional FSL fine-tuning branch, and Fine-tune2,
representing the self-supervised training branch with the frequency band contrast loss.
To ensure clarity, we focus on elaborating on the fine-tuning stage of CDCF.

Similar to traditional FSL methods, in the fine-tuning stage of CDCF, the parameters
of the feature extractor Fϕ′ in both branches are transferred from the pre-training stage.
Moreover, the parameters of the feature extractor are shared between the Fine-tune1 and
Fine-tune2 branches. The settings in the Fine-tune1 branch remain the same as shown in
Figure 1. For the Fine-tune2 branch, unlike traditional fine-tuning that only utilizes samples
from Dsupp, we aim to accelerate the model’s adaptation to the target domain by using
samples from both Dsupp and a subset of samples from Dbase. Mel spectrograms are used
as input to the model, and two augmented views (x̃i and x̃′i) are generated from the mel
spectrogram of one sample, while another augmented view (x̃j) is generated from the mel
spectrogram of another sample. The augmentation methods and analysis are described
in Section 3.2. These augmented views are fed into the feature extractor Fϕ′ , resulting in
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feature maps µi, µ′
i, µj with dimensions C × F × T. Subsequently, these feature maps are

processed through pooling and reshape operations, yielding feature embeddings vi, v′i, vj
with dimensions F × C. Finally, these feature embeddings are input to the base contrastive
module (illustrated in Section 2.4) to compute the frequency band contrast loss. The overall
algorithm implementation is presented in Algorithm 1.

Algorithm 1: Overall training algorithm.

Input: pre-trained feature extractor Fϕ; base set Dbase; support set Dsupp

Output: trained parameters {Fϕ′ , Gθ′}
1 Initial F′

ϕ = Fϕ; random initialized G′
θ

2 for step in range(MaxStep) do
3 Sample (xb, yb)

NK
b=1 in Dbase

4 The examples (xs, ys)
NK
s=1 in Dsupp

5 Obtain the set of fine-tuning data (x f , y f )
2NK
f=1 = (xb, yb)

NK
b=1∪ (xs, ys)

NK
s=1

6 Generate the enhanced views x̃i, x̃′i , and x̃′j from (x f , y f )

7 Calculate the feature embeddings
v = Fϕ′(xs), vi = Fϕ′(x̃i), v′i = Fϕ′(x̃′i), vj = Fϕ(x̃j)

8 The prediction of support example p = Gθ′(v)
9 Calculate LCE(p, ys)

10 Calculate Llocal by Algorithm 2
11 Update parameters {Fϕ′ , Gθ′} by Equation (9)

12 return parameters of the model {Fϕ′ , Gθ′}

We posit that the underlying intuition behind model enhancement lies in leveraging
contrastive learning to broaden the knowledge scope of the source domain through pairs
of augmented samples generated using arbitrary enhancement techniques. This approach
concurrently preserves the model’s capacity to extract universal features during the pre-
training stage and provides a certain degree of mitigation against overfitting.

2.4. Base Contrastive Module

Contrastive learning is a crucial component of self-supervised learning and has diverse
applications in tasks such as identification [28] and detection [29]. In traditional contrastive
learning, the mel spectrogram of the ship signal after obtaining the enhanced view is
fed to the feature extractor Fϕ′ in the Fine-tune2 branch. It produces feature maps µi, µ′

i,
µj with dimensions of C × F × T. These feature maps are then processed using pooling
and reshape operations to generate feature embeddings vi, v′i, vj with a dimension of C.
The similarity between the feature embeddings of different positive and negative sample
pairs is compared. In contrast to traditional contrastive learning methods, our proposed
frequency bands contrastive learning generates feature embeddings with a dimension
of F × C, as described in Section 2.3. Specifically, we compare the similarities between
corresponding frequency bands of positive and negative sample pairs. This comparison is
illustrated in Figure 3.

