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Abstract: Accurate ship object detection ensures navigation safety and effective maritime traffic
management. Existing ship target detection models often have the problem of missed detection in
complex marine environments, and it is hard to achieve high accuracy and real-time performance
simultaneously. To address these issues, this paper proposes a lightweight ship object detection
model called YOLOv7-Ship to perform end-to-end ship detection in complex marine environments.
At first, we insert the improved “coordinate attention mechanism” (CA-M) in the backbone of the
YOLOv7-Tiny model at the appropriate location. Then, the feature extraction capability of the convo-
lution module is enhanced by embedding omnidimensional dynamic convolution (ODconv) into
the efficient layer aggregation network (ELAN). Furthermore, content-aware feature reorganization
(CARAFE) and SIoU are introduced into the model to improve its convergence speed and detection
precision for small targets. Finally, to handle the scarcity of ship data in complex marine environments,
we build the ship dataset, which contains 5100 real ship images. Experimental results show that, com-
pared with the baseline YOLOv7-Tiny model, YOLOv7-Ship improves the mean average precision
(mAP) by 2.2% on the self-built dataset. The model also has a lightweight feature with a detection
speed of 75 frames per second, which can meet the need for real-time detection in complex marine
environments to a certain extent, highlighting its advantages for the safety of maritime navigation.

Keywords: ship detection; coordinate attention; CARAFE; SIoU; Yolov7

1. Introduction

With the rapid development of marine equipment, the requirements for the accurate
and reliable identification of ship object detection are increasing [1]. Maritime enforcement
officers can access visual information intuitively through maritime surveillance videos.
However, supervisors may be affected by the complex environment and visual fatigue,
which can cause them to overlook important information and pose a risk of safety hazards
to ships traveling at sea. With the help of image vision and neural network algorithms in
deep learning, automatic ship detection has been a critical technology in ship applications,
significant in marine monitoring, port management, and safe navigation. It guarantees the
orderly anchoring of ships and the smoothness and safety of maritime traffic [2,3].

Ship target detection technology has flourished under the rapid development of
artificial intelligence technology. Ship target detection technology based on deep learning
has become popular in the application field because of its better performance and lower
workforce cost than traditional ship detection technology. The dataset images used in this
technique mainly include remote sensing, SAR, and visible light images. The detection of
remote sensing images is easily affected by factors such as cloud cover and light, and due
to the vast amount of data, the time for data preprocessing and image transmission is too
long, which leads to specific difficulties in real-time detection. SAR images cannot provide
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sufficiently rich texture features due to the absence of rich spectra, and it is not easy to
accurately provide the classification information of multicategory ships [4]. On the other
hand, visible light images have the highest resolution and contain rich feature information,
such as details and colors, which can intuitively present real human vision. In addition,
visible light images can be easily acquired by standard acquisition devices such as cameras.
Therefore, how to detect targets faster and more accurately on visible light ship images has
become one of the leading research directions.

Deep-learning-based object detection models are gradually becoming the main re-
search method in visible ship detection. Object detection algorithms can be classified into
two types: single-stage and two-stage algorithms. Representative two-stage algorithms are
R-CNN [5], faster R-CNN [6], and mask R-CNN [7]. However, they need to generate many
candidate regions, which increases the computation and time complexity. The algorithms
represented by single-stage algorithms are the single-shot multibox detector (SSD) [8], you
only look once (YOLO) [9], and RetinaNet algorithm [10]; these algorithms do not require
additional generation of candidate regions, simplifying the detection process with faster
detection speed.

The YOLOv7-Tiny model [11] has high speed and efficiency in real-time target de-
tection. Still, it may be limited by the resolution and prone to localization bias when
dealing with small targets, and there may be omission or misdetection of partially occluded
ship targets. A lightweight ship target detection model that can effectively identify ship
positions in complex and changing environments, help ships avoid collisions, and reduce
the risk of accidents is significant for maritime navigation safety. Therefore, we propose the
YOLOv7-Ship detection model based on YOLOv7-Tiny in this study. A concise overview of
the primary contributions of this study is summarized below:

• We introduce the improved CA-M attention module to the YOLOv7 backbone mod-
ule to weaken the background feature weight, introduce ODconv in the neck, and
propose an improved aggregation network module, OD-ELAN, which efficiently en-
hances the network’s feature extraction capacity for ships in complex scenes with less
computational increase.

• We use the lightweight CARAFE method in the feature fusion layer, which can utilize
learnable interpolation weights to interpolate the low-resolution feature maps, thus
reducing the loss while processing small-target ship feature information.

• We adopt SIoU as the loss function, which more accurately captures the orientation-
matching information between target bounding boxes and improves the convergence
speed of algorithm training.

• We construct a ship target detection dataset containing thousands of accurately labeled
visible ship images in complex marine environments.

2. Related Work

Compared with general-purpose target detection, ship target detection is more likely
to be affected by unfavorable factors such as complex marine areas and bad weather. In
addition, ship targets have significant differences in scale, and their visualization features
are more likely to be disturbed. Therefore, the practicality and robustness of ship target
detection algorithms are more demanding. Liang et al. [12] proposed a ship target detection
method based on SRM segmentation and hierarchical line segment feature extraction to
solve the problem of difficulty in analyzing high-resolution ship images. The method uses
hierarchical line segment search updating and merges line segments near the subthreshold
to achieve the detection of ship targets. Zhu et al. [13] proposed a method based on neigh-
borhood feature analysis for detecting ships on the sea surface. The method analyzes the
mean variance product characteristic of the neighborhood window and initially performs
segmentation to eliminate most of the sea surface background, and then verifies the detec-
tion of the target by ship-related features. Yang et al. [14] proposed a detection algorithm
based on saliency segmentation and local binary pattern descriptors combined with ship
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structure and used the morphological contrast method to improve the detection accuracy
of ship targets on optical satellite images.

