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Abstract: Microalgae are highly valued for their rapid biomass production and metabolite synthesis,
as well as their abundance of beneficial compounds. They have a variety of applications, including
serving as the primary ingredient in biofuels, functional foods, and cosmetics. The genus Picochlorum,
which was established to represent the unique characteristics of “Nannochloris-like” algae, exhibits
rapid growth and a high salt tolerance. The morphology, molecular phylogeny, and fatty acid
composition of an unspecified Picochlorum strain KCTC AG61293 found in Korean coastal waters
were investigated. The strain exhibited a unique cell morphology and reproduction type compared to
other Picochlorum species, as determined using light microscopy, fluorescence microscopy, and field
emission scanning electron microscopy (FE-SEM). The vegetative cells were elongated and cylindrical
in shape, underwent binary fission, and possessed a parietal chloroplast. A molecular phylogenetic
analysis using nuclear small subunit ribosomal RNA sequences showed that Picochlorum sp. (KCTC
AG61293) belongs to the Picochlorum clade and is closely related to the genus Nannochloris. Compared
to other reference species, Picochlorum sp. (KCTC AG61293) had higher levels of saturated fatty acids
(SFAs) and alpha-linolenic acid (ALA). The increased levels of SFAs and ALA suggest that Picochlorum
sp. (KCTC AG61293) may be a promising candidate for biofuel production and other industrial uses.

Keywords: KCTC AG61293; fatty acids; microalgae; phylogenetic analysis

1. Introduction

Microalgae are a widely distributed group of single-cell eukaryotic plants that have
the potential to serve as a source of biomass and raw materials [1,2]. They offer a variety of
beneficial substances, including fatty acids (FAs) [3], chlorophylls [4], and carotenoids [5],
making them highly valuable in numerous industries. The rapid production of useful
metabolites and biomass by microalgae has been widely recognized. Microalgae offer
several advantages, including rapid growth rates, efficient land utilization, carbon dioxide
(CO2) sequestration, and the ability to be cultivated in wastewater [6]. Despite their
microscopic size, microalgae can produce significant amounts of lipids using simple and
rapid cultivation methods [7,8]. These lipids, a key component of microalgae, serve as
the primary ingredient in biofuels, functional foods, and cosmetics [9–12]. For instance,
palmitic acid (C16:0) is a type of saturated fatty acid that plays a significant role in the
production of biodiesel [13]. α-Linolenic Acid (ALA) is a crucial omega-3 fatty acid that is
vital for human growth and development [14]. ALA, which is mainly found in plant-based
foods, is an essential precursor to eicosapentaenoic acid (EPA) or docosahexaenoic acid
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(DHA) [15]. Microalgae, such as Picochlorum and Nannochloropsis, are particularly significant
due to their euryhaline nature and high eicosapentaenoic acid (EPA) content [16,17]. These
unique characteristics make them viable candidates for applications in the nutraceutical
and biodiesel production sectors [18,19].

Picochlorum species, in particular, have been recognized for their potential in biodiesel
production due to their fast growth rates and high lipid contents. Picochlorum species are
considered as promising candidates for renewable fuel production [20]. A significant study
identified Picochlorum as a prime candidate for biodiesel due to its ability to produce
substantial lipid quantities, a key component of biodiesel [21]. In other research, such as
a study on the BDUG 100241 strain of Picochlorum sp., the focus has been on optimizing
cultivation conditions to increase biomass productivity and thereby increase biodiesel
yield [22].

Similarly, other research, such as that on Acutodesmus dimorphus, has explored the
growth of specific microalgae in specialized media to maximize biomass yield and con-
tribute to potential biodiesel production [23]. In addition, other studies have highlighted
innovations in microalgal cultivation, such as the use of naturally floating microalgal mats,
which provide an efficient approach to biomass production for biofuel [24].

The genus Picochlorum was established to accurately reflect the phylogenetic rela-
tionships and unique characteristics of ‘Nannochloris-like’ algae [25]. It was created to
accommodate certain marine or saline autosporic taxa that were previously classified as
either Nannochloris or Nanochlorum. These taxa, along with several others, were found to
belong to a diverse sister clade to a clade that included the four “true” Chlorella species [25].
The decision to create the new genus Picochlorum was based on its distinct freshwater and
marine or saline lineages, which comprise at least three major subclades, generally corre-
sponding to cell division patterns [25–27]. Picochlorum strains exhibit a faster exponential
growth rate compared to other commonly used microalgae such as Dunaliella and Nan-
nochloropsis [28,29]. They have a high salt tolerance [30,31] and can survive in temperatures
ranging from 0 to 40 ◦C [32,33]. These strains can also accumulate lipids, ranging from 20
to 58% of their dry weight [34,35].