Based on the frequency bands contrastive approach illustrated in Figure 3b, we pro-
pose a base contrastive module, as depicted in Figure 4. For simplicity, we explain the
implementation process of the contrastive learning module using the similarity calculation
between negative sample pairs (i.e., vi and vj), as shown in Figure 4b. The compari-
son within positive sample pairs follows a similar procedure as negative sample pairs.
Algorithm 2 presents the implementation of the base contrastive module.
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We extract frequency bands vi, f ∈ R1×C from vi and a corresponding frequency band
vj, f ∈ R1×C from vj. These extracted frequency bands are then passed through a projector
h to obtain the respective feature maps zi, f ∈ R1×C and zj, f ∈ R1×C using the formula

zi, f = h(vi, f ). (5)

Then, we utilize a predictor pred to predict the final value pi, f and pj, f of
zi, f and zj, f accordingly:

pi, f = pred(zi, f ). (6)

Algorithm 2: Implementation of base contrastive module.

Input: the feature embeddings vi, v′i, vj with a dimension of F × C
Output: the output loss Llocal in the Fine-tune2 branch in Figure 2

1 The frequency bands vi, f , v′i, f , and vj, f are extracted from vi, v′i, and vj, respectively

2 for frequency band
(

vi, f , v′i, f , vj, f

)
where 1 ⩽ f ⩽ F do

3 Obtain the feature maps zi, f , z′i, f , and zj, f by Equation (5)

4 Obtain the output of predict pi, f , p′i, f , and pj, f by Equation (6)

5 Obtain the negative cosine similarity between pi, f and z′i, f by Equation (7) and
for p′i, f and zi, f by Equation (7)

6 Calculate the loss of the corresponding frequency band f in the positive
sample pair by Equation (8)

7 Obtain the negative cosine similarity between pi, f and zj, f by Equation (7) and
for pj, f and zi, f by Equation (7)

8 Calculate the loss of the corresponding frequency band f in the negative
sample pair by Equation (8)

9 Generate the output loss Llocal f
for frequency band f by Equation (11)

10 Generate the output loss Llocal of the base contrastive module by Equation (10)

Figure 3. Comparison between two contrastive learning methods.
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Figure 4. Base contrastive module. (a) Calculation of frequency band similarity for positive sample
pairs. (b) Calculation of frequency band similarity for negative sample pairs.

In Figure 4b, LlocalN1 f
represents the computation of negative cosine similarity between

pi, f and zj, f in the negative sample pair, as expressed by the formula

D
(

pi, f , stopgrad
(

zj, f

))
= −

pi, f

||pi, f ||2
·

zj, f

||zj, f ||2
. (7)

The notation “stopgrad” indicates that gradient computation is paused, considering
zj, f as a constant value. Here, || · ||2 represents the L2 norm. Similarly, let LlocalN2 f

denote
the negative cosine similarity between pj, f and zi, f , which can be computed by formula (7).

In reference to [30], we set the loss of frequency band f in negative sample pairs as

LlocalN f
=

1
2

LlocalN1 f
+

1
2

LlocalN2 f
. (8)

2.5. Loss Function

During the fine-tuning phase, the complete loss formula is as follows, where α denotes
a hyperparameter:

L = LCE + αLlocal. (9)

The term LCE in the above equation refers to the cross-entropy loss function employed
in Fine-tune1, as illustrated in Figure 2. On the other hand, Llocal represents the output loss
in Fine-tune2. Specifically, Llocal can be expressed as

Llocal =
1
F

F

∑
f=1

Llocal f
. (10)

In the equation above, Llocal f
represents the output loss of the corresponding frequency

band f within the base contrastive module and is expressed as

Llocal f
= LlocalP f

−LlocalN f
. (11)

Furthermore, LlocalP f
denotes the output loss of the corresponding frequency band f

in a positive sample pair, exhibiting similarity to Formula (8).