With the booming development of computer technology, much research has been
conducted on deep-learning-based visible ship object detection technology. Among these,
single-stage algorithms have been the mainstream of visible ship object detection. For
example, Yang et al. [15] combined the repulsion loss function and soft nonmaximum sup-
pression algorithms with the SSD model, which can effectively reduce the leakage rate of
tiny ships. Li et al. [16] combined the adaptively spatial feature fusion (ASFF) module with
the YOLOv3 algorithm and used the ConvNeXt module to ameliorate the problem of insuf-
ficient feature extraction capability when ships occlude from each other. Huang et al. [17]
incorporated a multiscale weighted feature fusion structure into the YOLOv4 model, im-
proving small ships’ detection efficiency. Zhou et al. [18] used mixed depthwise con-
volutional kernels to improve the traditional convolutional operation and coordinated
attention mechanism (CA) based on YOLOv5, which enables the model to extract a more
comprehensive ship feature while reducing the computation effectively. Gao et al. [19]
proposed a lightweight model for small infrared ship detection by replacing the backbone of
YOLOv5 with that of Mobilev3, resulting in an 83% reduction in parameters. Wu et al. [20]
introduced the multiscale feature fusion module into the YOLOv7 model and established
suitable anchor boxes to replace the fixed anchor boxes, effectively improving the ship fea-
ture’s capture ability. Chen et al. [21] combined the convolutional attention mechanism and
residual connectivity into the YOLOv7 model, enabling the model to accurately locate ships
in dark environments and achieve effective ship classification detection. Lang et al. [22]
proposed LSDNet, a mobile ship detection model that introduces partial convolution in
YOLOv7-Tiny to reduce redundant computations and memory accesses, thereby extract-
ing spatial features more efficiently. Xing et al. [2] integrated the FasterNet module into
the backbone of YOLOv8n and employed the lightweight GSConv convolution method
instead of the traditional convolution module, which retains detailed information about
the ship target.

Although there have been many studies on ship detection, their results in complex real-
time environments are often unsatisfactory. The above methods are often difficult to balance
the high accuracy and speed of ship detection. On the one hand, the ship’s target scale
varies greatly. It is prone to problems such as multiple targets overlapping, small targets
carrying little information, and background interference information such as land buildings,
reefs, and buoys. On the other hand, the marine environment is complex and changeable,
with frequent fog, rain, snow, sun glare, and other inclement weather [23]. Especially when
the image clarity is not enough, the recognition ability of small targets decreases, resulting
in severe problems of ship object false detection and missed detection [24]. The detection
models currently studied are mainly large-volume models with high requirements for
equipment, and there is an urgent need for a lightweight model that can be deployed on
low-configuration computing devices to accomplish the detection task of ships in complex
scenarios efficiently [3].

3. Methods
3.1. YOLOv7 Network Structure

Wang et al. optimized the network structure, data augmentation, and activation
function to propose the YOLOv7 algorithm model in 2022. Its comprehensive performance
improves the detection efficiency and accuracy compared with those of the algorithms
of YOLOv4 [25], YOLOv5, YOLOX [26], and YOLOv6 [27]. The YOLOv7-Tiny algorithm
is a lighter version of the YOLOv7 algorithm, which simplifies the E-ELAN module to
the ELAN module and maintains the path aggregation idea. Compared with the original
version, it has fewer computational and parameter counts, which improves detection
speed at the expense of some accuracy. In particular, the YOLOv7-Tiny model has good
compatibility on ship mobile devices and has shown superior performance in detecting
small objects, making it well suited for detecting ships, so we chose it as an improved
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baseline model. Figure 1 illustrates the architecture of the YOLOv7-Tiny model. Its four
main components are the input, backbone, neck, and output.

The backbone mainly consists of CBL layers, ELAN modules, and maximum pooling
layers. The ELAN modules are layer aggregation architectures with efficient gradient prop-
agation paths, which can mitigate the gradient vanishing problem. To show the network’s
simplified effect, we also offer the E-ELAN module used in YOLOv7 in Figure 1. The neck
module uses the path aggregation feature pyramid network (PAFPN), which achieves the
effect of multiscale learning of different levels of features by fusing the semantic informa-
tion conveyed by feature pyramid networks (FPNs) [28] from the more profound level and
the localization information conveyed by the path aggregation network (PANet) [29] from
the shallower level. The output part uses the IDetect detection head, which classifies the
detection scale into three scales, including large, medium, and small targets.

Input Backbone Neck Output

=

=

：Conv_BN_LeakeyRelu（CBL) ：Maximum Pooling ：ELAN

：SPPCSPC ：Upsample ：Concat

ELAN

(YOLOv7-T iny)

SPPCSPC
MaxPool 5  

MaxPool 9  

MaxPool 13 

IDetect

IDetect

IDetect

=

E-ELAN

（YOLOv7）

640×640×3

20×20×33

40×40×33

80×80×33

Figure 1. Structure of the YOLOv7-Tiny network.

3.2. OD-ELAN Module

Static convolution convolves the input feature mapping with a constant kernel size.
However, due to its fixed weights, it cannot adapt to input data changes and cannot capture
global context information. The dynamic convolution method uses a linear combination of
kernel weights to perform an attentional weighting operation on the input data. Unlike
traditional convolution, the dynamic convolution kernels can automatically resize their
receptive field according to the input image information. In addition, the dynamic convolu-
tion kernel dynamically generates different weights at each position, significantly reducing
the computational complexity and memory utilization. Current dynamic convolution tech-
niques like CondConv [30] and DyConv [31] solely concentrate on the dynamic nature of
kernel numbers and dynamically weight the convolution kernel to adapt to different inputs
only in the two-dimensional plane. Equation (1) provides the definition of the dynamic
convolution operation.

