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Abstract: The aquaculture of marine ranching is of great significance for scientific aquaculture and the
practice of statistically grasping existing information on the types of living marine resources and their
density. However, underwater environments are complex, and there are many small and overlapping
targets for marine organisms, which seriously affects the performance of detectors. To overcome these
issues, we attempted to improve the YOLOv8 detector. The InceptionNeXt block was used in the
backbone to enhance the feature extraction capabilities of the network. Subsequently, a separate and
enhanced attention module (SEAM) was added to the neck to enhance the detection of overlapping
targets. Moreover, the normalized Wasserstein distance (NWD) loss was proportionally added to the
original CIoU loss to improve the detection of small targets. Data augmentation methods were used
to improve the dataset during training to enhance the robustness of the network. The experimental
results showed that the improved YOLOv8 achieved the mAP of 84.5%, which was an improvement
over the original YOLOv8 of approximately 6.2%. Meanwhile, there were no significant increases in
the numbers of parameters and computations. This detector can be applied on platforms for seafloor
observation experiments in the field of marine ranching to complete the task of real-time detection of
marine organisms.

Keywords: underwater vision; seafloor observation; object detection; deep learning; YOLO

1. Introduction

Oceans are a “blue granary” that provide humans with access to high-end foods and
high-quality proteins. Marine ranching, which is a new form of marine economy, allows
for the conservation of biological resources and the repair of the ecological environment.
This is an important way to realize the recovery of China’s offshore fishery resources, the
harmonious development of the ecosystem, and the use of the “blue carbon sink”. With
the increase in the world’s population, food, resource, and environmental problems have
become prominent. Thus, effective habitat restoration and resource conservation measures
must be developed. Meanwhile, the construction of modernized marine ranching systems
can effectively restore marine fishery resources and marine ecosystems [1].

The construction of a marine ranching system requires a significant investment. Can
the marine ranching systems that are constructed serve as habitats for target organisms?
Is the marine life in them healthy? These questions are directly related to the economic
benefits of marine ranching and fisheries. Therefore, there is a strong need for monitoring
biodiversity in marine ranching. It is of undoubted importance and urgency to realize the
continuous online monitoring of the marine environment and biological resources through
seafloor observation networks and to provide high-quality data support for the scientific
management of marine pastures and the real-time monitoring of animal resources [2].

One of the major tasks in a seafloor observation network is the provision of long-
term continuous real-time observation and monitoring of seafloor organisms. Traditional
observations, however, rely mainly on staff to make visual observations and record them,
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which is inefficient and error prone. To improve the efficiency of the observation of
organisms associated with marine ranching, the use of computer vision technology for
target detection and assistance in the observation of marine organisms has important
research value and application prospects.

Underwater images are different from normal land images. The quality of underwa-
ter images is significantly degraded due to uncertainties in the water environment, the
absorption and scattering of light by water, and the various media contained in water [3].
With the rise and development of artificial intelligence technology, the introduction of deep
learning-based target detection and classification techniques has enabled accurate and fast
target detection in complex underwater environments.

There are two main categories of current deep learning-based target detection methods,
namely, two-stage detection models and one-stage detection models. Among others, the
most prominent two-stage models are R-CNN [4], Fast-RCNN [5], and Faster-RCNN [6].
The main features of two-stage models are the initial generation of a region proposal net-
work with specialized modules, followed by movement to the foreground and adjustment
of the bounding box. The model structure is more complex, large, and slow, but it has some
advantages in detection accuracy. Lin et al. [7] designed the RoIMix data enhancement
method based on Faster-RCNN to solve the problem of having more overlapping, occluded,
and blurred targets in underwater images. Their experiments showed that this method
could significantly improve the detection performance of Faster-RCNN.

