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Abstract: Underwater acoustic target recognition remains a formidable challenge in underwater
acoustic signal processing. Current target recognition approaches within underwater acoustic frame-
works predominantly rely on acoustic image target recognition models. However, this method
grapples with two primary setbacks; the pronounced frequency similarity within acoustic images
often leads to the loss of critical target data during the feature extraction phase, and the inherent
data imbalance within the underwater acoustic target dataset predisposes models to overfitting.
In response to these challenges, this research introduces an underwater acoustic target recognition
model named Attention Mechanism Residual Concatenate Network (ARescat). This model integrates
residual concatenate networks combined with Squeeze-Excitation (SE) attention mechanisms. The en-
tire process culminates with joint supervision employing Focal Loss for precise feature classification.
In our study, we conducted recognition experiments using the ShipsEar database and compared the
performance of the ARescat model with the classic ResNet18 model under identical feature extraction
conditions. The findings reveal that the ARescat model, with a similar quantity of model parameters
as ResNet18, achieves a 2.8% higher recognition accuracy, reaching an impressive 95.8%. This en-
hancement is particularly notable when comparing various models and feature extraction methods,
underscoring the ARescat model’s superior proficiency in underwater acoustic target recognition.

Keywords: SE attention mechanism; residual network (ResNet); underwater acoustic target recogni-
tion; feature extraction

1. Introduction

Traditional underwater acoustic target recognition methods relying on signal analysis
often face challenges; they demand heightened computational efficiency, rely on manual
parameter tweaking, exhibit low reliability, have limited application scenarios, and lack
strong generalizability.

However, the rise of deep learning, especially with its capacity to abstract and learn
from heterogeneous features, offers promise. It not only enhances the adaptability of
recognition models but also realizes end-to-end information flow and autonomous recog-
nition. As long-term oceanic observations continue to amass passive data on underwater
acoustic targets from diverse marine environments, it furnishes a robust foundation for
deep learning explorations, particularly within the paradigm of deep ocean big data.

Deep learning techniques have increasingly found applications in underwater acous-
tic target recognition [1–3]. Two pivotal aspects underscore this approach: the work-
ings of neural networks and feature extraction. For feature extraction in deep learning,
techniques like Mel-frequency Cepstrum Coefficient (MFCC) [4], Constant-Q Transform
(CQT) [5,6], wavelet features [7,8], Detection of Envelope Modulation on Noise (DEMON)
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and Low-frequency Analyzer and Recorder (LOFAR) spectra [9], and advanced spectral
features [10–13] are employed. Moreover, deep learning can directly assimilate features
from raw signals. Such methodologies efficiently filter out extra data, thereby curtailing the
computational demands of subsequent models. In a comparative analysis, Yang et al. re-
vealed that 3D dynamic Mel-frequency Cepstrum Coefficient (3D MFCC) surpasses MFCC,
Mel spectrograms, 3D dynamic Mel spectrograms, and CQT in terms of efficacy [14]. Opti-
mal performance and efficient feature extraction in this domain are intricately tied to the
neural network’s architecture. Although large-scale deep models offer profound insights,
they come at a significant computational cost [15]. A tangible trade-off exists between
model accuracy and operational efficiency, with the latter emphasizing rapid results with
fewer resources. In addition to methods for spectrogram processing explored in our study,
recent years have seen a rise in alternative approaches. Physically based techniques, such as
Yann Le Gall et al.’s [16] passive underwater acoustic filtering scheme, have been proposed
to differentiate time-frequency fringes of moving vessels. On the source side, researchers
like Kuz’kin V.M. [17] have analyzed the resolving power of source localization interferom-
etry. Further contributions by Ehrhardt M. et al. [18] and Pereselkov S.A. et al. [19] delve
into interference patterns in acoustic fields and hydroacoustic signal interference for source
localization, respectively.

Interestingly, in the realm of computer vision, the ubiquity of ResNet has been chal-
lenged [20]. Gao et al. underscored the surplus layers in ResNet, showcasing that removing
specific layers during training barely affected the algorithm’s convergence or the out-
comes [21]. In a related experiment, Tian et al. examined the network depth of a multiscale
residual deep neural network (MSRDN) designed for underwater acoustic target recogni-
tion [22]. Their findings indicated the superfluity of several layers in the original MSRDN.
This notion of redundancy in ResNet was echoed by Xue et al., who observed a drop in
identification rates by adding more residual layers [23]. Looking ahead, Lei et al. highlight
a pivotal research direction: minimizing computational expenses in underwater acoustic
data processing [24]. Current methodologies often grapple with striking a harmonious
balance between accuracy and efficiency in deep learning applications.

Advancements in attention mechanisms have showcased remarkable progress in miti-
gating interference challenges within residual networks. In a study by Chen et al., reverse
attention was leveraged to accentuate residual details within the residual network, facili-
tated by top-down guidance, enhancing recognition performance [25]. Lu et al. explored
spectral and spatial features through a tri-layer parallel residual network framework, sub-
sequently integrating a 3D attention module to amplify component representation, yielding
improved classification outcomes [26].

The loss function stands paramount in the model training paradigm, serving as a
metric to gauge the divergence between the model’s predictions and ground truth, steering
model optimization. One pivotal role of the loss function is to mitigate target value
variance. Hong et al. employed a joint loss function, honing in on the attributes of an array
of underwater acoustic targets [27]. Nonetheless, target recognition efficacy diminishes
when a universal loss function indiscriminately monitors every parameter, encompassing
interference factors like aquatic background noise.