Although there is clear evidence of convergent evolution in ‘Nannochloris-like’ green
microalgae, their identification using microscopy techniques, such as transmission electron
microscopy (TEM) or scanning electron microscopy (SEM), remains challenging. Therefore,
a widely accepted approach for a more natural classification is to integrate morphological,
ecophysiological, and molecular phylogenetic methods [36].

During our scientific expedition along the Korean coast, we discovered a new strain of
Picochlorum, which we named Picochlorum sp. (KCTC AG61293). This discovery expands
the variety of Picochlorum strains and shows great potential for industry. We used state-
of-the-art techniques for our research, including light and SEM for morphological studies
and nuclear small subunit ribosomal RNA sequences for phylogenetic studies. The isolate
displayed distinct, unique morphological characteristics that differed from known cell
division patterns in the genus Picochlorum. Both morphological and molecular phylogenetic
analyses confirmed that the genus Picochlorum is not limited to autosporic taxa. We assessed
the strain’s ability to produce fatty acids and compared it with that of other strains. In
particular, Picochlorum sp. (KCTC AG61293) exhibited significantly higher concentrations
of omega-3 fatty acids, specifically ALA, compared to other Picochlorum genera. This
highlights its potential as an environmentally friendly source of lipid products, making it
a strong candidate for various industrial applications. Our study significantly advances
the characterization of ‘Nannochloris-like’ green microalgae and presents opportunities for
future research and industry exploitation.

2. Materials and Methods
2.1. Sampling and Cultivation

On 24 May 2023, a sample of chlorophyte was collected from the Marado coast of
South Korea (33◦07′02′′ N, 126◦16′05′′ E) using a plankton net with a mesh size of 20 µm.
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The temperature and salinity at the time of collection were 24 ◦C and 30‰, respectively.
Cells that appeared similar to Picochlorum were isolated using a capillary pipette (3151102,
Hilgenberg, Malsfeld, Germany) under a light microscope (Axio Imager A2, Carl Zeiss,
Oberkochen, Germany) after multiple rinses with sterile seawater droplets [37,38]. These
cells were then placed in a tissue culture plate with 48 wells (32048, SPL Life Sciences,
Pocheon, Republic of Korea) filled containing the culture medium (f/2; G0154, Sigma
Aldrich Co., Ltd., St. Louis, MO, USA). Later, the cells were transferred to a cell culture
flask (70025, SPL Life Sciences, Pocheon, Republic of Korea) and a 24-well tissue culture
plate (32024, SPL Life Sciences, Pocheon, Republic of Korea) using a micropipette (ACURA
826, Socorex Isba SA, Ecubleus, Switzerland) and a capillary pipette. The cells were cultured
under cool white illumination at an intensity of 50 µE/m/s and a temperature of 23 ◦C
with a light:dark cycle of 12:12 h. The analyzed cells were in the exponential growth phase
and had been cultured for one week. They were deposited at the Korea Collection for Type
Cultures (KCTC) of the Korea Research Institute of Bioscience & Biotechnology and the
National Marine Biodiversity Institute of Korea (MABIK).

2.2. Light Microscopy

Live cells of Picochlorum sp. (KCTC AG61293) were examined and images were cap-
tured at 1000× magnification using an Axiocam Color 512 camera (Carl Zeiss, Oberkochen,
Germany) connected to an Axio Imager A2 microscope (Carl Zeiss, Oberkochen, Germany).
Using a microscope application program, the dimensions of 300 individuals were measured
using the GEN 3.3 program (Carl Zeiss, Oberkochen, Germany). The living cell culture was
pre-suspended in a 2.5% glutaraldehyde fixative solution (Electron Microscopy Sciences,
Hatfield, PA, USA) in a microcentrifuge tube (EMT-1530, Biofact, Daejeon, Republic of
Korea) for fluorescence microscopy. A drop of NucBlue™ Fixed Cell ReadyProbes™ DAPI
reagent (R37606, Molecular Probes, Eugene, OR, USA) was added and the cells were dyed
for the detection of internal lipids with Nile Red reagent (72485, Sigma Aldrich Co., Ltd.,
St. Louis, MO, USA) dissolved in DMSO solution (472301, Sigma Aldrich Co., Ltd., St. Louis,
MO, USA). The samples were then kept in the dark for 30 min at ambient temperature.
Chlorophyll a, DAPI-stained nuclei, and lipids were imaged using an Axiocam Mono
503 camera (Carl Zeiss, Oberkochen, Germany) attached to an Axio Imager microscope
(Carl Zeiss, Oberkochen, Germany) with a high-performance LED light engine (KFM-IS3,
Korealabtech, Seongnam, Republic of Korea).