The main representative of the one-stage models is YOLO [8–11]. Its main feature
is the direct input of images into the detection model and the output of results. The
main advantages are its simple structure, small size, and high speed. It is more suitable
for underwater target detection in marine ranching. For underwater target detection
in the field of one-stage modeling, Han et al. [12] first used a combination of max-RGB
and shades of gray methods to enhance underwater images. Then, a deep convolutional
neural network method was used for underwater target recognition, and good results were
achieved. Chen et al. [13] improved YOLOv4 by replacing the upsampling module with
a deconvolution module, adding depth-separable convolution, and finally, augmenting
the data with an improved mosaic. Zhao et al. [14] reduced the parameters of the model
by replacing the backbone network with MobileNetV3. Deformable convolution was also
added to improve detection accuracy. Sun et al. [15] proposed LK-YOLO, which improved
the performance of the model by introducing a large kernel convolution into the backbone
network, thus improving the detection head, as well as the sample matching strategy.
Currently, the application of transformers in computer vision tasks is also a popular
research direction. Zhang et al. [16] proposed the YOLO-SWFormer, which introduced the
Swin-Transformer into the backbone of the model. This effectively improved the detection
accuracy of the model. However, at the same time, the detection speed was slow, and the
model structure was relatively bloated.

In recent years, attention mechanisms have become an integral part of target detection
tasks. Attention mechanisms stem from the study of human vision and its ability to sift
through large amounts of information to find important data. Shen et al. [17] proposed the
crisscross global interaction strategy (CGIS) for versions of YOLO detectors in order to min-
imize the interference of the underwater background with the detected target. Yu et al. [18]
proposed YOLOv7-net, which added bi-level routing attention (BRA) and a new coordi-
nated attention module (RFCAConv) to YOLOv7. This improved the detection of broken
nets in complex marine environments. Lv et al. [19] improved YOLOv5 by adding ASPP
structures and a CBAM module combined with the FOCAL loss function. A small target
detection head was also added. Li et al. [20] used the RGHS algorithm to improve the image
quality. The performance was then improved by adding a triplet attention mechanism and
an additional small target detection header. Li et al. [21] improved YOLOv5 by using a
Res2Net residual structure with a coordinate attention mechanism and applied it to fish
detection. These target detection models had high recognition accuracy, fast detection
speed, good robustness, and high practicality.
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Based on the above analysis, to accurately and quickly recognize target marine organ-
isms in complex underwater environments, this study proposes an improved YOLOv8
detector. Firstly, the InceptionNeXt block was used in the backbone network. This improved
the feature extraction abilities of the model without increasing its number of parameters.
Secondly, the SEAM attention mechanism was added to the neck. This enhanced the
detection of overlapping targets by increasing the focus on the region of the detected object
in the image and weakening the background region. Finally, NWD loss was added to
the original CIoU loss to improve the ability to detect small targets. Data augmentation
methods were used to improve the dataset during the training process, thus enhancing
the robustness of the network. The main research and innovations of this study can be
summarized as follows:

(1) Aiming at the characteristics of underwater image features that are not obvious, the back-
bone network of YOLOv8 was improved by using the InceptionNeXt block, which en-
hanced its ability to extract image features while maintaining its lightweight advantage.

(2) For the characteristics of underwater images with more overlapping targets, the SEAM
attention mechanism was added to the neck, and experimental comparisons were
made with two other classical attention mechanisms, which proved that the SEAM
was the most effective.

(3) In view of the characteristics of underwater images containing more small targets,
NWD loss was added on the basis of the original CIoU loss, and the most suitable ratio
of the two functions was found through experiments, which improved the accuracy
of small targets detections without causing a loss of detection accuracy for medium
and large targets.

(4) In response to the insufficient number of underwater datasets, data from three parts
were used to form the final dataset that was used. The dataset was augmented with
a combination of Mosaic and MixUp to create the training set during the training
process, which improved the generalization ability of the model and avoided the
overfitting of the model.

The remainder of this study is organized as follows: In Section 2, we focus on the
main structure of the video monitoring system in the seafloor observation network and
on the analysis of the specific improvement strategies for the detection model. Section 3
focuses on a general analysis of the dataset and training strategy, as well as the design of
the experiments and a discussion of the results. Section 4 provides final conclusions and
directions for future work.