Drawing inspiration from the attention mechanism, we introduce the “SE attention
mechanism residual concatenate network”, engineered to address representation deficien-
cies stemming from the restricted effective receptive field intrinsic to residual networks.
Our model ingests features distilled via the 3D MFCC operation, adeptly condensing the
original time domain data of the target signal and extrapolating its dynamic temporal
nuances. In the vein of feature extraction, we put forth the Attention Mechanism Residual
Concatenate Specify Dimensions Block (ARCSB) structure, an ode to ResNet’s principles.
This architecture optimizes model parameters by curtailing ResNet’s residual units and
weaving them in a parallel concatenation framework, ensuring a harmonious equilibrium
between accuracy and computational efficiency [28]. To further this, a streamlined attention
mechanism approach, termed Squeeze-Excitement (SE) [29,30], is infused into our model.
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This aids the network in attributing differential weights to input features, facilitating the
extracting of paramount information. By embedding the SE attention mechanism blueprint
into the ARCSB architecture, we intensify the interplay among elements, bolstering the
convolutional network’s prowess in isolating frequency traits from auditory visuals.

Further augmenting our model’s precision, we incorporate a maximum pooling layer
and the ASPP module. These components steer the model towards discerning pivotal
facets of acoustic imagery, offering meticulous data extraction, purging extra data, and
fortifying model robustness. For classification, a Multilayer Perceptron (MLP) discerns
underwater acoustic targets. Notably, habitual reliance on the Cross-entropy Loss function
can induce model underfitting, especially given the sample distribution skewness of the
ShipsEar dataset. To enhance the network’s adaptability to such imbalanced datasets, Focal
Loss [31] is utilized, rectifying sample disparity.

In summary, our manuscript’s salient contributions encompass the following:
(1) The unveiling of the ARescat network, adept at conserving target features amidst

extraction and recognition processes. Infusing channel SE attention mechanism, it accentu-
ates disparate channels during pivotal information extraction, adeptly negating ambient
noise and upholding network adaptability amidst environmental flux.

(2) The introduction of Focal Loss as a remedy for dataset imbalance. Through its
application, we can facilitate balanced feature supervision, including interference nuances
like marine ambient noise. This methodology addresses sample disproportion and ensures
balanced feature oversight, excavating salient details from merged components.

(3) The accuracy of the proposed model ARescat was verified to be higher than other
models on the shipsEar dataset.

2. System Overview

This section introduces the classification framework for underwater acoustic target
recognition. The ARescat network model is presented in Section 1, and the extraction
technique for 3D MFCC features is shown in Section 2. Section 3 introduces the modules
in the ARescat network, and Section 4 presents the Focal Loss idea to solve the sample
imbalance problem.

2.1. Construction of the Proposed Model
ARescat Network Model (Refer to Figure 1)

The ARescat model bifurcates into two pivotal segments: feature extraction and
classification. Within feature extraction, audio signal frames transform to be represented in
3D MFCC format, capturing both the original signal target and dynamic temporal details.
The processed 3D MFCC is iterated using two ARCSB modules and a Maxpool module.
This strips redundant frequency information. These features integrate through the ARCSB
module, the ASPP module, and the Maximum Pooling Layer module. This amalgamation
elevates the model’s prowess in delineating underwater acoustic target features. The
culminating step involves feeding these refined features into the MLP for categorization,
facilitated by connecting two fully connected (FC) layers.
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2.2. 3D MFCC Feature Extraction Methods

The proposed model is engineered to accept features gleaned through the 3D MFCC pro-
cedure (depicted in Figure 2). The extraction process unravels in a series of meticulous steps:

1. Frame Splitting and Windowing: MFCC features begin segmenting frames and
leveraging the Hanning window for frequency domain exploration. This foundation is

Figure 1. ARescat network model.

2.2. 3D MFCC Feature Extraction Methods

The proposed model is engineered to accept features gleaned through the 3D MFCC
procedure (depicted in Figure 2). The extraction process unravels in a series of meticu-
lous steps:
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pivotal for speech segmentation and feature extraction. For analysis, a frame length of 2048
bits is established, intersecting with a 75% overlap.

2. FFT and Power Spectrum Computation: Each frame experiences a Fast Fourier
Transform. Subsequent squaring and summing yield the power spectrum, crucial for
aggregating both time- and frequency-domain data.

3. Mel Filter Bank and DCT: The power spectrum undergoes a logarithmic transforma-
tion through the Mel filter bank, yielding the log Mel spectra. Ultimately, discrete cosine
transformation distills these spectra into MFCC features. For a representative 5 s audio snip-
pet with a 22,050 Hz sampling rate, the MFCC assumes the shape of (128 × 216). As input to
ARescat, Mel_3D with 128 × 216 × 3 (n_mels = number of mel filters = 128, N = number
of frames = 216, C = channel = 3 ) is harvested.

Figure 2. 3D dynamic MFCC feature extraction frame.

Differential Features: A novel dimension to this method is integrating delta features,
which is pivotal for accentuating recognition accuracy. Traditional spectral features are
constrained, only capturing static properties. Differential operations on MFCC unlock the
dynamic attributes, termed the first-order differential MFCC features. The incremental
spectral feature Dt is defined as follows, presuming that the MFCC at frame t is ct.

Dt =
∑N

n=1 n(ct+n − ct−n)

2 ∑N
n=1 n2

(1)

Here, n is the number of adjacent frames, and ct is the inverse spectral coefficient of
the static Mel spectrogram for frame t. By the difference operation, Dt is the difference
coefficient of the Mel spectrogram calculated from the static coefficients ct−n and ct+n. The
time-frequency spectrogram’s difference dimension is indicated by the letter N. The 3D
spectrogram is recorded as:

Mel_3D ∈ RF×T×C (2)

This dynamic representation of the spectrogram is three-dimensional, encapsulated
by dimensions F (Mel filter bins), T (time), and C (spectrogram dimensions).