2.3. Scanning Electron Microscopy (SEM)

A solution from the mid-growth-phase batch culture was stabilized at room temper-
ature for 30 min with a fixative solution (OsO4; 2% final concentration; Sigma Aldrich
Co., Ltd., St. Louis, MO, USA) for the SEM analysis. Several rinses with distilled water
were then performed on the stabilized cells. Following the rinses, the specimens were
dewatered through a gradient set of concentrations of ethanol (100983, Merck KGaA, Darm-
stadt, Germany) (ranging from 10 to 99% in seven steps), with each step lasting 10 min.
The samples were then subjected to critical point drying by using a critical point dryer
(Autosamdri®-815, Tousimis, Rockville, MD, USA) with CO2 in liquid form. Lastly, the sam-
ples were platinum-covered with a CCU-010 coater (Safematic GmbH, Zizers, Switzerland)
and imaged using a Regulus 8100 field emission SEM (Hitachi, Tokyo, Japan).

2.4. Extract DNA, PCR, and Sequencing

Extracted genomic DNA was prepared from a 1 mL culture medium of Picochlorum
sp. (KCTC AG61293) in the exponential growth phase using a Tissue Lyser (Qiagen,
Hilden, Germany) and a Dneasy® Powersoil kit (Qiagen, Hilden, Germany), according
to the guidelines of the kit manufacturer. Amplification of the nuclear SSU (18S rRNA)
gene sequences was performed using Green1 and Green2 primers [39]. Additionally,
the chloroplast rRNA (16S rRNA) gene sequences were amplified using pA and B23s
primers [40]. The PCR was performed on a Mastercycler® nexus (Eppendorf, Hamburg,



J. Mar. Sci. Eng. 2024, 12, 245 4 of 15

Germany) with the use of KOD-ONE™ Master Mix (KMM-101, TOYOBO, Osaka, Japan).
The procedure included an initial phase at 94 ◦C for 2 min, followed by 30 cycles of
denaturation for 10 s at 98 ◦C, 30 s of annealing at 55 ◦C, 1 min of extension at 68 ◦C,
and 5 min of the last extension phase at 68 ◦C. The products were verified using gel
electrophoresis on 1% agarose, and then purification was performed using a QIAquick PCR
Purification Kit (Qiagen, Hilden, Germany). The cycle sequencing reaction was carried out
with the Applied Biosystems™ BigDye™ Terminator v3.1 Cycle Sequencing Kit (43-374-55,
Applied Biosystems, Foster City, CA, USA).

2.5. Sequence Alignment and Phylogenetic Analysis

The 1642 bp nssu rRNA gene sequence was compared with the sequences of the genus
Picochlorum and its associated taxa deposited in GenBank (Table S1). These were sequenced
using ClustalW with standard settings, and the alignment was imported into MEGA 11 [41],
resulting in a final alignment of nssu 1748 bp, including the introduced gaps. A maximum
likelihood (ML) analysis and Bayesian inference (BI) were used to construct phylogenetic
trees from this sequence data set. RaxML ver. 8 [42] was used for the ML analysis, with a
General Time Reversible (GTR) parameter model allowing for γ-distributed rate variation
across sites (G). Statistical reliability was assessed using an ML bootstrap analysis with
1000 re-sampling. The Akaike information criterion, which was implemented in jModelTest
v2.1.4 [43], was used to select the GTR + I + G substitution model for Bayesian inference.
Inference was performed using MrBayes 3.2 [44], which allowed for one invariant site and
six classes of gamma rays. Four Markov chain Monte Carlo (MCMC) simulations were run
for 10 M generations, with a sample taken every 100 generations. The initial 10,000 trees
were burnt in and discarded. A consensus majority-rule tree was then built to examine the
posterior probability of each clade. Visualization of the final tree was achieved using the
online tool iTOL v6 [45].