3. Results

In this section, we assess the performance of the proposed few-shot UATR method
using two ship-radiated noise datasets. Firstly, we introduce the two datasets and the
experimental setup for the recognition task. Then, we present three data augmentation
techniques employed for generating positive and negative sample pairs in the fine-tuning
process of Fine-tune2, as depicted in Figure 2. These three methods are also applied in
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the training of all subsequent models. Next, we verify the effectiveness of the model in
UATR by comparing it with some classic UATR methods. Additionally, we compare it
with different FSL methods to demonstrate its superiority. Furthermore, we explore the
cross-domain capabilities of the model by testing it on different datasets. We also analyze
the recognition performance across four different levels of noise situations to evaluate the
model’s robustness in noisy environments. Finally, we conduct ablation experiments to
analyze the impact of different modules in the model on the final performance.

3.1. Datasets

We conduct a comprehensive evaluation of our model’s classification performance
using two open-source datasets: ShipsEar [31] and DeepShip [32]. ShipsEar comprises
ship-radiated noise recordings collected along the Atlantic coast of Spain in 2012 and 2013.
The dataset includes 90 recordings, consisting of 11 different types of boats and a type
of natural background noise. Each category contains one or more recordings, ranging
in duration from 15 s to 10 min. We segment the recording of each vessel into 2-second
durations, yielding a total of 3796 samples following segmentation. The number of samples
for each ship category is shown in Table 1.

Table 1. Number of samples in each category of ShipsEar after slicing.

Class Type The Number of Samples

0 Fishing boats 201
1 Trawlers 49
2 Mussel boats 267
3 Tugboats 40
4 Dredgers 104
5 Motorboats 348
6 Pilot boats 38
7 Sailboats 138
8 Passenger ferries 1632
9 Ocean liners 375
10 Ro-ro vessels 604

Total 11 3796

Deepship is a dataset comprising recordings obtained from the Georgia Delta Node
Strait between the years 2016 and 2018. The dataset consists of 47 h and 4 min of real-
world underwater recordings from 265 different vessels belonging to 4 categories. These
categories include tankers, tugs, passenger ships, and cargo ships, with the corresponding
sample counts being presented in Table 2. Data are recorded for different seasons and sea
conditions in real-world marine environments.

Table 2. Number of samples in each category of DeepShip.

Class The Number of Samples

Cargo 109
Tanker 240

Tug 69
Passenger ship 191

Total 609

3.2. Data Augmentation

To generate the positive and negative sample pairs x̃i, x̃′i , and x̃′j shown in Figure 2,
we employ three augmentation methods: temporal masking, frequency masking [33], and
temporal Gaussian interference. These methods are consistently applied in the training
of all subsequent models. In temporal Gaussian interference, Gaussian white noise is
randomly introduced to the original ship signal, with the noise standard deviation being
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randomly selected from the range [0, 0.3] to constrain the intensity of the added Gaussian
noise. The results of data augmentation for randomly selected ships are shown in Figure 5.

Figure 5. Diagram with three types of data augmentation.

3.3. Experimental Settings

We conduct five sets of experiments to compare CDCF with classic UATR models and
few-shot models. Subsequently, we evaluate its performance in cross-domain scenarios
and noisy environments. Furthermore, we conduct ablation experiments to verify the
effectiveness of self-supervised training and the base contrastive module.

To ensure consistency, all samples within both datasets are subjected to resampling,
resulting in a standardized frequency of 16 kHz. We divide the 11 types of ships in ShipsEar
into 2 distinct groups: the base set for pre-training and the novel set for fine-tuning.
The base set consists of six ship types, while the novel set comprises five ship types.
The categories in the base set are separate from those in the novel set, simulating real-world
scenarios where new sample categories may emerge that are not represented in the training
set. This division enables us to achieve favorable outcomes by fine-tuning the model on
the novel set after pre-training, eliminating the need for retraining. This approach saves
computational costs and time. We manually select the categories for the base set and novel
set and experiment with three different partitioning methods. A detailed description of
each scenario is presented in Table 3.