Chao Li et al. [32] proposed a new dynamic convolution, ODconv. ODconv utilizes a
multidimensional attention mechanism to make the convolution kernel adaptively weight
adjustment in four different dimensions of the kernel space, fully utilizing the number of
convolutional kernels, spatial size, input channel, and output channel information, with
improved multiscale perception and global context information, which is calculated as
Equation (2):

y = (αw1W1 + · · · αwnWn) ∗ x (1)
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y =
(

αw1 ⊙ α f 1 ⊙ αc1 ⊙ αs1 ⊙ W1 + · · ·+

αwn ⊙ α f n ⊙ αcn ⊙ αsn ⊙ Wn

)
∗ x

(2)

where the input and output features are denoted by the symbols x and y, respectively; the
symbol Wi represents the ith convolutional kernel, while αwi serves as the attention scalar
for Wi; for the convolutional kernel Wi, the attentions αci, α f i, and αsi are assigned along
the input channel, output channel, and spatial dimension of the kernel space, respectively;
∗ represents the convolution operation; and ⊙ represents the multiplications performed
along the various dimensions.

ODconv first squeezes the feature x into a feature vector of the same length as the input
channel using channel-wise global average pooling (GAP) operation. Next, the squeezed
feature vectors are mapped to the low-dimensional space through a fully connected (FC)
layer and a rectified linear unit (ReLU). Each of the four head branches has an FC layer and
a sigmoid or softmax function that generates the attentions αwi, αci, α f i, and αsi, respectively.
Figure 2 displays the ODconv structure.

GAP

FC

ReLU

Sigmoid

FC

Sigmoid

FC

Sigmoid

FC

Softmax

FC

x y

Multiplication

Convolution Operation

GAP Global Average Pooling

FC Fully Connected

Rectified Linear UnitReLU

The Input  Featuresx

y The Output  Features

Linear Combination

Figure 2. Schematic diagram of the structure of ODconv.

The ELAN network module is used in the YOLOv7-Tiny model to extract target
features. The structure consists of convolutional layers, but the smaller number makes
it difficult to extract deep target features, and there may be ineffective feature fusion or
redundancy. Hence, the module cannot sufficiently extract features from small or low-
definition ship targets in a real complex environment. For this reason, we introduce ODconv
into the ELAN module and construct an improved ELAN-OD module in the neck part.
This module can effectively enhance the mining ability of the network for the deep feature
information of ship targets while reducing the computational complexity.

3.3. CA-M Attention Mechanism

To optimize the model’s emphasis on the ship’s priority edge feature regions, an
attention mechanism needs to be introduced into the network to suppress confusing infor-
mation interference, such as wake and partial occlusion. The traditional channel attention
mechanism, such as squeeze-and-excitation networks (SENets) [33], only considers the im-
portance level between feature map channels and ignores the target’s location information.
The convolutional block attention module (CBAM) [34], which adds a spatial attention
mechanism, uses sequential channel and spatial attention operations. However, it ignores
the interrelationships between channel and space and loses information across dimensions.
The CA mechanism can comprehensively analyze the inter-relationship between feature
map channels and spatial information [35]. To better enhance the performance of the
attention mechanism, this paper proposes the improved CA-M mechanism.

Coordinate attention encodes the decomposition of the channel relationship into
one-dimensional features containing precise positional information, and the fusion of
features along both spatial directions enables the model to concentrate on an extensive
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range of positional features. Since ships have more significant detail features, such as flat
hulls, slender masts, straight chimneys, and hull markings, the global average pooling
in the original coordinate attention cannot retain the relative differences between the
original features. It may blur certain detailed feature information, while the global adaptive
maximum pooling takes the maximum value in the input image region as the output,
further increasing the network’s sensitivity to critical information.

Consequently, we use the adaptive global maximum pooling layer in the coordinate
information embedding so that the model can better extract salient features of ships in
complex scenes. Figure 3 illustrates the structure of CA-M.

Residual

Reweight

X  Adaptive Max Pool Y  Adaptive Max Pool

Concat + Conv2d

BatchNorm + Nonlinear

Conv2d Conv2d

Sigmoid Sigmoid

Input

C×H×W

C×1×W

C/r×1×(W+H)

C/r×1×(W+H)

C×1×W

C×1×W

C×H×W

Output

C×H×1

C×H×1

C×H×1

split

Figure 3. Structure of the improved coordinate attention (CA-M) mechanism.

The first decomposes the global adaptive maximum pooling into two separate 1D fea-
ture encoding operations. Subsequently, two spatially scoped ensemble kernels are used to
encode each channel in horizontal and vertical coordinates, respectively. Consequently, the
output of the cth channel with the vertical dimension h can be mathematically expressed as

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (3)

The output of the c-th channel with the horizontal dimension w can be formulated as

zw
c (w) =

1
H ∑

0≤j<H
xc(j, w) (4)

The above encoding operation enables the CA-M mechanism to obtain long-range
dependency information in one dimension and positional information in another. Then, the
above two aggregated feature maps are subjected to the concatenate operation, followed by
the transform operation using a shared 1 × 1 convolutional transform function.

Subsequently, the intermediate feature mapping is split into two distinct tensors along
the spatial dimension. These two tensors are then converted into tensors equal to the input.
The expanded results gh and gw are utilized as attention weights. Ultimately, the output of
the coordinate attention block Y can be denoted as

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (5)

Compared with the original CA mechanism, adding the CA-M mechanism to the
backbone improves mAP@0.5 and mAP@0.5:0.95 by 0.2% and 0.3% in ship detection,
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respectively. Compared with other attention mechanisms, the CA-M mechanism can focus
more on the areas with high feature weights in the inference and only adds a small amount
of computational overhead. Its specific results are shown later in the experimental section.

3.4. CARAFE Upsampler

The CARAFE upsampler is an efficient and lightweight image upsampling algorithm
proposed by Wang et al. [36]. It can avoid the problem of nearest neighbor interpolation
upsampling algorithms weakening small targets’ feature information while bringing com-
putational effort to integrate more feature information in large receptive fields. Small target
ship detection is susceptible to complex environmental interference. Thus, we use CARAFE
in the neck module, thus replacing the original nearest neighbor interpolation algorithm
to extract smaller target features. Figure 4 illustrates the CARAFE upsampler’s architec-
ture. It is composed of two modules: the kernel prediction module and the content-aware
reassembly module.