2.6. FA Methyl Ester Profile Analysis

During the culture’s exponential phase, cells were gathered using centrifugation at
12,000× rpm for 10 min at 25 ◦C. The cells were then meticulously washed with deionized
water to eliminate saline and freeze-dried at −80 ◦C overnight to obtain dry biomass. A
revised method of direct transesterification suggested by Lepage and Roy [46] was used.
The dry biomass (under 50 mg each) was mixed with 100 µL of an internal standard solution
of methyl heptadecanoate (51633, Sigma Aldrich Co., Ltd., St. Louis, MO, USA) dissolved
in n-hexane (270504, Sigma Aldrich Co., Ltd., St. Louis, MO, USA) (IS; con. 3 mg/mL)
and 0.9 mL of 5% (v/v) acid catalyst (acetyl chloride/methanol). A ThermoMixer® C
(Eppendorf, Hamburg, Germany) was utilized to let the reaction occur at 80 ◦C for 1 h.
After the reaction, 1 mL of n-hexane was added to the reaction tube to blend and transfer
the FAME-reactive substance to the layer of n-hexane. The FAME profile was verified by
adding the supernatant to an analysis vial. The methods and conditions for the FAME
analysis by GC were taken from our previous study [47]. The contents and compositions of
FAME were examined using a gas chromatograph (GC-2010 plus, Shimadzu, Kyoto, Japan)
instrumented with a capillary column (thickness: 0.25 µm, diameter: 0.25 mm, and length:
30 m; Agilent J&W DB-23, 122-2361, Santa Clara, CA, USA) and a flame ionization detector
(FID). Nitrogen gas was used at a flow rate of 3 mL/min, and a pressure of 96.7 kPa was
used as the purge flow. The injected volume was 1 µL and the injector split ratio was 25:1.
The split injector and FID conditions were 250 ◦C and 280 ◦C, respectively. The running
time of analysis was 31 min. The oven condition was initially set to a temperature of 50 ◦C
and maintained for 1 min. It was then heated up to 175 ◦C at a rate of 25 ◦C/min. Following
this, the temperature was further increased to 205 ◦C at a slower rate of 2 ◦C/min. The
oven was then kept at 205 ◦C for a duration of 5 min. Finally, the temperature was slowly
increased at a rate of 1 ◦C /min until it reached the terminal temperature of 210 ◦C. A
qualitative analysis of FAME was performed by comparing the peak retention times of the
Supelco 37 component FAME Mix (CRM47885, Merck KGaA, Darmstadt, Germany). The
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peaks (below C14:0) were excluded from the peak area measurements obtained by the GC
analysis, and the FAME contents were determined from the peak area measurements and
the weight of sample (DCW; Dry cell weight) according to the formula (1).

FA content(%) =

(
FAME area−IS area

IS area

)
(IS con.)(IS dilution f actor)

DCW in sample
× 100 (1)

All experiments were performed in triplicate. The signal data at each retention time
were compared with those of the IS for a quantitative analysis. The data were processed
and visualized with Microsoft Excel (Microsoft Co., Ltd., Redmond, WA, USA).

3. Results and Discussion
3.1. Morphological Features

The vegetative cells were elongated, cylindrical (Figure 1a–e), and highly variable
in size (Figure 1a). The cells ranged from 0.8 to 3 µm in length and from 0.8 to 1.7 µm in
width, with a length to width ratio of 1.3–1.6. Elongated cells were divided into two cells
via binary fission (Figure 1f–h), and the divided cells were spherical in shape (Figure 1i).
The cells elongated again into a cylindrical shape. When viewed under a light microscope,
they typically contained a single parietal chloroplast (Figure 1a–i). The centrally located
nucleus was surrounded by a chloroplast identified by the wavelength-specific fluores-
cence of chlorophyll a and DAPI. The chloroplast and nucleus were colored blue and red,
respectively (Figure 1j,k). In previous studies, a TEM image analysis revealed the organelle
morphology of lipid bodies, starch granules, thylakoids, and mitochondria in the genus
Picochlorum [21,25,29]. Lipid bodies, which were stained with Nile Red and are indicated
by white arrows, exhibited a light green hue (Figure 1l,m). The lipid body was distributed
ubiquitously within the cell, with a notable concentration around the nucleus of the stained
cells. An observation of DAPI-stained nuclei using fluorescence microscopy revealed that,
even in elongated and cylindrical cells, a single nucleus was present and two nuclei were
observed just before cell division (Figure 1j–m).
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Figure 1. Light and fluorescence micrographs of Picochlorum sp. (KCTC AG61293) vegetative cells 
(a). The micrographs are the front view (b–d) and vertical view (e) of the vegetative cell. The Figure 1. Light and fluorescence micrographs of Picochlorum sp. (KCTC AG61293) vegetative cells (a).