Figure 3a illustrates the time-domain waveforms of sailboat radiated noise from the
ShipsEar database. Mel-Frequency Cepstral Coefficients (MFCC) are a staple in acoustic sig-
nal processing, especially in speech recognition. They emulate human auditory perception
of sound frequencies, capturing key speech features. Traditional MFCC, however, primarily
capture static spectral envelope information, lacking in dynamic signal representation.
This gap is bridged by computing first and second-order differences of the MFCC (Delta
and Double-delta MFCC), as depicted in Figure 3b,c. These derivatives provide temporal
dynamics, enhancing the representation of speech signal variations in rate and articulation.
The integration of MFCC, Delta MFCC, and Double-delta MFCC offers a more holistic
view of acoustic features, as shown in Figure 3d, crucial for effective automatic speech
recognition systems.

To visualize this process, Figure 3 illustrates the primal order differential MFCC, the
secondary dynamic MFCC, and 3D MFCC consisting of MFCC and delta mfcc and double-
delta mfcc , specifically from the time-domain waveforms of sailboat radiated noise sourced
from the ShipsEar database.

Figure 2. 3D dynamic MFCC feature extraction frame.

1. Frame Splitting and Windowing: MFCC features begin segmenting frames and
leveraging the Hanning window for frequency domain exploration. This foundation is
pivotal for speech segmentation and feature extraction. For analysis, a frame length of
2048 bits is established, intersecting with a 75% overlap.

2. FFT and Power Spectrum Computation: Each frame experiences a Fast Fourier
Transform. Subsequent squaring and summing yield the power spectrum, crucial for
aggregating both time- and frequency-domain data.

3. Mel Filter Bank and DCT: The power spectrum undergoes a logarithmic transforma-
tion through the Mel filter bank, yielding the log Mel spectra. Ultimately, discrete cosine
transformation distills these spectra into MFCC features. For a representative 5 s audio
snippet with a 22,050 Hz sampling rate, the MFCC assumes the shape of (128 × 216). As input
to ARescat, Mel_3D with 128× 216× 3 (n_mels = number of mel filters = 128, N = number
of frames = 216, C = channel = 3) is harvested.

Differential Features: A novel dimension to this method is integrating delta features,
which is pivotal for accentuating recognition accuracy. Traditional spectral features are
constrained, only capturing static properties. Differential operations on MFCC unlock the
dynamic attributes, termed the first-order differential MFCC features. The incremental
spectral feature Dt is defined as follows, presuming that the MFCC at frame t is ct.

Dt =
∑N

n=1 n(ct+n − ct−n)

2 ∑N
n=1 n2

(1)

Here, n is the number of adjacent frames, and ct is the inverse spectral coefficient of
the static Mel spectrogram for frame t. By the difference operation, Dt is the difference
coefficient of the Mel spectrogram calculated from the static coefficients ct−n and ct+n. The
time-frequency spectrogram’s difference dimension is indicated by the letter N. The 3D
spectrogram is recorded as:

Mel_3D ∈ RF×T×C (2)

This dynamic representation of the spectrogram is three-dimensional, encapsulated
by dimensions F (Mel filter bins), T (time), and C (spectrogram dimensions).

Figure 3a illustrates the time-domain waveforms of sailboat radiated noise from the
ShipsEar database. Mel-Frequency Cepstral Coefficients (MFCC) are a staple in acoustic sig-
nal processing, especially in speech recognition. They emulate human auditory perception
of sound frequencies, capturing key speech features. Traditional MFCC, however, primarily
capture static spectral envelope information, lacking in dynamic signal representation.
This gap is bridged by computing first and second-order differences of the MFCC (Delta
and Double-delta MFCC), as depicted in Figure 3b,c. These derivatives provide temporal
dynamics, enhancing the representation of speech signal variations in rate and articulation.
The integration of MFCC, Delta MFCC, and Double-delta MFCC offers a more holistic
view of acoustic features, as shown in Figure 3d, crucial for effective automatic speech
recognition systems.
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2.3. ARCSB Network
2.3.1. Structure and Components

The ARCSB network, as illustrated in Figure 4, amalgamates three integral modules:
1. The Residual concatenate (Rescat) module;
2. The Specified dimension module;
3. The SE attention mechanism module.
Their union is instrumental in robustly extracting feature information and approxi-

mating the categorical probabilities based on spectral frequencies.
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1. The Residual concatenate (Rescat) module;
2. The Specified dimension module;
3. The SE attention mechanism module.
Their union is instrumental in robustly extracting feature information and approxi-

mating the categorical probabilities based on spectral frequencies.
1. Rescat Module:
Due to the high similarity of frequency features in acoustic images, the module uses

superposition computation to obtain global details, obtain the information of a larger
sensory field to represent the target features, increase its feature extraction, and fuse the
spectrogram features extracted from different convolutions together to build a more fine-
grained representation of the features and improve the model’s expressive ability. Within
the Rescat module, the incoming data, designated as x, are bifurcated into two pathways.

The upper trajectory processes x using dual 3 × 3 dilated convolutions. This not only
broadens the receptive field but also maintains the resolution, ensuring that the contextual
multi-scale data are effectively harnessed.

The subsequent pathway transforms the channel number of x. This entails initial
processing with a 1 × 1 convolution, followed by a 3 × 3 convolutional layer. The residual
network structure here ensures the network is more robust and adaptive, averting potential
gradient-related issues and priming the features for subsequent module integration. The
culmination of the module sees the two pathways conjoin, enhancing feature extraction.

Moreover, the spectrogram features derived from varied convolutions are amalga-
mated, generating a more intricate representation of features and bolstering the expressive
capacity of the model. Hence, we can extract and fuse supplementary multi-scale detail
information to attain more precise target features. The formula for the receptive field can
be defined as follows:

lk = lk−1 +

[
( fk − 1) ∗

k−1

∏
i=1

si

]
(3)

where fk is the size of the kth layer’s convolution kernel, or the pooling dimension of the
pooling layer, and Ik−1 is the size of the receptive field corresponding to the k−1st layer. si
is the stride size of layer i. Both s and k denote the number of layers.