2. Materials and Methods
2.1. Design of the Seafloor Video System
2.1.1. General Structural Design

A seafloor video monitoring system can be regarded as an important observation sub-
system of a seafloor observation network. The seafloor observation network system used
here was designed with a seafloor observation platform as the core. There was two-way
transmission of power and information through optoelectronic composite cables. Accord-
ing to functional divisions, a complete seafloor observation network is mainly composed
of a seafloor observation subsystem, a power–information transmission subsystem, and
a human–computer interaction and information management subsystem in the control
center according [22,23]. The human–machine interaction and information management
subsystem in the control center mainly consists of various servers and control hosts. They
are mainly responsible for the management of observation equipment and data. The core
component of the power–information transmission subsystem is the shore-based control
unit. This is responsible for delivering energy and transmitting information to various
subsea observation instruments. The seafloor observation subsystem is the core part of
the whole seafloor observation network. All observation equipment is deployed on the
seafloor observation platform. The general architecture of a typical seafloor observation
network is shown in Figure 1.
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Figure 1. General architecture of a submarine observation network.

2.1.2. Design of the Video Monitoring System

Video monitoring systems for marine ranching can be divided into four main parts:
the sensing layer, acquisition layer, application layer, and service layer. The sensing layer is
mainly composed of various types of surveillance cameras and lighting equipment, and it
is responsible for sensing dynamic information on the marine environment. The acquisition
layer collects real-time ocean observation data in the field and forwards the information
between the service layer and the sensing layer. The service layer manages various types of
information and provides a set of operations related to remote control. The application layer
is a layer for scenarios with various user requirements, and it uses different information to
meet the project’s requirements. The layers are relatively functionally independent from
each other, and the interface among them is of a standard form. Each layer uses the services
of the adjacent underlying layer and provides services to its adjacent upper layers [24]. A
diagram of the video surveillance system’s architecture is shown in Figure 2.

The workflow of the entire video monitoring system for marine ranching started
with an underwater camera integrated with underwater lighting and a cloud terrace to
obtain video and image information of the seafloor for the acquisition of original data,
followed by the processing of the image data on the network video server for efficient image
compression and coding of the image data. Next, the photoelectric composite cable and
TCP/IP video data transmission protocol of the seafloor observation network were used in
real time, and the video-image data were transmitted to the upper computer server. Finally,
the received video data were decoded and stored to achieve real-time video monitoring of
the deep seafloor [25].
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Figure 2. Video monitoring system architecture diagram.

2.2. Structure of the Detector

The target detector used in this study was mainly based on YOLOv8. YOLOv8 is
the latest version of YOLO. It was refactored on the basis of YOLOv5, and many small
strategies for improving the performance of the whole network were added. The authors
provided a total of five detectors. In this study, we used the smallest of these: YOLOv8n. We
attempted to improved it on the basis of the original detector with respect to the problem of
there being more small targets and serious target obscuration when observing marine life.
The whole model can be divided into the backbone, neck, and YOLO head. The structure
of the whole model is shown in Figure 3.
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Figure 3. Improved YOLOv8 network structure diagram.

2.2.1. Backbone

The pre-processed images were fed into the backbone for feature extraction. A major
improvement point in the whole feature extraction network was the introduction of the In-
ceptionNeXt block [26] to replace the original C2F block [27], thus enhancing the extraction
of the input image features. The InceptionNeXt block is mainly based on ConvNeXt [28]
and the idea of Inception [29–33]. The depthwise convolution of the large kernel convolu-
tions in ConvNeXt was decomposed into four parallel branches according to the channel
dimension. One-third of the channels were kerned at 3 × 3, one-third of the channels
were kerned at 1 × 11, and the remaining third of the channels were kerned at 11 × 1;
finally, a constant mapping was added. This decomposition not only reduced the number
of parameters and the computational effort, but it also retained the advantages of large
kernel depthwise convolution, i.e., it expanded the field of perception and improved the
model performance.

After that, the image features were extracted by the MLP block. The main difference
from the previous version was the replacement of the original two layers of the fully
connected network with two 1 × 1 convolution layers. Finally, the present structure
decomposed large convolutional kernels in a simple and quick manner while maintaining
comparable performance, achieving a better balance among accuracy, speed, and the
number of parameters. The main structure of the InceptionNeXt block is shown in Figure 4.