The micrographs are the front view (b–d) and vertical view (e) of the vegetative cell. The micrographs
are elongated cell (f), dividing cell; binary fission (g), and cells immediately after division (h),
spherical-shaped cell (i). The cell stained with DAPI reveals the location of the nucleus (n) and the
chloroplast (red) arranged around it. The presence of neutral lipids is indicated by the light green
fluorescence (l,m) observed when Nile Red is present (white arrows), while the red fluorescence
represents chlorophyll auto-fluorescence (j–m). Scale bars = 2 µm.

While invisible under a light microscope, FE-SEM enables the observation of the mor-
phology of the cell surface (Figure 2a–c). The cells elongated and divided from the center
to form a spherical shape, consistent with observations from light microscopy (Figure 2d–f).
Notably, Picochlorum sp. (KCTC AG61293) assumed a spherical shape immediately after
division, undergoing binary fission. This may be affected by culture conditions, but based
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on the observation of cells at various growth stages using light, fluorescence, and electron
microscopy and the ratio of cell length to width (1.3–1.6, including spherical cells), Picochlo-
rum sp. (KCTC AG61293) had a cylindrical shape. This shape was confirmed as the basic
shape. Under good conditions, divisions occurred continuously, leading to the presence of
cells that were more than triple the average length.
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micrographs depict a cell undergoing division; binary fission (d), cells post-division (e), and a small
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Picochlorum sp. (KCTC AG61293) was isolated from seawater, along with other species
of the genus Picochlorum. The taxonomy of unicellular coccoid green algae, including
Picochlorum species, has been a complicated and hotly debated issue, due to debates
about discriminating morphological or physiological characters [25,48]. While molecu-
lar phylogenetic analysis is crucial for their taxonomy, morphological analysis remains
indispensable [27,36,49]. The taxonomy of green algae can be improved by combining
ecological and DNA sequence data. This provides valuable insights into their structure
and morphology, aiding in accurate classification and understanding [36,49,50]. Although
all species within the genus Picochlorum share some common morphological features, they
can be differentiated based on aspects such as cell dimensions, shape, and asexual re-
productive patterns [26,27,51]. Picochlorum sp. (KCTC AG61293) undergoes an annular
contraction-type division, in which the cell elongates and divides into two cells with an
annular contraction in the middle, known as binary fission (Figures 1 and 2), similar to
the cell division of Nannochloris bacillaris [25,26,52]. Binary fission is the distinctive repro-
duction type of the genera Nannochloris and Gloeotila [26,27]. The type species of the genus
Picochlorum, Picochlorum oklahomensis (980625–4A), features a size of 2 µm and a length to
width ratio of 1.15–1.2. Notably, it reproduces through autosporulation, distinguishing it as
a distinct species from Picochlorum sp. (KCTC AG61293) [25]. Similarly, P. atomus (CCAP
251/7) and P. maculatum (CCAP 251/3) differ from Picochlorum sp. (KCTC AG61293), in
that they reproduce through autosporulation [25–27,53,54]. P. eukaryotum (Mainz l) exhibits
size ranges of 0.8–1.5 µm in width and 1.1–2.2 µm in length, and the SEM observation
showed that the cells are roundish or spherical with an average diameter of 1.5 µm [55].
This contrasts with the size and shape of Picochlorum sp. (KCTC AG61293). P. oculatum
(UTEX 1998) is currently regarded as a synonym of Nannochloropsis oculata (Droop D. J.
Hibberd), characterized by a subspherical shape and a diameter of 2–4 µm, differing in
size and shape from Picochlorum sp. (KCTC AG61293) [56]. P. costavermella (RCC4223) is a
small ovoid single cell of 1–2 µm in length and 1 µm in width. While this species shares a
comparable size with Picochlorum sp. (KCTC AG61293), it distinguishes itself by having a
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distinct ovoid shape [48,57]. A morphological analysis demonstrated that Picochlorum sp.
(KCTC AG61293) exhibited morphological disparities with all six taxonomically identified
Picochlorum species, including Nannochloropsis oculata.