2. Specified Dimension Module:
This module utilizes a 3 × 3 convolutional layer, group normalization, and a leaky

ReLU activation function. The choice of a 3 × 3 convolution is pivotal for minimizing
the model parameters, thereby enhancing training efficiency and generalizability. The
activation function aids in abstracting spatial data, while the normalization layer processes
batches of data. This coordination bolsters the model’s feature extraction capacity, acting as
a bridge between the prior Rescat module and the impending SE attention mechanism.

3. SE Attention Mechanism Module:
As depicted in Figure 5, this module focuses on the fusion of global context data. Core

operations include:
(1) Squeeze: Uses global average pooling and global Max pooling to transform feature

maps, concentrating on the global context.
(2) Middle Section: Bolsters the abstract representation capacity of the network’s local

section through dual convolution layers.
(3) Excitation: Harnesses a two-layer fully connected sequence to determine channel

weights in the feature map. By emphasizing critical features and downplaying less reliable
components, the module enhances the extraction capabilities of the network.

In essence, SE attention mechanism module permits the model to focus more intently
on the core segments of the auditory image frequency. This targeted approach prevents
potential losses of target features, ensuring a more refined and accurate feature extrac-
tion process.
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While the “Squeeze” function focuses on spatial reduction through pooling opera-
tions, the “Excitation” mechanism globally and comprehensively characterizes the ship’s
acoustic signal. By leveraging fully connected layers, the Excitation mechanism gauges the
significance of each channel, modeling inter-channel relationships with learned parameters.

The formula for the “Squeeze” operation is as follows:

z = σ
(

W2

(
W1

(
Fc

avg

))
+ W2(W1(Fc

max))
)

(4)

where z is the extracted feature, Fc
avg is the global average pooling of the feature map to

compress it into a feature vector, Fc
max is the global maximum pooling of the feature map to

compress it into a feature vector, σ denotes the sigmoid activation function, W1, W2 both
denote the dimension, W1 ∈ R

C
r ×CW2 ∈ RC× C

r .
The “excitation” equation looks like this:

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)) (5)

In the above equation, σ denotes the sigmoid activation function and δ denotes the leaky
ReLU activation function, while W1, W2 both denote the dimension, W1 ∈ R

C
r ×CW2 ∈ RC× C

r .
Fex is the excitation operation, i.e., it is equivalent to recalibrating the weights W with
the features z taken out earlier. W is the weights, z is the features taken out earlier, and s
denotes the weights of each channel.

To reduce the complexity of the model and to generalize it, two FC layers are used to
parameterize the pick-and-pass mechanism, i.e., a dimensionality reduction layer with a
reduced dimensionality rate r, a leaky ReLU, followed by a dimensionality elevation layer,
which then moves on to the channel dimensions of the output feature map. Subsequently,
dimensionality is escalated to align with the output feature map’s channel dimensions. The
entire block’s outcome is derived from the feature map’s rescaling through the activation
function. The final production of SE_Block is as follows:

X̃C = Fscale(uc, sc) = scuc (6)

where X̃ = [x̃1, x̃2, . . . , x̃c] and Fscale = (uc, sc) refers to channel-wise multiplication be-
tween the scalar sc and the feature map uc = RH×W ·sc is the activations obtained through
interchanneling, and uc is the output of feature extraction.
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2.3.2. ASPP (Atrous Spatial Pyramid Pooling)

Designed to bolster the underwater acoustic target recognition capability, the ASPP
module, depicted in Figure 6, enriches the network’s feature representation and sensing
prowess. Notably, it enlarges the receptive field without sacrificing the sampling rate.
Its chief advantages include an enhanced capacity for multiscale context capture, pre-
cise multiscale feature extraction, and achieving global features with minimal resolution
degradation.

Figure 6. ASPP network structure.
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2.3.2. ASPP (Atrous Spatial Pyramid Pooling)

Designed to bolster the underwater acoustic target recognition capability, the ASPP
module, depicted in Figure 6, enriches the network’s feature representation and sensing
prowess. Notably, it enlarges the receptive field without sacrificing the sampling rate. Its
chief advantages include an enhanced capacity for multiscale context capture, precise multi-
scale feature extraction, and achieving global features with minimal resolution degradation.
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Figure 6. ASPP network structure.

2.4. MLP (Multilayer Perceptron)

Serving as a classifier, the MLP, as showcased in Figure 7, is optimized to handle deep
learning features replete with higher-order terms and intricate correlations. These features,
inherently aligned with target information, are processed by the MLP, which, for an input
of 27,648 data points, connects these data to an array of neurons, culminating in the output
layer. The output then presents five classification outcomes.
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Figure 7 details the network architecture of the Multilayer Perceptron (MLP) used
in our model. W[] denotes the input unit, and x[] and H[] represent the first and second
hidden layers, respectively. Each hidden layer processes the input and relays it to the next
layer. The output unit, Y, receives inputs from all hidden units, synthesizes them, and
delivers the final classification result. The network structure follows a fully connected
feedforward design, with each input unit connected to every hidden unit and vice versa.
Our MLP comprises two hidden layers, with an input of 27,648 features. The first hidden
layer outputs 1000 features, which feed into the second hidden layer, resulting in an output
of 100 features. These are then weighted and summed to compute the final results, leading
to a five-category classification.