Kernel 

Prediction Module 

Content-Aware

Reassembly Module

=

C

C
m

C

Reassemble Operation

Content

Encoder

Kernel

Normalizer

Channel 

Compressor

C

Example Location

Figure 4. The overall structure of CARAFE.

First is the kernel prediction module, where the feature map with an input size
(H, W, C) is compressed by a 1 × 1 convolution, and then a convolution layer of the
kernel size Kencoder = kup − 2 is used to predict the upsampling kernel to generate features
(σH, σW, k2

up), where σ and kup indicate the upsampling ratio and the reorganization kernel
size, respectively. Subsequently, the channels undergo spatial dimension expansion, and
the softmax function is employed to normalize the upsampling kernel.

Next, every position in the output feature map is mapped back into the input feature
map during the content-aware reassembly processes, taking the kup × kup feature region
at its center and the predicted upsampled convolution kernel at that position to make a
dot product. Finally, the new features (shape = (σH, σW, C)) are obtained by repeating the
above operations.

3.5. SIoU Loss Function

The YOLOv7-Tiny model contains three loss functions: classification loss, confidence
loss, and localization loss. A practical bounding box loss function is essential for target local-
ization. By default, YOLOv7-Tiny employs the complete intersection over union (CIoU) [37]
localization loss function, which considers three distinct factors, and its calculation formula
is displayed below:

LCIoU = 1 − IIoU +
ρ2(B, Bgt)

c2 + av (6)

where B and Bgt represent the centroids of the prediction box and the ground truth box,
respectively. The value of Euclidean distance between B and Bgt is denoted by ρ

(
B, Bgt).

Additionally, c indicates the minimum outer rectangle’s diagonal length necessary to
encompass both boxes. The consistency of the aspect ratio v is calculated as
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v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(7)

where wgt

hgt and w
h denote the aspect ratios of the prediction box and the ground truth box,

respectively. α is the weight coefficient, which is calculated by the formula

α =
v

(1 − IIoU) + v
(8)

The CIoU loss function introduces wgt

hgt and w
h into the loss value calculation. It adds

a penalty term, which effectively improves the degradation problem of the GIoU [38]
loss function and addresses the challenge posed by the DIoU [39] loss function when the
prediction box does not overlap with the ground truth box but still gives the bounding box a
moving direction. However, the CIoU loss function does not consider the angular mismatch
between the ground truth box and the prediction box. It can be seen from Equation (7) that
when wgt

hgt and w
h are the same, v takes 0, at which time the penalty term fails, leading to large

fluctuations in the convergence of the training and a lack of precision in the prediction box.
Gevorgyan [40] proposed the SIoU loss, which also investigated the orientation match-

ing problem between the prediction box and the ground truth box based on the consid-
eration of the distance between the frame centers, the aspect ratio, and the overlap area.
Additionally, it added an angle cost term. In this paper, we adopt this efficient bounding
box regression loss function SIoU, which effectively improves the total degrees of freedom
of the loss and penalty terms, further increasing the training convergence performance
of the model so that the target box has a better regression localization accuracy [41]. The
formula of SIoU is shown below.

Λ = 1 − 2 × sin2
(

arcsin
(

Ch
σ

)
− π

4

)
(9)

∆ = ∑
t=x,y

(
1 − e−(2−Λ)ρ1

)
(10)

Ω = ∑
t=w,h

(
1 − e−wt

)θ (11)

In Equations (9)–(11), Λ is the angle cost, ∆ is the distance cost considering Λ, Ω is the
shape cost, and θ determines the level of concern for shape loss. As shown in Figure 5, Ch
and σ are the height difference and geometric distance between B and Bgt, respectively.

The definition of the final bounding box loss SIoU is

LSIoU = 1 − IIoU +
∆ + Ω

2
(12)

Figure 5. Schematic diagram for calculating the angular cost contribution in the loss function.
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3.6. The YOLOv7-Ship Model

The original YOLOv7-Tiny model has a fast detection rate. However, in complex
marine environments, such as in severe weather and illumination conditions, or when
the ship is multiscale or partially obscured, the model may have the problem of false or
missed detection. For this reason, we propose the YOLOv7-Ship model, which optimizes
the network structure of the baseline model while keeping it lightweight. We first consider
the performance advantages of ODconv and insert the proposed OD-ELAN module in
the neck network. The structure of the OD-ELAN module acquires the feature in different
dimensions, which is illustrated in Figure 6. It utilizes the dynamically changing convolu-
tion kernel structure to achieve learning of multidimensional feature information. Second,
to further enhance the backbone network’s feature extraction capacity for targets with
minimal information or clarity, we add the CA-M module in the backbone network. The
CA-M module allows the network to concentrate on the linkage of the ship’s salient detail
features between space and channel, suppressing the irrelevant interfering information and
efficiently extracting the critical location information of the ship object detection.

Input Backbone Neck Output

=

=

：Conv_BN_LeakeyRelu ：Max_Pooling ：ELAN

：SPPCSPC

：CARAFE

=

：OD-ELAN
：ODConv ：Concat：CA-M

P4

P3

P5

MaxPool 13 

MaxPool 9  

MaxPool 5  

IDetect

IDetect

IDetect

640×640×3

20×20×33

40×40×33

80×80×33

SPPCSPC

O D-ELAN

ELAN

Figure 6. Structure of the YOLOv7-Ship model.

Next, to address the issue of the model’s missing detection for multiscale targets
and low-resolution images, we use CARAFE as the upsampling operator in the feature
fusion network. CARAFE utilizes cross-scale feature information fusion, which predicts
the upsampling kernel and reorganizes the features based on it to better retain the semantic
information of the original picture, effectively reducing the loss of feature information
processing for small targets. CARAFE can also adjust the parameters through training to
obtain better upsampling results. Finally, we employ the SIoU loss function, which can
better handle the box regression problem between targets at different scales to capture the
directional matching information between the target bounding boxes. The YOLOv7-Ship
model’s structure is displayed in Figure 6.