Table 3. Categories of base set and novel set in three divisions.

Seg Categories in the Base Set Categories in the Novel Set

1 0, 2, 4, 5, 8, 10 1, 3, 6, 7, 9
2 0, 4, 5, 7, 8, 10 1, 2, 3, 6, 9
3 0, 2, 5, 8, 9, 10 1, 3, 4, 6, 7

During the fine-tuning phase, ensuring the stability of model results is crucial.
We utilize a random selection method, choosing 50 combinations of support set and query
set from the novel set. Specifically, for each fine-tuning, distinct samples are employed
in the support and query set. The final model result is obtained by averaging all the
combination results from the three divisions, as presented in Table 3.

In our experiments, we utilize 128 mel filters to extract mel spectrograms from the
input samples as the model input. Specifically, the window length is set to 40 ms, and the
frameshift is 20 ms. The loss function initializes the hyperparameter α to 1. The AdamW
optimizer is utilized for optimization. To evaluate the performance of CDCF, we use
accuracy as the primary metric.
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3.4. Experimental Results

We train all models using PyTorch on an NVIDIA GeForce RTX 2080 Ti. This section
discusses some of the results obtained from the experiments to analyze the performance of
the model in cross-domain and noisy environments.

3.4.1. Performance Comparison with State-of-the-Art UATR Models

We conduct experiments on the ShipsEar dataset to validate the effectiveness of
FSL methods in UATR, comparing them with traditional methods. Specifically, we com-
pare 1-shot, 3-shot, 5-shot, 10-shot, and 15-shot scenarios for a 5-way classification task.
We employ the established UATR model, including ResNet18 [34], CRNN [35], and Trans-
former (STM) [14], as baseline comparisons. These models have achieved promising results
in traditional UATR, and comparing them further highlights the potential of FSL methods.
The experimental results are shown in Figure 6.

Figure 6. Performance comparison with state-of-the-art UATR models.

As depicted in Figure 6, CDCF consistently achieves the highest recognition results
across all 5-shot situations. With an increasing number of shots for each method, the
recognition accuracy continues to improve, and the performance gap between CDCF and
the other three traditional UATR methods gradually widens. Particularly, when there
are 15 samples per category, CDCF attains an impressive accuracy of 76.91%. Comparing
CDCF with the second-best model, CDCF demonstrates improvements of 5.73%, 11.74%,
8.6%, 14.85%, and 18.31% in 1-shot, 3-shot, 5-shot, 10-shot, and 15-shot scenarios, respec-
tively. In contrast, the highest recognition rate achieved by the other three models across
all shot situations only reaches 58.60%. Among these three traditional UATR methods,
Resnet18 exhibits modest performance improvements as the number of shots increases,
while demonstrating notable performance disparities compared to the other two models.
When the number of shots increases from one to five for CRNN and STM, their performance
experiences rapid enhancement; however, further increases in the number of shots yield
minimal performance improvements for both models.

By comparing CDCF with the three traditional UATR methods, it becomes evident
that the performance of conventional approaches on few-shot datasets is inadequate.
This underscores the necessity of investigating few-shot methods in underwater target
recognition scenarios. Concurrently, it validates the effectiveness of FSL in UATR. In practi-
cal application scenarios where data are scarce and with high data collection costs, FSL can
enhance the model’s ability to generalize from limited samples, enabling it to effectively
identify previously unseen categories. To validate the improvement of our approach under
few-shot conditions, all subsequent experiments are conducted using the few-shot method.
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3.4.2. Performance Comparison of Few-Shot Models

To further evaluate the performance of our model, we conduct a comparative analysis
with four other popular few-shot models in the field of image. These models include
RelationNet [36], RFS [37], ProtoNet [38], and LabelHallu [39]. Initially, we conduct a
few-shot comparative experiment on the ShipsEar dataset. The base set and novel set are
divided according to the three methods outlined in Table 3. Consequently, the base set
consists of six ship types, while the novel set includes five ship types. The results of a
comparison between the few-shot methods on the ShipsEar dataset are presented in Table 4.