2.5. Focal Loss

Directly utilizing the Cross-entropy Loss function with the ShipsEar database (Figure 8)
could lead to performance deficits and a heightened risk of model underfitting due to the
dataset’s uneven sample distribution. In addressing this imbalance, the Focal Loss method
is introduced.
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Figure 7 details the network architecture of the Multilayer Perceptron (MLP) used
in our model. W[] denotes the input unit, and x[] and H[] represent the first and second
hidden layers, respectively. Each hidden layer processes the input and relays it to the next
layer. The output unit, Y, receives inputs from all hidden units, synthesizes them, and
delivers the final classification result. The network structure follows a fully connected
feedforward design, with each input unit connected to every hidden unit and vice versa.
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Our MLP comprises two hidden layers, with an input of 27,648 features. The first hidden
layer outputs 1000 features, which feed into the second hidden layer, resulting in an output
of 100 features. These are then weighted and summed to compute the final results, leading
to a five-category classification.

2.5. Focal Loss

Directly utilizing the Cross-entropy Loss function with the ShipsEar database (Figure 8)
could lead to performance deficits and a heightened risk of model underfitting due to the
dataset’s uneven sample distribution. In addressing this imbalance, the Focal Loss method
is introduced.
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Figure 8. ShipsEar dataset sample categories and their numbers.

The definition of Focal Loss is as follows:

L f l =

{ −α(1 − y′)γ log y′, y = 1
−(1 − α)y′γ log(1 − y′), y = 0

(7)

where α is the adjustment of the positive and negative sample imbalance coefficients. There
is a parameter that controls for imbalance in the difficulty sample, while y and y′ represent
the true label value and the predicted probability, respectively. The formula for Focal Loss
incorporates the predicted sigmoid output y’ and two parameters, α and γ, which, for all
classification experiments in this context, are set to 0.25 and 2, respectively.

In essence, Focal Loss necessitates the proportion knowledge of each class dataset
when training the model. Focal Loss makes the model more focused on hard-to-categorize
samples during training by reducing the weight of easy-to-categorize samples. This strate-
gic application permits the network to showcase commendable performance improvements
for datasets with imbalanced samples, leading to a comprehensive enhancement in the
model’s overall performance.

These components collectively ensure that the ARCSB network and the related tech-
niques can efficiently process underwater acoustic data, capture vital features, and make
accurate classifications, even when confronted with challenges like sample imbalance.

3. Experimentation and Analysis
3.1. Dataset Description

The ShipsEar database is a prominent benchmark for underwater acoustic target
recognition and has been employed in numerous scientific investigations. To gauge the
effectiveness of our proposed model, we leveraged the ShipsEar database. This collec-
tion comprises recordings of ship-emitted noise sourced from the Spanish Atlantic coast,
complemented by both human-generated and natural ambient noises. The database is
organized into 90 WAV recordings, segmented into five categories, each encompassing one
or multiple targets. The categorization and count of files are enumerated in Table 1.

To facilitate the study, the database underwent a preprocessing stage. All auditory
recordings were standardized to a sampling rate of 22,050 Hz. Adopting a fixed time frame
of 5 s, we extracted 2223 annotated audio samples. During data partitioning for model
training, each 5-second audio segment was recognized as an individual sample. Of the
cumulative pieces (2223), a substantial majority (1778) were allocated for training, with the
remainder (445) reserved for testing, observing an 8:2 split ratio.
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The definition of Focal Loss is as follows:

L f l =

{ −α(1 − y′)γ log y′, y = 1
−(1 − α)y′γ log(1 − y′), y = 0

(7)

where α is the adjustment of the positive and negative sample imbalance coefficients. There
is a parameter that controls for imbalance in the difficulty sample, while y and y′ represent
the true label value and the predicted probability, respectively. The formula for Focal Loss
incorporates the predicted sigmoid output y′ and two parameters, α and γ, which, for all
classification experiments in this context, are set to 0.25 and 2, respectively.

In essence, Focal Loss necessitates the proportion knowledge of each class dataset
when training the model. Focal Loss makes the model more focused on hard-to-categorize
samples during training by reducing the weight of easy-to-categorize samples. This strate-
gic application permits the network to showcase commendable performance improvements
for datasets with imbalanced samples, leading to a comprehensive enhancement in the
model’s overall performance.

These components collectively ensure that the ARCSB network and the related tech-
niques can efficiently process underwater acoustic data, capture vital features, and make
accurate classifications, even when confronted with challenges like sample imbalance.
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3. Experimentation and Analysis
3.1. Dataset Description

The ShipsEar database is a prominent benchmark for underwater acoustic target
recognition and has been employed in numerous scientific investigations. To gauge the
effectiveness of our proposed model, we leveraged the ShipsEar database. This collec-
tion comprises recordings of ship-emitted noise sourced from the Spanish Atlantic coast,
complemented by both human-generated and natural ambient noises. The database is
organized into 90 WAV recordings, segmented into five categories, each encompassing one
or multiple targets. The categorization and count of files are enumerated in Table 1.

Table 1. The five classes are included in the ShipsEar database in detail.

Class Target The Number of Samples

Class A Background noise recordings 224

Class B Dredgers/Fishing boats/Mussel
boats/Trawlers/Tugboats 52/101/144/32/40

Class C Motorboats/Pilot boats/Sailboats 196/26/79
Class D Passenger ferries 843
Class E Ocean liners/Ro-ro vessels 186/300

To facilitate the study, the database underwent a preprocessing stage. All auditory
recordings were standardized to a sampling rate of 22,050 Hz. Adopting a fixed time frame
of 5 s, we extracted 2223 annotated audio samples. During data partitioning for model
training, each 5-second audio segment was recognized as an individual sample. Of the
cumulative pieces (2223), a substantial majority (1778) were allocated for training, with the
remainder (445) reserved for testing, observing an 8:2 split ratio.

3.2. Hyperparameter Configuration and Loss Function Design

Our model’s training capitalized on momentum (set at 0.9) coupled with the Lion’s
optimizer [32], resulting in effective mitigation of sample noise disruption. The entirety
of the training regimen spanned 200 epochs. In a bid to expedite the learning process, the
initial learning rate of 0.0004 was multiplied by the cosine decay function. As a result, we
derived the learning rate for the entire learning procedure. The training was executed with
a batch size of 4, and Focal Loss was designated as the primary loss function.