2.2.2. Neck

The PANet [34] structure is most commonly used in the neck part of YOLOv8. Iterative
extraction occurs, and the output contains features from three dimensions. The problem of
occlusion is greater when considering marine organisms, and occlusion between different
organisms can lead to misalignment, local blending, and missing features. To address
these issues, the separated and enhancement attention module (SEAM) [35] was added to
emphasize the object detection region in the image and weaken the background region,
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thus enhancing the detection of marine organisms in the presence of occlusion. The SEAM
was first used for the detection of occluded faces, and a diagram of its structure is shown in
Figure 5.

Figure 4. InceptionNeXt block structure diagram.

Figure 5. Illustration of SEAM.
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First, the input feature maps were passed through the channel and spatial mixing
module (CSSM) to learn the correlations of spatial dimensions and channels. In the CSMM,
the input feature map was first sliced into a number of image sequence blocks by us-
ing the patch embedding operation, and it was linearly mapped and flattened into a
one-dimensional vector. Then, there was a 3 × 3 depthwise convolution with residual
connections. The depthwise convolution was operated depth-by-depth, i.e., there was a
channel-by-channel separation of the convolutions. Thus, although the depthwise convolu-
tion could be used to learn the importance of different channels and reduce the number of
parameters, it ignored the relationships of information between channels.

To compensate for this loss, the outputs of the different depth convolutions were
subsequently combined through a 1 × 1 pointwise convolution. A two-layer fully connected
network was then used to fuse the information from each channel. In this way, the network
could strengthen the connections between all channels. After that, the range of values for
the logits output from the fully connected layers was [0,1]. Then, the exponential function
y = ex was used expand it to [1,e]. This exponential normalization provided a monotonic
mapping relationship that made the results more tolerant of positional errors. Finally, the
output of the SEAM was multiplied by the original features as attention so that the model
could handle the occlusion of the detected targets more effectively.

2.2.3. YOLO Head

In comparison with the previous generation of YOLOv5, the biggest difference in
YOLOv8 was that the head part had changed from the original coupled head based on
anchors to a decoupled head without anchors; thus, the categorization task was decoupled
from the regression task, and, at the same time, the objectness branch was eliminated. The
structure of the YOLO head in YOLOv8 is shown in Figure 6. The loss function of YOLOv8
was mainly composed of two parts: classification loss and regression loss.

Figure 6. Illustration of YOLO head in YOLOv8.

The classification loss still used the BCE loss. The regression loss used the distribution
focal loss and CIoU loss because it needed to be bound to the integral-form representation
proposed in the distribution focal loss. The three loss functions were weighted with a
ratio of 0.5:1.5:7.5. CIoU is an upgraded version of DIoU. Adding the aspect ratio of the
prediction box to DIoU improved the regression accuracy.

The CIoU formula is expressed using Equation (1):

CIoU = IoU − ρ2(b, bgt)

c2 − α v (1)

The three terms in the formula correspond to the calculation of the IoU, center-point
distance, and aspect ratio, respectively. ρ2(b, bgt) represents the Euclidean distance between
the center points of the prediction frame and the real frame, and c represents the diagonal
distance of the smallest closed area that can contain both the predicted and real boxes. The
equations for α and v are Equations (2) and (3):

α =
v

1 − IoU + v
(2)

V =
4

π2 (arctan
wgt

hgt − arctan
w
h
)

2

(3)
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Here, w, h and wgt,hgt represent the height and width of the predicted box and the
real box, respectively. The final loss is expressed using Equation (4):

LOSSCIoU = 1 − IoU +
ρ2(b, bgt)

c2 + αv (4)

However, CIoU also has its limitations. In particular, it is very sensitive to the deviation
in the positions of small targets, which seriously reduces its detection performance for
such targets. To improve the detection performance for small targets while retaining the
CIoU, the normalized Wasserstein distance (NWD) loss [36] was added. The main process
of NWD is to first model the enclosing frame as a 2D Gaussian distribution and then use
the Wasserstein distance to calculate the similarity between the corresponding Gaussian
distributions. Compared with the traditional IoU, the advantages of the NWD are, firstly,
that it can measure the distribution similarity regardless of the overlap between small
targets and, secondly, that it is insensitive to targets of different scales and more suitable
for measuring the similarities between small targets. The formula for the NWD loss is
expressed using Equation (5):