The training and validation process of the YOLOv7-Ship model is relatively simple,
but the hyperparameters must be carefully tuned to ensure the generalization performance
on the dataset. The YOLOv7-Ship model is designed with cross-platform support in mind
and has good portability. It can run on different operating systems and supports a variety
of hardware accelerators, such as GPU and CPU. However, the YOLOv7-Ship model
relies on more powerful hardware and may suffer from some performance limitations on
low-end hardware.
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4. Experiments

In this section, we present the dataset construction and the experimental design part.
Specifically, we first introduce a new self-constructed ship dataset designed for studying
the ship target detection problem in complex scenarios. Then, we report our experimental
platform setup and training details and provide comprehensive evaluation metrics for the
target detection task.

4.1. Data Collection and Processing

The complex environment around ships in the natural environment, such as land
buildings, reefs, buoys, and other background interference information, is prone to cause
interference to the target detection of ships. Existing public ship datasets, such as the
SeaShips dataset proposed by Shao et al. [42], contain 7000 images of ship detection in six
categories. However, the majority of the photos in this dataset are a collection of shots
taken of the same ship at nearby moments, and the data scene is single and little affected by
interference information. Therefore, we constructed a ship dataset containing more complex
marine scenes to enhance the algorithm’s detection accuracy and generalization ability
under interference conditions such as bad weather, multiple occlusions, and small targets.

The images in this dataset were self-collected by the team at sea using a visible light
camera, supplemented by adding some images from the publicly available ship dataset.
In this paper, data cleaning was performed on the collected images. After deleting the
damaged or blurred images, the images that meet the requirements were used as the labeled
dataset, which contains diversity-rich environments, such as a harbor with heavy traffic,
a fishery area with dense ships, and a mixed traffic scene between ships and shore. Most
images also have different climatic interferences, such as solid illumination, rain, and snow,
for 5100 original images. Selected images of some sample datasets are shown in Figure 7.

(a) (b) (c)

Figure 7. Display of ship detection dataset: (a) sailboat, (b) container ship, and (c) small target ship.

We categorized the target labels into six groups based on the Pascal VOC dataset
format: sailboat, island reef, container ship, linear, and other ships. The sample images
were labeled sequentially using the LabelImg software to generate XML files, which were
then converted to YOLO format. For experimental purposes, we arbitrarily partitioned
the dataset into three sets: training, validation, and test, in the following proportion:
8:1:1. Table 1 shows the number of images in the dataset under different weather and
light conditions.

Table 1. Distribution of ship images in the dataset.

Condition Training Validation Test Total Percentage

Sunny 2522 316 319 3157 61.9%
Rainy, foggy, and snowy 1021 128 140 1289 25.3%
Dusk or darkness 537 66 51 654 12.8%

This dataset uses the Microsoft COCO dataset’s method of defining scales. Table 2
shows the definition of different object scales. Table 3 shows the number of objects labeled
as small, medium, and large for each category in the dataset. The total number of small
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objects is 7737 (38.2%), the total number of medium objects is 6975 (34.5%), and the total
number of large objects is 5528 (27.3%).

Table 2. The definitions of small, medium, and large objects in the COCO dataset.

Objects Metric (Square Pixels)

Small Area < 322

Medium 322 < Area < 962

Large Area > 962

Table 3. Statistics of the number of small, medium, and large objects of six label types.

Category Small Medium Large Total

Liner 735 150 42 927
Container ship 362 20 8 390

Bulk carrier 1338 308 100 1746
Island reef 1926 1869 468 4263

Sailboat 1339 1011 755 3105
Other ship 2037 3617 4155 9809

Figure 8 illustrates the distribution of the dataset’s bounding boxes, including their
center points and sizes. Figure 8a depicts the normalized bounding boxes’ center coor-
dinate distribution. Figure 8b illustrates the proportions of the labeled box’s width and
height to the original figure. It is evident that the overwhelming majority of our dataset
comprises small objects, and most targets are mainly concentrated in the central region,
which indicates that these features make the dataset well suited for detecting small and
multiscale ship targets.

To avoid overfitting, we used the basic methods of random brightness, horizontal
flipping, cropping images, and so on for the dataset images. We also used the mosaic data
enhancement method, which not only enriches and expands the original detection dataset
but also reduces the occupancy of GPU video memory. The input to the model after a series
of operations is shown in Figure 9. The numbers 1 to 6 represent liners, container ships,
bulk carriers, islanders, sailing ships, and other ships, respectively.

(a) (b)

Figure 8. Dataset visualization and analysis results: (a) distribution of dataset object centroid locations
and (b) distribution of dataset object sizes.



J. Mar. Sci. Eng. 2024, 12, 190 12 of 21

Figure 9. Renderings of data enhancements.

In addition to the data enhancement mentioned above, this paper employs standard
methods such as early stopping, dropout, and batch normalization during the training
phase to prevent model overfitting.

4.2. Experimental Environment

All experiments in this article were performed on the Windows 10 system. The system
utilized an Intel(R) Core(TM) i7-10750H CPU @ 2.60 GHz and NVIDIA GeForce RTX 2060.
The model was built based on the programming language Python 3.9 and the deep learning
framework PyTorch 2.0.0. The specific configuration information of the experimental
platform is outlined in Table 4.

The experiment employed an input image size of 640 × 640 pixels and conducted
200 training epochs. The momentum was set to 0.8, and the initial learning rate was set to
0.01. Detailed experimental parameters for model training are shown in Table 5.

Table 4. The configuration information of the experimental platform.

Configuration Versions

Operation system Windows 10
CPU Intel(R) Core(TM) i7-10750H CPU @ 2.60 GHz
GPU NVIDIA GeForce RTX 2060
RAM 16.0 GB

Toolkit CUDA 11.7
Compiler Python 3.9

Framework PyTorch 2.0.0

Table 5. Experimental parameters of model training.