3.2. Molecular Phylogeny

The phylogenetic placement of Picochlorum sp. (KCTC AG61293) was deduced from
the ssu sequence (GenBank accession number: OR854634) obtained in this study (Figure 3).
Both Bayesian inference and Maximum Likelihood (ML) phylogenies displayed consistent
topologies, with the majority of clades receiving strong bootstrap and posterior probability
(PP) support. The phylogenetic analysis identified a clade within the phylogenetic group of
Picochlorum with high statistical support (0.99 PP; 83% ML bootstrap) (Figure 3). Picochlorum
formed a sister clade with Nannochloris, Marvania, and other genera, displaying strong
support (1.00 PP; 96% ML bootstrap). The ssu data set, comprising 32 sequences from the
Picochlorum and Nannochloris strains, formed a monophyletic group with strong statistical
support (1.00 PP; 98% ML bootstrap) and diverged into two distinct groups (Figure 3). In
the first group, P. oklahomensis, P. costavermella, and P. maculatum clustered with Nannochloris
sp. and Picochlorum sp. Additionally, P. atomus (CCAP 251/7) diverged independently, with
good statistical support (0.90 PP; 70% ML bootstrap).
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The second group consisted of the genera Picochlorum and Nannochloris, exhibiting
relatively weak statistical support (0.61 PP; 67% ML bootstrap). Within this group, P. eukary-
otum, N. oculata formed a cluster with Nannochloris sp. and Picochlorum sp. Furthermore,
Picochlorum sp. (KCTC AG61293) and 10 strains demonstrated high statistical support
(1.00 PP; 100% ML bootstrap).

Even minor variations in a sequence can indicate distinct species [48]. The 18S rRNA
gene sequence is a dependable marker for identifying new species due to its high conserva-
tion. However, it is important to note that relying solely on a single gene marker may not
adequately reflect the genetic diversity within a genus. Consequently, the use of multiple
gene markers is often more effective in comprehensively understanding phylogenetic rela-
tionships [58]. However, for the genus Picochlorum, there is a significant lack of sequence
information using additional gene markers such as the chloroplast 16S rRNA or ribulose
bisphosphate carboxylase (rbcL) gene alongside the 18S rRNA gene marker. In addition,
accurate species identification requires genetic information from the same strain. In this
study, we also present the chloroplast 16S rRNA gene sequence of Picochlorum sp. (KCTC
AG61293). The sequence (GenBank accession number: PP109158) was analyzed using the
Basic Local Alignment Search Tool (BLAST) from the National Center for Biotechnology
Information (NCBI) database [59,60], confirming its classification as a chloroplast gene of
the genus Picochlorum.

The phylogenetic tree constructed from the ssu sequences in this study indicates a close
relationship between Picochlorum sp. (KCTC AG61293) and other Picochlorum species. The
tree also highlights the proximity between the genera Picochlorum and Nannochloris, which
is consistent with previous studies [25,27,36,58]. This observed closeness in phylogeny
is further supported by shared morphological features, as both genera consist of small,
coccoid, and unicellular green algae.

A molecular phylogenetic analysis confirms that Picochlorum sp. (KCTC AG61293) is
monophyletic and distinct from the six taxonomically named Picochlorum species, including
N. oculata, as shown in the ssu-based phylogeny (Figure 3). This finding is consistent with
the results of the morphological analysis conducted in this study. Previous studies have
reported that most Picochlorum species are autosporulated and have an oval or coccoid
shape [25–27,36,51]. This is different from the binary fission and cylindrical shape of
Picochlorum sp. (KCTC AG61293). The species within the clade nested in Picochlorum sp.
(KCTC AG61293) have not been given a taxonomical name, suggesting the possibility of a
new species of Picochlorum based on cell division and cell morphology.

Unfortunately, the current categorization of species within the clade that includes Pic-
ochlorum sp. (KCTC AG61293) is inadequate. The morphological characterization of many
Picochlorum strains is notably deficient, which hinders their correlation with phylogenetic
placements [36]. To refine our understanding, comprehensive whole-cell ultrastructural
analyses and genomic data integration hold promise. These advancements are expected
to contribute substantially to fostering a more nuanced species-level classification for
Picochlorum sp. (KCTC AG61293) and its counterparts within the broader taxonomy.