NWD(Na, Nb) = exp(−

√
w2

2(Na, Nb)

c
) (5)

Here, W2
2(Na, Nb) is the distance measure, Na is the Gaussian distribution of the

prediction frame, and Nb is the Gaussian distribution of the GT frame. C is a constant
related to the dataset. In this study, we set C to the average absolute size of the targets in
dataset. The NWD loss is expressed using Equation (6):

LOSSNWD = 1 − NWD(Na, Nb) (6)

3. Results and Discussion
3.1. Experimental Environment and Datasets

The hardware environment for this study was the following: a laptop with 32 GB
RAM, an AMD R9 5900HX CPU, and a 16 GB GeForce RTX 3080 graphics card. All tests
were performed in Windows 11.

The dataset used in this study is divided into three main parts. The first was the
URPC2021 dataset, which is a publicly available dataset from the 2021 Underwater Robot
Picking Contest in China, and it mainly contains four kinds of creatures: echinus, holothuri-
ans, starfish, and scallops. The second part was the Wild Fish Marker dataset [37], which
was sourced from the National Oceanic and Atmospheric Administration (NOAA) dataset,
consisting of more than 1000 tagged fish. Finally, there were several videos and images of
marine life taken from the video observations of the Luhaifeng and Laizhou Bay Marine
Ranches in Shandong Province, China in 2021. Five types of marine organisms, namely,
echinus, holothurians, starfish, scallops, and fish, were detected in this study. First, we
needed to intercept and label the marine organisms in the observation videos and pictures.
Finally, a corresponding XML configuration file was generated. Among others, this file
included the image names, dimensions, information about the location of the labeled box,
and the corresponding species of marine organisms. It should be noted that the software
used rectangular boxes to label the detection targets, and many marine organisms are
extremely irregular in shape. Their locations are dense and overlapping, and they are
difficult to strictly separate. Therefore, the labeling process in this study focused on the
main part of the animal and did not pay strict attention to its minutiae, such as the fins of
fish, the tentacles of holothurians, and the spines of echinus.

Figure 7 shows the basic information of the training set as a part of the entire dataset.
It was divided into four main sections. The upper-left panel shows the number for each
detection category. The upper-right panel shows the length and width of each target box, as
well as the overall number of boxes and the range of variation. The lower-left panel shows
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the position of the target’s center point relative to the whole figure. The lower-right panel
shows the height-to-width ratio of the target relative to the whole image. By synthesizing
the four charts, it was found that the whole dataset was more difficult due to the uneven
numbers of detection categories, which had more targets and greater variations in size, as
well as more small targets.

Figure 7. Basic infographic of training set.

3.2. Analysis of the Training Strategies

The dataset also needs to be pre-processed before starting the training. Firstly, all data
were randomly divided at a ratio of 8:1:1 among the training set, validation set, and test set.
To address the problem of the insufficient quantity and poor quality of marine organism
datasets, data enhancement operations were also performed on the training set before
training. The enhancement of the training data in this study consisted of three main parts:
traditional data enhancement, mosaic data enhancement, and MixUp data enhancement.
Traditional data enhancement mainly refers to random image flipping, scaling, and color
gamut transformation operations. The steps for the mosaic data enhancement involved
randomly combining four images into one. The MixUp enhancement step involved mixing
two images at random. Of course, mosaic data enhancement also has its shortcomings
because the distribution of the enhanced images was far from the true distribution of
natural images and the large number of cutting operations affected the accuracy of the label
boxes. Therefore, data augmentation was turned off in the last 30 epochs of training, which
were the main reference in YOLOX [38].

The optimizer used for training was AdamW. Its main advantage is that it is very easy
to use, and its gradient drop is fast. The corresponding learning rate was 0.001, and the final
learning rate was 0.0001 when using the cosine learning rate adjustment strategy during
training. The whole training lasted 300 epochs with a batch size of 16. If the training data
did not improve within 50 epochs, the training was stopped early. A warmup training [39]
strategy was used at the beginning to gradually increase the learning rate, with 10 warmup
training epochs.
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3.3. Comparison of the Detectors’ Complexity

Currently, there are two main types of target detectors: one-stage detectors and two-
stage detectors. Therefore, the models used in this study were the two-stage detectors
(Faster-RCNN based on Resnet 50) and similar types of one-stage detectors (YOLOv5n,
YOLOv7-tiny, and YOLOv8n). First, the complexity of each model was compared. The
two main metrics for complexity analysis in deep learning are the number of computations
(FLOPs) and the number of parameters (Params). FLOPs refer to the number of floating-
point operations per second, which corresponds to the time complexity. Params refer to the
total number of parameters to be trained in the network model, which corresponds to the
spatial complexity. Then, the weights of the final trained model were obtained. The main
data are shown in Table 1.