Component Name/Value

Epochs 200
Image size 640 × 640
Batch size 8

Initial learning rate 0.01
Final learning rate 0.1

Momentum 0.8
Optimizer SGD

Mosaic 0.9
Mixup 0.05

Copy_paste 0.05
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4.3. Evaluation Metrics

To evaluate the quality of the ship target recognition and detection results more
comprehensively, precision (P), recall (R), mean average precision (mAP), and frames per
second (FPS) evaluation metrics are used in this paper, as shown in Equations (13)–(16).

P =
TP

TP + FP
(13)

R =
TP

TP + FN
(14)

mAP =
1
m ∑ AP(i) (15)

FPS =
n
T

(16)

In Equations (13)–(16), the variables denoted as TP, FP, and FN correspond to the
quantity of true-positive, false-positive, and false-negative samples, respectively. AP means
the average recognition accuracy for a single category whose definition is the area under
the P–R curve, m represents the number of detected categories, and AP@0.5 indicates the
average precision across different objects when the intersection over union (IoU) threshold
is set to 0.5. APS, APM, and APL are used to evaluate the detection performance of the
model for small, medium, and large targets, respectively. n represents the quantity of
images the model processes, while T denotes the time required for consumption. In
addition, we use the number of parameters (Params) and floating point operations (FLOPs)
to measure the computational space and time complexity of the model.

5. Results and Analysis
5.1. Effectiveness of CA-M Module

Distinct parts of the Yolov7 network have different extraction roles for the input
features. In order to optimize the attention mechanism’s optimal placement, we inserted
the CA-M module before the backbone’s three feature layers for combination. Figure 10
illustrates the display diagram of different positions inserted by the CA-M module. The
results of the experiments we subsequently performed on the models utilizing these six
methods are presented in Table 6.

Backbone

CA-M  Position

P3

P4

P5

（a） （b） （c） （d） （e） （ f）

Figure 10. Different positions for inserting the CA-M module in the backbone of YOLOv7-Tiny.
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Table 6. Detection effects of inserting the CA-M module at different positions.

Model P/% R/% AP@.5/% AP@.5:.95/%

( a ) 80.7 74.2 78.6 53.7
( b ) 81.1 75.4 78.7 53.7
( c ) 78.8 76.7 78.1 52.5
( d ) 80.4 75.1 78.6 53.4
( e ) 79.9 76.2 78.4 53.7
( f ) 80.2 75.3 78.9 53.9

The findings in Table 6 indicate that inserting CA-M at any position does not always
enhance the network’s detection performance. Model (c) introduces the CA-M module
alone after the last ELAN in the backbone part, and AP@.5 decreased to 78.1, with the
worst effect; Model (f) introduces CA-M at the position before all three feature layers, and
AP@.5 and AP@.5:.95 improved to 78.9 and 53.9, respectively, with the highest accuracy
improvement. From this, we can analyze that the use of the CA-M module after the efficient
aggregation network module during the initial stage of feature extraction can capture
the information of the region of interest, weaken the interference of the pseudo-target
feature information, and improve the network’s ability to detect the detailed features of the
ship’s target.

To assess the efficacy of introducing the CA-M module in the baseline model, we
compare it with six different types of attention mechanisms introduced into the same
location, namely, SE, CBAM, ECA [43], GAM [44], SimAM [45], and CA, and their outcomes
are displayed in Table 7.

Table 7. Comparison experiments of different attention modules.

Model P/% R/% AP@.5/% AP@.5:.95/%

YOLOv7-Tiny 80.1 74.1 78.3 53.5
+SE 80.4 73.4 78.4 51.6

+CBAM 80.8 72.9 78.2 51.9
+ECA 80.3 74.2 78.6 52.2
+GAM 79.3 72.0 77.1 49.9

+SimAM 80.9 73.8 78.7 52.4
+CA 79.9 74.8 78.7 53.6

+CA-M 80.2 75.3 78.9 53.9

Table 7 shows that the effects of introducing various attention mechanisms into the
backbone part differ. SE, CBAM, and ECA are all channel attention mechanisms, and their
AP@.5:.95 values are reduced by 1.9%, 1.6%, and 1.3%, respectively, compared with the
baseline model. In contrast, the GAM global attention mechanism increases the network’s
sensitivity to local noisy information and tends to cause the overfitting problem, and
its AP@.5 is reduced by 1.2% at most. SimAM is a 3D attentional mechanism close to
the boosting effect of our proposed CA-M mechanism, and its AP@.5 and AP@.5:.95 are
improved by 0.4% and 0.1%, respectively. After introducing the proposed CA-M in the trunk
section, AP@.5 and AP@.5:.95 were boosted by 0.6% and 0.4%, respectively. Compared
with the introduction of the original CA, the AP@.5 and AP@.5:.95 of CA-M are improved
by 0.2% and 0.3%, respectively. Therefore, we introduce the CA-M module to improve the
object detection performance.

5.2. Comparative Analysis of Loss Functions

To determine whether the improved loss function can strengthen the model’s per-
formance and accelerate convergence, we conducted comparative experiments on the
EIoU [46], CIoU, DIoU, GIoU, and SIoU loss functions using YOLOv7-Ship as the baseline
model. Figure 11 shows their comparative effects.
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Figure 11. Comparison plot of loss function curves of the model validation set.

By analyzing Figure 11, we found that the model with the SIoU loss function has the
fastest reduction in loss values during training. To ensure the integrity of the comparison
experiment, we present the analysis outcomes in Table 8, which comprises the loss value
and mAP at the 200th epoch.

Table 8. Loss values and mAP for different loss functions.

Model Loss function Loss AP@.5/%

YOLOv7-Ship

CIoU 0.04281 80.3
EIoU 0.04278 80.2
DIoU 0.04385 80.1
GIoU 0.04264 80.4
SIoU 0.04229 80.5

Using the SIoU loss function compared with the CIoU loss function, the bounding
box loss decreases by 0.00052, and mAP improves by 0.2%. SIoU achieves the lowest
loss value of 0.04229 and the highest mAP value of 80.5%, showing optimal performance
compared with the other loss functions. It also shows that, compared with the YOLOv7-
Tiny model, the YOLOv7-Ship model converges faster in training and accurately captures
the orientation matching information between the target bounding boxes.