Table 4. Performance comparison of few-shot models on ShipsEar.

Model 1-Shot 3-Shot 5-Shot

RelationNet 42.01% 49.24% 47.23%
ProtoNet 45.40% 54.52% 58.96%

RFS 45.67% 55.07% 59.24%
LabelHallu 45.62% 51.87% 60.07%

CDCF 45.49% 57.09% 63.31%

We compare the performance of CDCF with four other few-shot models under three
scenarios: 1-shot, 3-shot, and 5-shot. In the 1-shot scenario, except for RelationNet, the
other four models exhibit similar performance with minimal differences. However, our
model consistently achieves optimal results in both the 3-shot and 5-shot scenarios. Specifi-
cally, in the 3-shot scenario, CDCF achieves an accuracy of 57.09%, which surpasses the
sub-optimal model RFS by 2.02%. Furthermore, in the 5-shot scenario, CDCF’s accuracy
further improves compared to the 3-shot scenario, outperforming the sub-optimal model
LabelHallu by 3.24%. The observed results illustrate a progressive enhancement in the
accuracy of CDCF as the number of shots increases, thereby highlighting its superiority in
terms of model performance. These results confirm that CDCF is effective in extracting tar-
get features from the novel set in few-shot scenarios, demonstrating the model’s capability
to transfer domain knowledge and underscore the potential of employing few-shot models
for successful UATR in real-world underwater environments.

3.4.3. Performance Comparison of Few-Shot Models in the Novel Domain

In the experiments presented in Table 4, we perform pre-training and fine-tuning of
the model on ShipsEar. In a real marine environment, the characteristics of the marine
environmental noise field vary across different sea areas and seasons, leading to some
differences in the data collected from different sea areas. To examine the model’s capabilities
in cross-domain scenarios, we conduct pre-training on 11 types of ships within the ShipsEar
dataset. Subsequently, we perform fine-tuning and evaluate the model’s performance on
four types of ships from the DeepShip dataset. To ensure comparability, we employ the same
four FSL methods used in Table 4. The experimental results are documented in Table 5.

Table 5. Performance comparison of few-shot models in the novel domain.

Model 1-Shot 3-Shot 5-Shot

RelationNet 46.54% 60.16% 65.53%
ProtoNet 51.25% 67.42% 71.58%

RFS 51.92% 65.33% 69.17%
LabelHallu 50.98% 67.73% 72.09%

CDCF 56.71% 73.02% 76.93%

The CDCF demonstrates optimal performance across all three scenarios, including
1-shot, 3-shot, and 5-shot. Notably, it exhibits remarkable improvements over the sub-
optimal models, with increases of 4.79%, 5.29%, and 4.84% in accuracy for the 1-shot,
3-shot, and 5-shot cases, respectively. It is worth highlighting that in the challenging 5-shot
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scenario, CDCF achieves the highest accuracy of 76.93%, showcasing its impressive ability
to bridge domain gaps and excel in cross-domain scenarios. The significant performance
boost achieved by CDCF further validates its potential in overcoming challenges associated
with limited samples learning tasks.

3.4.4. Performance Comparison in Noisy Environments

In UATR, noise interference is an inevitable factor when collecting data. Even the
two datasets utilized in our experiments do not consist solely of clean ship-radiated noise;
rather, they exhibit a high signal-to-noise ratio (SNR). Evaluating the model’s ability to
effectively recognize targets in a noisy environment serves as a measure of its robustness.
Hence, we introduce Gaussian white noise with different SNRs to the test data, aiming to
assess the model’s anti-noise performance. All models are tested under 5-shot conditions,
and the experimental results are illustrated in Figure 7.