Table 1. Detector complexity comparison chart.

Detection Network FLOPs/G Params/M Weights/MB

Faster-RCNN 370.2 137 105.7
YOLOv5n 4.1 1.7 3.7

YOLOv7-tiny 13.1 6.0 11.7
YOLOv8n 8.1 3.006 6.09

Improved YOLOv8 8.0 3.098 6.12

The comparison of the complexity showed that the two-stage detectors were much
more complex than the one-stage detectors. Among the one-stage detectors, YOLOv5n
had the lowest complexity. YOLOv8n had a significant increase in complexity over that of
YOLOv5n. There was not much difference between the improved YOLOv8 and YOLOv8n.
The highest complexity was that of YOLOv7-tiny. The number of parameters, the amount
of computation, and the sizes of the weights were much higher than those of the other
two detectors.

3.4. Performance Evaluation

The detection performance of the models was compared. The main evaluation indi-
cators used in this study were the precision, recall, AP, and mAP. The PR curve is a curve
with precision as the vertical axis and recall as the horizontal axis. In general, precision
and recall are mutually constraining metrics. Therefore, plotting the PR curve can allow
one to explore the comprehensive performance of a model. The observation curve can
reflect the performance of a deep learning model. The PR curves of the model are shown
in Figure 8. By comparing the PR curves, it can be seen that the curve of the improved
YOLOv8 completely wrapped around those of the other detectors; therefore, the improved
version had better performance.

AP refers to the average precision of each class to be detected, and the average of AP
values for all classes is the average precision of the whole model (mAP). In the performance
evaluation in this study, the mAP@0.5 was calculated. This indicates what the value of
mAP is for an IoU threshold of 0.5. The predicted performance metrics for each class in the
performance evaluation of these detectors are shown in Table 2.

Other performance indicators were also compared. It can be seen that the detection
FPS values were similar for all one-stage detectors with a batch size of 1, with that of
YOLOv5n being slightly higher. However, the two-stage detectors had lower FPS values
and poorer real-time functioning. According to the mAP, the two-stage detector Faster-
RCNN had a slight advantage. Among the one-stage detectors, YOLOv7-tiny had the
highest complexity and the most complicated network structure, but this did not result
in a performance improvement. YOLOv5n had the lowest complexity, and its mAP was
also about 1.9% lower than that of YOLOv8n. The best performance on the data was that
of the improved YOLOv8. Compared to those of the original YOLOv8n, the AP of each
category and the total mAP were significantly improved. The most obvious boost was for
holothurians, with a boost of about 9.7%. This was because holothurians presented the
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smallest targets and the most serious phenomenon of obscuration. The holothurians in
marine ranches mostly inhabit the fine sand in the shallows. Others are in the crevices of
reefs. Therefore, the improvement strategies used here were most effective for holothurians.

Figure 8. PR curve comparison chart.

Table 2. Predicted performance indicators of marine organism classification.

Detection
Network

Echinus
AP

Fish
AP

Holothurian
AP

Scallop
AP

Starfish
AP mAP FPS

Faster-RCNN 84.1% 76.3% 68.7% 55.6% 82.9% 73.5% 10
YOLOv5n 86% 77.8% 62% 70.7% 85.6% 76.4% 72

YOLOv7-tiny 85.8% 78.4% 49.5% 62.9% 82% 71.7% 70
YOLOv8n 87% 82% 63.7% 72.4% 86.3% 78.3% 68

Improved YOLOv8 89.9% 89.5% 73.4% 81.5% 88.4% 84.5% 65

At the end, an example of video detection was conducted while using the improved
YOLOv8, and the results are shown in Figure 9. It can be seen that the whole process had
excellent detection results. The FPS value was stable at around 40. This indicates that this
system is competent in detecting marine organisms in seafloor videos in real time.