3.3. Performance Evaluation

Experiments were orchestrated using the ShipsEar dataset to appraise the proficiency
of the devised model. The computational environment encompassed a Windows 11 OS
backed by an Intel Core i7-12700H CPU, 32 GB RAM, an NVIDIA GeForce GTX 3070TI
GPU, and the Pytorch 1.4.0 framework. The succeeding sub-sections dissect the experimen-
tal outcomes.

The following is the introduction of each indicator in the table. Precision refers to
the proportion of positive samples that are judged positive by the classifier. Recall refers
to the proportion of positive cases that are predicted to be positive as a percentage of the
total number of positive cases. The F1-score, a measure of the classification problem, is the
reconciled average of precision and recall. Support refers to the number of validation sets
for each category.

We employed precision, recall, and F1-score metrics to evaluate the network’s recogni-
tion capabilities on the provided dataset. The corresponding formulas for each metric are
as follows:

Precision =
TP

TP + FP
(8)

Re call =
TP

TP + FN
(9)
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F1−score =
2TP

2TP + FP + FN
(10)

Here, TP represents the prediction of the correct answer, FP stands for the mistaken
prediction from other classes to this class, and FN indicates that this category of labels is
predicted to be the other category of labels.

3.3.1. Model Performance Insights

We use the 3D MFCC extracted from the ShipsEar dataset as the data input to the
model to evaluate our ARescat model. Since the test set is not involved in model training,
the test accuracy can objectively evaluate the model performance. A comprehensive per-
formance analysis encompassing recall, accuracy, and F1 scores is delineated in Table 2.
Although specific categories did not surpass the 0.90 accuracy threshold, the overarching
Precision, Recall, and F1-score, averaging at 0.958, offer optimism. In this scenario, the term
“support” references the number of samples in a solitary test. For comparative analyses, we
employ “average Precision” to measure classification accuracy. The classifier exhibits com-
mendable prowess in discerning between Class A (ambient noise) and the distinct classes
B–E. Notably, the vessel classification E, entailing ocean liners and roll-on/roll-off vessels,
boasted a stellar classification rate of 1, translating to a 100% success quotient. Conversely,
Class B, encompassing vessels like dredgers, fishing vessels, and tugboats, demonstrated
suboptimal performance, potentially attributable to the pronounced background noise
endemic to shallow water acoustics.

Table 2. Results of ARescat with three-dimensional features.

Class Precision Recall F1-Score Support

Class A 0.960 1.000 0.984 74
Class B 0.958 0.804 0.867 60
Class C 0.937 0.984 0.959 169
Class D 0.970 0.966 0.970 97
Class E 1.000 1.000 1.000 45
Average 0.958 0.958 0.958 445

A confusion matrix visualized in Figure 9 demystifies the classification outcomes on
the ShipsEar dataset. The matrix employs a numerical nomenclature, with classes A–E
represented by numbers 0–4. The diagonal elements signify accurate classification counts
for the respective categories. The five elements from left to right in the diagonal of Figure 9
are 74, 48, 165, 94, and 45, which correspond to the number of samples correctly categorized
in each of the five classes in class A to class E in the ShipsEar database. The elements in
the non-diagonal line are the number of samples that were incorrectly categorized. Class B
emerges as the primary challenge, while other classes are discerned with relative efficacy.
It is pivotal to acknowledge that experimental outcomes offer insights into the optimal
parameters—filter size, layer count, filter count, batch size, the initial learning rate, or early
stopping criterion—for both training and validation stages. While a degree of latitude
exists in parameter selection, deviations from the prescribed configurations might influence
performance. Incorporating supplementary hyperparameters, however, is unlikely to yield
significant performance shifts.

3.3.2. Ablation Experiments on Network Modules

To validate the efficacy of our proposed framework, several ablation studies were
undertaken. The intent behind these studies was to underscore the importance of the
ARescat network. For illustrative purposes, three distinct models, namely “ARescat-1”,
“ARescat-2”, and “ARescat-3”, were pitted against our proposed model. Table 3 shows the
test results for ARescat, ARescat-1, and ARescat-2
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Table 3. Test results for ARescat, ARescat-1, and ARescat-2.

Model Class Precision Recall F1-Score Support

ARescat Class A 0.960 1.000 0.984 74
Class B 0.958 0.804 0.867 60
Class C 0.937 0.984 0.959 169
Class D 0.970 0.966 0.970 97
Class E 1.000 1.000 1.000 45
Average 0.958 0.958 0.958 445

ARescat-1 Class A 0.932 1.000 0.960 74
Class B 0.921 0.754 0.825 60
Class C 0.916 0.965 0.941 169
Class D 0.979 0.930 0.954 97
Class E 1.000 1.000 1.000 45
Average 0.939 0.939 0.939 445

ARescat-2 Class A 0.753 0.908 0.819 74
Class B 0.971 0.500 0.655 60
Class C 0.806 0.952 0.883 169
Class D 0.948 0.823 0.880 97
Class E 1.000 0.956 0.981 45
Average 0.857 0.857 0.857 445

As detailed in Table 3, the distinction between ARescat and ARescat-1 hinges on the
absence of concatenation operations in the ARCSB module of ARescat-1, with the latter
only executing residual functions on input data. ARescat-2, when juxtaposed against
ARescat, omits the ASPP operation, leading to modifications in channel numbers and
feature extraction. It is pertinent to note that the test accuracy assessment remains untainted
by the model training, thus offering an unbiased performance metric.