3.3. Comparing the Fatty Acid Composition of Picochlorum sp. (KCTC AG61293) in Relation to
Other Species within the Picochlorum Genus

The analysis revealed the presence of 11 FAME compounds, including 1 internal
standard (IS) and 3 unidentified FA peaks (Figure 4). The identified saturated fatty acids
(SFAs) encompassed myristic acid (C14:0), pentadecanoic acid (C15:0), palmitic acid (C16:0),
and stearic acid (C18:0). Among the monounsaturated fatty acids (MUFA), the identified
compounds were cis-10-pentadecenoic acid (C15:1), palmitoleic acid (C16:1), ginkgolic
acid (C17:1), and oleic acid (C18:1). The polyunsaturated fatty acids (PUFAs) included
linoleic acid (C18:2) and ALA (C18:3n3). The contents of SFA, UFA, MUFA, and PUFA in
Picochlorum sp. (KCTC AG61293) were 40.40%, 56.77%, 19.00%, and 37.78%, respectively.
The primary identified FAs (>10%) were C16:0, C17:1, and ALA. SFAs made up the largest
portion of the total FA contents, with C16:0 contributing 36.32%, followed by C18:0 at 2.85%.
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ALA accounted for 32.56% of the total FAs. The total FAME contents in Picochlorum sp.
(KCTC AG61293) was 6.73 ± 0.77%, and the weight of ALA as omega-3 in dry biomass was
21.9 mg/g.
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The comparison of the FAME contents in Picochlorum sp. (KCTC AG61293) and three
related strains revealed a diverse profile of long-chain fatty acids (LCFAs) ranging from
C14:0 to C24:1 (Table 1). The C19:0 and C26:0 values shown in Table 1 are taken from a
previous study [34]. The total FAME contents in the biomass of Picochlorum sp. (KCTC
AG61293) were contrasted with those of Picochlorum sp. (CTM20019), P. oklahomensis (UTEX
B 2795), and N. oculata (UTEX LB 2164) [34,35]. The FA composition exhibited significant
variations among the different Picochlorum species, with Picochlorum sp. (KCTC AG61293)
demonstrating the highest SFA contents (40.40%) and the lowest PUFA contents compared
to the other species. The diverse profile of LCFAs in Picochlorum sp. (KCTC AG61293), rang-
ing from C14:0 to C24:1, indicates the potential of this strain for biodiesel production [61].
LCFAs are crucial for biodiesel production due to their energy contents and combustion
properties. Remarkably, the ALA content as omega-3 of Picochlorum sp. (KCTC AG61293)
was considerably superior to that of the other species. Specifically, Picochlorum sp. (KCTC
AG61293) exhibited the highest composition of C16:0 and ALA at 36.32% and 32.56%,
respectively, with SFAs contributing the highest contents at 40.40%, especially C16:0, which
is a key component of high-acid oil biodiesel [13]. As the carbon chain length in biodiesel
fatty acid esters increases, the combustion quality of diesel fuel, as measured by cetane
number, improves, resulting in better combustion properties [62]. Certain algae species
known to produce significant amounts of C16:0 are considered to be promising biodiesel
feedstocks [63]. Moreover, ALA is recognized for its role in maintaining a normal heart
rhythm and pumping function, which can lower the risk of heart disease [64]. Diets high in
ALA have been linked to a decrease in heart disease, blood pressure, triglycerides, arterial
plaque, and myocardial infarction [14,64]. As the body cannot synthesize ALA, it must
be obtained through the diet [14]. In contrast to Picochlorum and Nannochloropsis, which
showed negligible omega-3 fatty acid compositions apart from ALA, a minimal amount of
DHA was detected in N. oculata [34]. However, no EPA or DHA was detected in Picochlorum
strains. Consequently, the omega-3 contents in each strain were almost equivalent to the
ALA contents. This is in contrast to the discoveries made in Nannochloropsis species, which
are recognized as having the most potential to be photoautotrophic sources of EPA for
human intake [65–67]. However, this may be due to differences in species, strain, or culture
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conditions [6,68]. Tran et al. [69] reported an increase in DHA contents in a Picochlorum
strain due to variations in medium composition and culture conditions. However, most
studies on lipid production in Picochlorum are still lacking and, in most studies, it is difficult
to find traces of EPA or DHA in the lipid data of Picochlorum strains [29,34,35,70]. It is
challenging to determine whether this is attributed to the absence of long-chain fatty acid
synthase enzymes or issues with culture conditions or phases. The fatty acid profile of
microalgae can indeed be influenced by culture conditions. For example, variations in
nutrient availability can significantly affect the production of specific fatty acids [71,72].
Similarly, light conditions, including intensity and photoperiod, can affect microalgal
growth and the levels of lipids, carotenoids, and fatty acid composition [73–75]. Therefore,
the optimization of these conditions is critical for maximizing fatty acid production. Our
results suggest that Picochlorum sp. (KCTC AG61293) boasts a distinctive fatty acid profile
characterized by elevated levels of SFAs and ALA, positioning it as a promising candidate
for biofuel production and various industrial applications [76–78]. However, there are
several challenges to scaling up microalgae cultivation for industrial applications. These
include the need for low-cost, standardized, industrial-scale microalgae production equip-
ment, the optimization of production processes, and addressing issues related to biological
contaminants and microalgae compounds [79–82]. In addition, safety and regulatory issues
are major concerns, and extensive research is still needed to make microalgae a commer-
cial success [6,80]. When comparing different microalgae strains for biofuel production,
factors such as lipid productivity and fatty acid profile are typically evaluated [83,84].
However, it is important to note that the optimal conditions for lipid production and key
high-value metabolites can vary significantly among different microalgae species [6,85].
Nevertheless, further investigations are imperative to comprehensively understand the
metabolic pathways and environmental factors influencing the fatty acid composition of
this strain. The optimization of cultivation conditions is also crucial for maximizing fatty
acid production [6,28,35]. While our study provides valuable insights into the fatty acid
profile of Picochlorum sp. (KCTC AG61293), further research is needed to fully understand
the influence of culture conditions on fatty acid production, to address the challenges
associated with scaling up microalgae cultivation, and to compare the performance of this
strain with other high-lipid-producing microalgae strains.