Figure 9. One example of video detection effect.
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Overall, although the two-stage detector Faster-RCNN had a slight advantage in terms
of the mAP, its structure was complex and functioned poorly in real time, which made it
unsuitable for video monitoring systems in seafloor observation network. The one-stage
model of the improved YOLOv8 had the best performance indicators. Its performance
was improved without essentially changing its complexity. It is the most suitable for
applications in video monitoring systems in seafloor observation networks for the detection
of marine organisms.

3.5. Comparison of the Testing Results

To compare the actual results of detection, we chose four groups of more complex
images with small and overlapping targets to explore the actual performance of the two
detection networks.

A comparison of the first two sets of detection results is shown in Figure 10. We
have used blue circles to mark the misdetections and omissions. The first set of detection
images contained a large number of overlapping targets at medium to close range. By
comparing the first set of test images, we found that the improved YOLOv8 detected
three more holothurians but missing an echinus. The second set of detection images were
dominated by a large number of small overlapping targets at a distance. By counting the
detected objects in the second group of images, it was seen that the improved YOLOv8
detected a total of 49 scallops (an improvement by 10), 4 starfish (an improvement by 1),
26 echini (an improvement by 2), and 8 holothurians (an improvement by 2). At the
same time, the accuracy of target detection—especially for overlapping targets—was
significantly improved.

Figure 10. Comparison of detections 1: (a) detection by YOLOv8; (b) detection by improved YOLOv8.

A comparison of the detection results of the latter two groups is shown in Figure 11. We
have used red circles to mark the misdetections and omissions. The third and fourth groups
of images mainly contained dense schools of fish. It could be seen that in the third group,
the improved YOLOv8 detected sixteen fish, which was two more heavily obscured fish
than the ordinary version of the detector found. In the fourth set of images, the improved
YOLOv8 detected a total of 54 fish. Compared to the normal version, six more items
were detected, and there was one missed item. This experiment proved that in the face
of the small- and medium-sized targets and greater amount of overlap in marine ranch
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environment, the improved YOLOv8 performed better than the ordinary YOLOv8 and was
more suitable for the detection of marine organisms under such conditions.

Figure 11. Comparison of detections 2: (a) detection by YOLOv8; (b) detection by improved YOLOv8.

3.6. Ablation Study

In this section, we evaluate the impact of each part on the overall performance by
separately conducting experiments on each improvement module. The whole process of
improving the experiments is also shown.

3.6.1. InceptionNeXt Block

Here, we focused on replacing the C2F block at different positions in YOLOv8 with the
InceptionNeXt block and experimentally comparing the model performance. From there,
the most appropriate improvement was found. A comparison of the effects of replacing
these positions is shown in Table 3. The experiment was divided into four groups: the
original YOLOv8, the C2F block that replaced only the neck, the C2F block that replaced
only the backbone, and all of them. The replacement positions are shown in parentheses.
It is worth noting that, at first, we tried to replace all of the C2F blocks in the model
with InceptionNeXt blocks, but the results were not good. This was likely because the
changes were excessive and destabilized the model. So, we tried other programs separately.
Ultimately, replacing only the backbone portion of the C2F block worked the best, and
there was an mAP improvement of about 2.1%.

Table 3. Comparison of replacing positions.

Detection
Network

Echinus
AP

Fish
AP

Holothurian
AP

Scallop
AP

Starfish
AP mAP

YOLOv8 87% 82% 63.7% 74.4% 84.3% 78.3%
YOLOv8(Neck) 87.4% 83.2% 65.3% 75.5% 84.2% 79.1%
YOLOv8(All) 86.7% 81.4% 63.2% 73.6% 83.5% 77.7%

YOLOv8(Backbone) 87.6% 84.8% 67.6% 77.5% 84.5% 80.4%

3.6.2. Attention Mechanisms

Undoubtedly, attention mechanisms have a significant impact on the performance of
target detection models. They can improve a model’s ability to extract effective features
for learning, thus improving the performance of the whole model. Therefore, we chose
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the classical attention mechanisms SE [40] and CBAM [41] for a comparison. The SEAM
was the most effective. The corresponding losses of occluded marine organisms could be
compensated by enhancing the response of nonoccluded marine organisms. The mAP was
increased by about 1.7%. A comparison of the different attention mechanisms is shown in
Table 4.