5.3. Ablation Experiment

In order to assess the efficacy of our proposed enhancement approach in optimizing
ship inspection performance, we performed a sequence of ablation experiments on our
self-constructed ship dataset using YOLOv7-Tiny as the baseline model. The corresponding
improvement method is denoted in the table by “✓” if it was implemented and “✕ ” if it
was not. The data of the ablation experiments are shown in Table 9.
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Table 9. Comparison experiments of different object detection algorithms.

Model Group CA-M OD-
ELAN CARAFE SIoU AP@.5/% AP@.5:.95/% GFLOPS FPS

YOLOv7-Tiny

1 ✕ ✕ ✕ ✕ 78.3 53.5 13.1 77
2 ✓ ✕ ✕ ✕ 78.9 53.9 13.1 79
3 ✓ ✓ ✕ ✕ 79.6 54.2 12.7 71
4 ✓ ✓ ✓ ✕ 80.3 55 12.8 64
5 ✓ ✓ ✓ ✓ 80.5 55.4 12.8 75

According to Table 9, the first group of experiments utilized the original YOLOv7-Tiny
model, with an AP@0.5 and AP@.5:.95 of 78.3% and 53.5%, respectively. In the second group
of experiments, we introduced an improved CA-M attention mechanism in the backbone
section. Compared with the baseline model, mAP@0.5 increased by 0.6%. These results
indicate that the model’s capability to extract pertinent target depth features is enhanced
due to the improved network structure.

Subsequently, in the third group of experiments, we introduced ODconv and replaced
the efficient aggregation module in the neck section with the OD-ELAN model, which
led to a further increase in mAP@0.5 by 0.7% while reducing GFLOPS by 0.4 M. Next, in
the fourth group of experiments, we replaced the upsampling method with the CARAFE
method, resulting in another 0.7% increase in mAP@0.5. This suggests that the CARAFE
upsampling improvement method can more accurately capture semantic information of
images. Finally, we improved the loss function to SIoU in the fifth group, mAP@0.5 was
increased by 0.2%, while the detection speed was increased to 75 frames per second.

The comprehensive performance results of the YOLOv7-Tiny and YOLOv7-Ship mod-
els are shown in Table 10. The mAP@0.5 and mAP@0.5:0.95 of the YOLOv7-Ship model are
80.5% and 55.4%, which are improved by 2.2% and 1.9%, respectively, compared with the
baseline model. In particular, the APS value of 37.7% for small target detection is improved
by 2.5% compared with the baseline model, resulting in a more accurate identification of
small-sized targets. However, the APL value decreased by 0.8%. Additionally, the detection
speed of YOLOv7-Ship is maintained at 75 FPS, and GFLOPS are reduced by 0.3 M. In
conclusion, the YOLOv7-Ship model greatly improves the detection accuracy of small
ship objects in complex marine scenarios while meeting the real-time detection needs of
embedded marine equipment and the requirements of a lightweight model. However, the
detection performance of large targets at different scales still needs further improvement.

Table 10. Performance evaluation results of YOLOv7-Tiny and YOLOv7-Ship.

Model P/% R/% AP@.5/% AP@.5:.95/% APS/% APL/% Params/M GFLOPS FPS

YOLOv7-Tiny 80.1 74.1 78.3 53.5 35.2 68.4 6.0 13.1 77
YOLOv7-Ship 81.4 75.8 80.5 55.4 37.7 67.6 6.1 12.8 75

5.4. Comparison Experiment

In this section, we select the two-stage object detection model and other mainstream
YOLO series models to conduct comparative analysis experiments on the self-constructed
ship dataset. The models contain faster R-CNN, SSD, YOLOv3 [47], YOLOv4, YOLOv5s,
YOLOv5m, YOLOv7, YOLOv7-Tiny, and YOLOv8. Table 11 displays the outcomes of the
experiments, which were all conducted in the identical training environment.
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Table 11. Comparison experiments between YOLOv7-Ship and other object detection algorithms.

Model AP@.5/% AP@.5:.95/% APS/% APM/% APL/% Params/M GFLOPS FPS

Faster R-CNN 74.9 51.1 29.8 51.3 64.9 72.1 47.6 21
SSD 72.2 47.1 25.3 48.6 61.3 38.6 28.8 43
YOLOv3 75.1 48.1 27.7 52.1 64.2 12.6 19.9 56
YOLOv4 74.8 50.1 29.1 50.9 64.7 52.5 54 31
YOLOv5s 77.2 52 31.6 53.1 66.4 7.1 13.2 59
YOLOv5m 78 55.8 32.0 54.8 69.2 20.9 47.9 41
YOLOv7-Tiny 78.3 53.5 35.2 55.6 68.4 6.0 13.1 77
YOLOv8 78.5 55.7 31.2 56.3 68.9 3.0 8.1 120
YOLOv7-Ship (Ours) 80.5 55.4 37.7 56.4 67.6 6.1 12.8 75

Our proposed model outperforms widely used models in ship target detection. The
detection accuracy of faster R-CNN, SSD, and YOLOv4 algorithms is relatively low due to
the anchor frame-fixed parameters that cannot be fully adapted to the multiscale ship target.
Compared with YOLOv5s and YOLOv3, the YOLOv7-Ship model exhibits significant
accuracy gains: 3.2% above YOLOv5s and 5.4% above YOLOv3, while maintaining similar
detection speeds. Although YOLOv7-Tiny and YOLOv8 have faster detection speeds
(77 and 120 FPS), their detection accuracies remain comparatively modest, 78.3% and 78.5%,
respectively. The YOLOv7-Ship model not only achieves the highest detection accuracy but
also preserves real-time performance, demonstrating superior overall performance in ship
target detection within complex environments compared with similar algorithms.