Table 1. FA composition comparison between Picochlorum sp. (KCTC AG61293) and related Picochlo-
rum and Nannochloropsis strains.

% of Total Fatty Acids (C14:0~C26:0 *)

Taxonomic Group Trebouxiophyceae

Fatty Acids/Species Picochlorum sp. Picochlorum sp. ** P. oklahomensis * Nannochloropsis
oculata *

Strain KCTC AG61293 CTM20019 UTEX B 2795 UTEX LB 2164

C14:0 1.04 nd 0.64 0.34
C15:0 0.19 nd 0.33 0.02
C15:1 1.66 nd nd nd
C16:0 36.32 29.00 23.81 19.46
C16:1 3.68 1.50 8.2 2.02
C16:2 nd 8.50 6.93 2.15
C16:3 nd 11.00 nd 1.67
C17:1 11.37 nd nd 0.07
C18:0 2.85 nd 1.49 0.81
C18:1 2.28 nd 13.85 12.79
C18:2 5.21 23.50 26.19 10.09
C18:3 n-3 (ALA) 32.56 26.60 13.52 25.78
C18:3 n-6 nd nd nd 5.26
C19:0 * nd nd nd 0.19
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Table 1. Cont.

% of Total Fatty Acids (C14:0~C26:0 *)

Taxonomic Group Trebouxiophyceae

Fatty Acids/Species Picochlorum sp. Picochlorum sp. ** P. oklahomensis * Nannochloropsis
oculata *

Strain KCTC AG61293 CTM20019 UTEX B 2795 UTEX LB 2164

C20:0 nd nd 0.10 0.23
C20:1 n-9 nd nd 0.15 0.10
C20:2 n-6 nd nd 0.05 1.29
C20:3 n-6 nd nd nd nd
C20:3 n-3 nd nd nd 0.09
C20:4 n-6 nd nd nd nd
C20:5 n-3 (EPA) nd nd nd nd
C22:0 nd nd 0.06 0.13
C22:1 n-9 nd nd nd 0.15
C22:2 nd nd nd 0.01
C22:6 n-3 (DHA) nd nd nd 0.18
C24:0 nd nd 0.01 0.12
C24:1 nd nd nd nd
C26:0* nd nd 0.55 nd

unidentified FAs 2.83 - 4.12 17.06
SFAs 40.40 29.00 26.99 21.30
MUFAs 19.00 1.50 22.20 15.13
PUFAs 37.78 69.60 46.69 46.51
UFAs 56.77 71.10 68.89 61.64
Total n-3 32.56 26.60 13.52 26.05

nd: not identified; Other FAs: total of detected but unidentified fatty acids; SFAs: total sum of saturated fatty
acids; MUFAs: total sum of monounsaturated fatty acids; PUFAs: total sum of polyunsaturated fatty acids; UFAs:
total sum of unsaturated fatty acids; n-3: Omega-3; n-6: Omega-6; n-9: Omega-9. Data taken from Zhu et al.
(2013) * [34], Dahmen et al. (2014) ** [35].
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