Table 4. Comparison of different attention mechanisms.

Detection
Network

Echinus
AP

Fish
AP

Holothurian
AP

Scallop
AP

Starfish
AP mAP

YOLOv8 87% 82% 63.7% 74.4% 84.3% 78.3%
YOLOv8+SE 87.1% 83.4% 64.5% 75.3% 84.5% 79%

YOLOv8+CBAM 87.3% 83.7% 64.8% 75.9% 84.6% 79.3%
YOLOv8+SEAM 87.4% 84.3% 66.2% 77.5% 84.6% 80%

3.6.3. Loss Function

Finally, by adding the NWD loss to the original CIoU loss to enhance the detection
performance for small targets, the mAP was improved by about 2.0%. It is worth noting
that, at the beginning of the experiment, we tried to use the NWD loss to completely replace
the original CIoU loss. However, the effect was not ideal, and the detection performance
was not increased but decreased. This was likely because the NWD loss reduced the
detection performance for medium and large targets. Therefore, we chose to retain the
original CIoU loss and adjust the proportions of the two loss functions to find the optimal
combination. The experimental results are shown in Table 5.

Table 5. Loss function comparison.

CIoU NWD Echinus
AP

Fish
AP

Holothurian
AP

Scallop
AP

Starfish
AP mAP

1 0 87% 82% 63.7% 74.4% 84.3% 78.3%
0.6 0.4 86.2% 84.6% 65.5% 75% 84.4% 79.1%
0.5 0.5 86.9% 85.7% 66.3% 77.7% 84.8% 80.3%
0.4 0.6 86.5% 81.6% 62.4% 73.2% 83.5% 77.4%
0 1 86% 80.7% 61.5% 72.8% 82.4% 76.7%

4. Conclusions

This study aimed to improve the efficiency of monitoring target marine organisms in
marine ranches. At the same time, the workload of staff can be reduced, and a new way
of thinking for the efficient management of relevant aquatic organisms in marine ranches
is provided. To achieve this goal, we attempted to improve the YOLOv8 detector as the
basis of the study. Firstly, the InceptionNeXt block was used in the backbone to replace
the original C2F block, which improved the feature extraction capabilities of the network
while keeping the number of parameters basically unchanged. Secondly, the SEAM was
incorporated into the neck to enhance the detection of overlapping targets by increasing
the attention to the detected object regions in images and weakening the background
regions. Finally, the NWD loss was added to the original CIoU loss, and the proportion
of the two functions was adjusted through experimentation. This resulted in improved
detection of small targets without compromising the detection performance for medium
and large targets. The traditional enhancement method of performing several types of
random transformations on images and a data enhancement method combining mosaic
and MixUp were used to improve the dataset during the training process, which enhanced
the robustness of the network in an attempt to obtain good results with limited resources.
Overall, the improved YOLOv8 in this study achieved a mAP of 84.5%, which was an
increase of 6.2%. Meanwhile, there was no significant increase in the number of parameters
and computations, so a balance between detection performance and model volume was
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achieved. With its fair performance, it can be applied in seafloor observation platforms
in marine ranches to complete the task of the real-time detection of marine organisms.
However, there are still some areas that can be improved, including the following.

First, the dataset can be further improved. The dataset used here still suffered from a
small and uneven sample size. In the future, we can consider acquiring more videos and
images for model training and testing. There was also a serious imbalance in the number
of individual detection categories in the dataset, so we can consider balancing the number
of samples. Second, underwater images are different from land images because of the
presence of low-contrast, non-uniform illumination, blurring, bright spots, and high noise
due to a variety of complicating factors. The images in the dataset can be enhanced with
image enhancement algorithms to improve their clarity and facilitate subsequent work.
Finally, further improvements and test models can be considered to make this system more
lightweight and faster so that it can be better adapted to embedded devices on experimental
platforms, thus opening it to a wider range of applications.
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