From the comparison between ARescat and ARescat-1 in Table 3, the concatenate
operation’s prowess is evident. This operation amplifies feature extraction capabilities
by synthesizing spectral features derived from disparate convolutions, thereby creating a
comprehensive feature representation. This enhances the model’s performance. Moreover,
integrating multi-scale detailed data acts as auxiliary information, enabling a more precise
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target feature extraction. When combined with the concatenate operation, a heightened
accuracy is achieved. As shown by the comparison of ARescat and ARescat-2 experiments,
ASPP is used to acquire multi-scale object information to make the target balanced in
resolution and receptive field. The primary target of the ASPP module is to augment the
network’s receptive field, bolster its ability to grasp multi-scale contexts, refine the model’s
feature articulation, and adeptly abstract frequency characteristics from the spectrogram.
Consequently, integrating the ASPP module and concatenate operation propels the model’s
performance metrics.

In Table 4, the distinction between ARescat-3 and ARescat rests on the integration (or
lack thereof) of the self-attention mechanism within the ARCSB network. The intrinsic
value of this mechanism is its capacity to recalibrate the original feature map by discerning
its channel dependencies. Empirical evidence suggests that incorporating the self-attention
mechanism substantially influences the model’s accuracy. Given the acoustic images’
high-frequency feature similarity, the feature extraction process is particularly vulnerable
to target feature information loss. By integrating the self-attention mechanism, there
is an accuracy uptick, and the network learns to prioritize informative features while
simultaneously suppressing less pertinent ones. This prevents target feature attrition during
the extraction and recognition phases, enhancing the network’s feature extraction prowess.

Table 4. Test results for ARescat and ARescat-3.

Model Class Precision Recall F1-Score Support

ARescat Class A 0.960 1.000 0.984 74
Class B 0.958 0.804 0.867 60
Class C 0.937 0.984 0.959 169
Class D 0.970 0.966 0.970 97
Class E 1.000 1.000 1.000 45
Average 0.958 0.958 0.958 445

ARescat-3 Class A 0.690 0.840 0.760 74
Class B 0.781 0.702 0.744 60
Class C 0.826 0.894 0.861 169
Class D 0.953 0.754 0.834 97
Class E 0.989 0.900 0.990 45
Average 0.834 0.834 0.834 445

The primary distinction between ARescat and ARescat-3 models lies in the incorpo-
ration of the SE (Squeeze-Excitation) attention mechanism within the ARCSB network of
ARescat. The SE attention mechanism recalibrates the original feature map by capturing
channel dependencies, significantly impacting the model’s accuracy. The comparative anal-
ysis between ARescat and ARescat-3, as presented in Table 4, demonstrates the substantial
influence of the SE attention mechanism on model performance. Given the high-frequency
feature similarity in acoustic images, there is a risk of losing crucial target feature informa-
tion during the extraction process. The SE attention mechanism not only enhances accuracy
but also strategically utilizes global information to highlight informative features while
suppressing less reliable ones, thus mitigating the loss of target features and improving the
overall feature extraction capability of the network.

3.3.3. Role of Loss Function in Model Performance

This subsection scrutinizes the repercussions of various loss functions on the model’s
performance. As illustrated in Table 5, there is a clear correlation between the choice of loss
function and classification outcomes. Focal Loss, in particular, outshines its counterparts,
boosting the average accuracy by 4.7% and 2.5% compared to Uniform Loss and Cross-
entropy Loss, respectively. The data underscore the superior performance metrics achieved
by the model incorporating Focal Loss relative to other models. Focal Loss is instrumental
in optimizing the model’s performance.
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Table 5. Comparing various loss functions.

Model ARescat ARescat ARescat

Feature 3D MFCC 3D MFCC 3D MFCC
Loss function Uniform Loss Cross-entropy Loss Focal Loss

Class A 0.896 0.931 0.984
Class B 0.739 0.786 0.867
Class C 0.917 0.933 0.959
Class D 0.973 0.974 0.970
Class E 1.000 1.000 1.000
Average 0.911 0.933 0.958

3.3.4. Characterization Ablation Experiments

MFCC, widely used in speech and audio processing, captures the short-term power
spectrum envelope of a signal through a series of transformations, including Fourier trans-
form, Mel filter bank processing, logarithmic transformation, and discrete cosine transform
(DCT). The 3D dynamic MFCC extends this by incorporating the first- and second-order
derivatives (delta and delta-delta features), representing the rate of change and acceleration
over time, thus providing a deeper understanding of audio signal dynamics.

Similarly, the Mel-spectrogram offers a visual representation of sound signal variations
in time and frequency. The 3D dynamic Mel-spectrogram extends this by adding dynamic
changes in the time dimension, resulting in a richer and more contextual representation of
sound signals.

Both 3D dynamic MFCC and 3D dynamic Mel-spectrogram transform audio signals
into formats more suitable for machine processing, offering a comprehensive representation
by including dynamic changes over time.

A horizontal comparison was initiated between stationary Mel-spectrogram features,
MFCC attributes, and the corresponding 3D dynamic elements. As depicted in Table 6, a
comparative analysis of ARescat model accuracy with diverse components was conducted,
maintaining a consistent network structure. Empirical results suggest that the quartet of
Mel-filtered time-frequency attributes adeptly mirrors the innate properties of target signals,
facilitating precise target differentiation. The zenith of classification accuracy is realized
through the amalgamation of the ARescat model and 3D dynamic MFCC features. The
MFCC feature set, mirroring human auditory traits, delivers commendable classification
outcomes. Given the multifaceted marine milieu, target signals often manifest non-uniform
radiated noise. Both the first-order difference MFCC and second-order difference MFCC
features adeptly capture the transient attributes inherent in the complex marine environ-
ment. These features extract correlated attributes from adjacent MFCC time frames. In
summation, such features are pivotal in enhancing target classification accuracy.

Table 6. Accuracy of the ARescat model under different characteristics.