Figure 7. Performance comparison of few-shot models in noisy environments.

The CDCF demonstrates superior performance compared to the other four models
across different SNRs. A notable observation is that among all the models, the RelationNet
model demonstrates the lowest performance, whereas the other three models exhibit
comparable levels of performance. Even in scenarios with low SNR, CDCF maintains
satisfactory recognition capabilities, and its performance steadily improves as the SNR
increases. These findings emphasize the robustness of CDCF and its efficacy in effectively
mitigating disturbances.

3.4.5. Ablation Experiments

To evaluate the performance improvement in different modules in CDCF, we conduct
ablation analysis in 1-shot, 3-shot, and 5-shot scenarios by gradually adding each module to
the model. We begin by performing experiments using the traditional FSL method, where
the model is pre-trained on the base set, fine-tuned on the support set, and tested on the
query set. This approach aligns with the principles outlined in the RFS [37] paper, which
we refer to as “TFSL” for clarity and ease of comprehension. To evaluate the influence of
self-supervised training on the performance of the model, we incorporate self-supervised
training during the fine-tuning process in the traditional FSL framework. This approach
is referred to as “CL”. Finally, we further enhance the model by incorporating the base
contrastive mudule based on CL, resulting in our proposed CDCF. The ablation results,
showcasing the effectiveness of each module, are presented in Table 6.
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Table 6. Experimental results for ablation study.

Model 1-Shot 3-Shot 5-Shot

TFSL 45.67% 55.07% 59.24%
CL 45.13% 55.49% 61.87%

CDCF 45.49% 57.09% 63.31%

Ablation experiments validate the effectiveness of the two modules in CDCF. In the
3-shot and 5-shot scenarios, the model’s performance is continuously enhanced as the two
modules are incorporated. It is important to note that the 1-shot task represents an extreme
scenario, where only one sample per category is available for fine-tuning. The extremely
limited amount of data presents challenges for the model to infer meaningful features,
resulting in no performance improvement in the 1-shot scenario.

4. Conclusions

This paper presents a novel cross-domain contrastive learning-based few-shot un-
derwater acoustic target recognition method (CDCF) to address the issue of overfitting
in few-shot UATR models. CDCF incorporates a self-supervised training branch into tra-
ditional FSL to assist with fine-tuning, considering the significant disparity between the
source and target domains in underwater scenes. By inputting samples from the target do-
main and partial samples from the source domain into the self-supervised training branch,
the model’s ability to transfer knowledge across domains is enhanced. Additionally, a base
contrastive module is introduced to improve the model’s capacity to discriminate spectral
information by comparing the similarity of corresponding frequency bands in the feature
maps of positive and negative sample pairs. This comparison enables the capture of more
fine-grained features, thereby expanding the knowledge scope of the source domain and
enhancing the model’s generalization ability.

CDCF is evaluated using two publicly available underwater ship-radiated noise
datasets, namely, ShipsEar and DeepShip. The experimental results demonstrate the
superior performance of our method in few-shot UATR. Our model achieves optimal per-
formance not only in underwater scenes but also in few-shot cross-domain scenarios, thus
confirming its effectiveness and highlighting its capability to transfer domain knowledge
in new fields. Furthermore, the robustness of the model in noisy environments is assessed
by testing its recognition performance under different SNRs. Overall, CDCF exhibits excel-
lent performance across multiple underwater scenes and shows potential for real-world
applications. In future work, we aim to further enhance the model’s performance to meet a
wider range of UATR scenarios.
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Abbreviations
The following abbreviations are used in this manuscript:

UATR Underwater Acoustic Target Recognition
FSL Few-shot learning
STFT Short-time Fourier transform
MFCC Mel-frequency cepstrum coefficient
CDCF Cross-domain contrastive learning-based few-shot
SNR Signal-to-noise ratio
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