Feature Accuracy

MFCC 0.944
3-D dynamic MFCC 0.958

Mel-spectrogram 0.921
3-D dynamic Mel-spectrogram 0.906

3.3.5. Comparison between Different Models

Audio signal feature extraction converts original audio signals into numerical values
that describe their characteristics, such as frequency spectrum and energy distribution.
Different extraction methods can significantly impact the accuracy of various models.
Therefore, it is essential to compare models using the same feature extraction method.
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The data in Table 7 indicate that for hydroacoustic target recognition, more complex
ResNet models tend to yield lower accuracy. Our proposed ARescat model surpasses
Resnet18, Resnet34, Resnet50, and CRNN by accuracy of 2.8%, 5.4%, 16.9%, and 8.8%,
respectively. This comparison underscores the superior accuracy of the ARescat model
among the evaluated models.

Table 7. Test accuracy of multiple network models with the same features.

Model ARescat Resnet18 Resnet34 Resnet50 CRNN

Feature 3D MFCC 3D MFCC 3D MFCC 3D MFCC 3D MFCC
Class A 0.984 0.939 0.878 0.709 0.800
Class B 0.867 0.837 0.752 0.522 0.681
Class C 0.959 0.935 0.911 0.864 0.923
Class D 0.970 0.931 0.939 0.816 0.886
Class E 1.000 1.000 1.000 0.859 1.000
Average 0.958 0.930 0.904 0.789 0.870

3.3.6. Accuracy Comparison of Various Models

In comparing accuracy across various models, Table 8 provides a direct juxtaposition
of our proposed model with other prevailing ones, with the ShipsEar dataset as the bench-
mark. The ShipsEar study, considered the foundational model for autonomous underwater
acoustic target recognition, boasts an accuracy of 0.754. Predominantly, the academic
literature resorts to accuracy as the metric of choice for comparative analysis across models.

Table 8. Comparison between the proposed classifier using the Shipsear dataset and other existing
literature models.

Num Methods Accuracy

1 Baseline ShipsEar [33] 0.754
2 ResNet18 + 3D [27] 0.948
3 CRNN-9 data_aug [10] 0.9406
4 Full-feature vector + DRW-AE [34] 0.9449
5 Cepstrum + average cepstrum + DCRA [35] 0.9533
6 Deep cepstrum-wavelet autoencoder [36] 0.948
7 ResNet18 + FBank [37] 0.943
8 Proposed method 0.958

Table 8 shows a comparison of the recognition accuracies of ship recognition mod-
els in recent years, with all data except the baseline having accuracies above 94%. It
is crucial to acknowledge that while our methodology employs the standard reference
dataset, the initial trio of models—namely ResNet 18 + 3D, CRNN-9 data_aug, and ResNet
18 + FBank—capitalizes on data augmentation to bolster the sample size. This data aug-
mentation technique mitigates the risk of overfitting and augments model generalization.
Consequently, the model’s performance is enhanced by data augmentation. In scenarios
devoid of data augmentation, our proposed model emerges as the frontrunner with an
impressive accuracy of 95.8%, outperforming all the other models. While this comparison
might lack stringency due to potential dataset segmentation discrepancies across models,
purely from an accuracy standpoint, our ARescat model emerges as the most productive.

4. Conclusions

This research delves into the potential of an attention-centric residual concatenate net-
work in underwater acoustic recognition. The hallmark of this model is its ability to distill
high-order abstract data, streamlining the classification process. The proposed attention-
based residual concatenate network focuses on refining target feature extraction paradigms.
Following extensive experimentation and analysis, several salient conclusions emerge:
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1. The Rescat component within the ARCSB framework leverages a unique residual
concatenate operation, widening the model’s horizon to assimilate more intricate details.
This is achieved by broadening the receptive field and by amalgamating the spectrogram
features derived from multiple convolutions, thereby crafting a sophisticated feature repre-
sentation elevating the model’s expressive prowess.

2. The ARCSB framework, by synergizing with the SE attention mechanism module,
accentuates the differentiation between various channel features while ensuring comprehen-
sive extraction of diverse sample attributes. By directing its focus on target components and
mitigating multi-source interferences, it emphasizes pivotal data, bolstering the network’s
feature extraction capabilities.

3. The Focal Loss function is harnessed by the model to address challenges stemming
from imbalanced feature supervision. This encompasses interference factors such as marine
ambient noise. By ensuring unwavering attention to all facets during recognition, espe-
cially merged elements, the loss function adeptly tackles the uneven sample distribution
challenge, subsequently optimizing the model’s output.

4. Despite utilizing a smaller parameter set, this model outshines its counterparts
in terms of classification accuracy. Experimental validation using the ShipsEar dataset
vouches for efficacy, indicating a stellar average recognition accuracy of 95.8%.

In essence, this model holds promise for enhancing sonar systems’ target identifica-
tion and recognition proficiencies. Nonetheless, constraints surrounding dataset acces-
sibility, primarily arising from confidentiality concerns, merit acknowledgment. Future
explorations can delve deeper into the potential of this approach, especially its feature
augmentation capabilities and target classification efficacy under varied signal-to-noise
ratios and scales, to seamlessly adapt to the ever-evolving marine milieu.
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The following abbreviations are used in this manuscript:

ARescat Attention Mechanism Residual Concatenate Network
SE Squeeze-Excitation
ResNet Residual Network
MFCC Mel-frequency Cepstrum Coefficient
CQT Constant-Q Transform
DEMON Detection of Envelope Modulation On Noise
LOFAR Low-frequency Analyzer and Recorder
3D MFCC 3D dynamic Mel-frequency Cepstrum Coefficient
MSRDN Multiscale Residual Deep Neural Network
ARCSB Attention Mechanism Residual Concatenate Specify Dimensions Block
ASPP Atrous Spatial Pyramid Pooling
MLP Multilayer Perceptron
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FC Fully Connected
Rescat Residual Concatenate
CRNN Convolutional Recurrent Neural Network
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