Our proposed model outperforms widely used models in ship target detection. The
faster R-CNN, SSD, and YOLOv4 algorithms have relatively low detection accuracies with
an AP@.5 of 74.9%, 72.2%, and 74.8%, respectively, which is due to the anchor frame-fixed
parameters that cannot be fully adapted to the multiscale ship target. The AP@.5 of the
YOLOv7-Ship model is improved by 5.4% and 3.2% compared with that of YOLOv3 and
YOLOv5s, respectively, and demonstrates significant accuracy improvement, while its
GFLOPS are reduced by 6.5 and 1 M, respectively. Although YOLOv7-Tiny and YOLOv8
have faster detection speeds (77 and 120 FPS), their AP@.5 values remain comparatively
modest, 78.3% and 78.5%, respectively. Compared with similar algorithms, APS is the
highest at 37.7%, and real-time performance is maintained. YOLOv7-Ship demonstrates
superior overall performance in ship target detection within complex environments.

Overfitting is a problem to be aware of in deep learning and may lead to a worse
generalization ability of the model. In the experimental preparation phase above, we have
taken many regularization methods. From the experimental results, we found that the
training and testing errors of the YOLOV7-Ship model decreased synchronously with
the increase in training rounds, so the model did not suffer from overfitting problems
during training.

5.5. Analysis of the Detection Results

In this section, we employ the Grad-CAM visualization to assess the performance of
the YOLOv7-Ship model in ship detection [48]. Grad-CAM is a technique used to visualize
the degree of contribution to the prediction results. We randomly chose three images from
the ship dataset and used Grad-CAM to visualize the output features of the YOLOv7-Tiny
and the YOLOv7-Ship models. The computational results of the corresponding hidden
layer feature maps are shown in Figure 12.



J. Mar. Sci. Eng. 2024, 12, 190 18 of 21

(a) (b) (c)

Figure 12. Visualization results of the Grad-CAM feature heat map: (a) original image, (b) feature
heat map of the YOLOv7-Tiny model, and (c) feature heat map of the YOLOv7-Ship model.

Through the heat map image, we can intuitively observe that the YOLOv7-Ship model
focuses on the critical features of the ship, especially for the parts of small targets, which
showcases the effectiveness of our suggested approach in enhancing the precision and
accuracy of ship object detection.

5.6. Qualitative Analysis of Detection Effects

In this section, we experiment the YOLOv7-Ship model with other models on a
self-constructed ship dataset. Images from three different scenarios were selected for
the experiments, from top to bottom: partially occluded multiship detection, small ship
detection, and harbor ship detection. The visual detection results of YOLOv5s, YOLOv5m,
YOLOv7-Tiny, YOLOv8, and YOLOv7-Ship are presented in Figure 13.

Original YOLOv5s YOLOv5m YOLOv7-Tiny YOLOv8 YOLOv7-Ship

Figure 13. Visual comparison of the YOLOv7-Ship model with the YOLO family.

Figure 13 illustrates that under complex conditions, most models yield unsatisfactory
ship detection results due to frequent instances of both leakage and misdetection. YOLOv5s
cannot recognize the obscured ship target during partial occlusion, resulting in missed
detection. Small target detection is also a challenge, as YOLOv5s, YOLOv5m, and YOLOv8
fail to detect small target ships due to the limited extractable features, which are susceptible
to interference from waves and water reflections. In intricate harbor settings, where
ships often exhibit multiscale dimensions, numerous pseudo-targets, and background
interference, detection difficulty is amplified. However, the YOLOv7-Ship model excels in
detecting partially occluded ship targets and accurately identifies small ship targets even
at considerable distances. In summary, the YOLOv7-Ship model can detect ship targets
more accurately and reduce the ship object detection miss rate in complex environments
characterized by multiscale dimensions, high noise levels, and small targets.
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6. Conclusions and Discussions

This paper proposes an improved YOLOv7-Ship model, which can accurately detect
ship targets in complex marine environments. First, we introduced an improved CA-M
attention mechanism after each aggregated network module of backbone, which weakens
the interference of irrelevant background noise. Next, we introduced the OD-ELAN
module in the neck part, which significantly improves the information mining ability of
the detected targets in space and depth. Then, we improved the upsampling method
to the CARAFE algorithm, which increases the network sensory field and retains more
detailed semantic information. Subsequently, we used SIoU in the loss function part, and
the training convergence of the YOLOv7-Ship model was further accelerated. In addition,
we have self-constructed a ship dataset in complex environments, aiming to promote
the research and development of maritime safety. Experimental results showed that the
YOLOv7-Ship model improves the average detection accuracy by 2.2% compared with the
baseline model on the self-built ship dataset and adds the computation and parameters
only slightly. As a result, the YOLOv7-Ship model provides better detection accuracy for
multiscale, partially obscured, and small vessel targets, helping mariners to provide more
accurate and comprehensive detection information.

The model proposed in this paper preliminarily achieves the detection of ships in
complex marine environments, but there are still the following deficiencies:

1. The research in this paper is limited to the algorithm level, and the algorithm has not
yet been deployed to the embedded computing platform.

2. In this paper’s self-constructed dataset, there is an imbalance in the category labels.
The number of liner and container ship labels is small, leading to insufficient fea-
ture extraction and model training for these two categories. In addition, the virtual
dataset may not be able to fully simulate the actual scenario, which may lead to the
performance degradation of the model in real applications.

3. Although the YOLOv7-Ship model improves the accuracy on small targets, there are
still problems of ship missed detection in foggy and dark day scenarios.

4. Compared with the latest YOLOv8 model, the network structure of the YOLOv7-Ship
model is more complex and requires more computational resources in the infer-
ence stage.

Therefore, our future research directions and work include the following:

1. We plan to design a complete object detector embedded system so that it can execute
the YOLOv7-Ship model.

2. We will expand the dataset by including more images of real scenes in different
environments and improve the problem of unbalanced category labeling by data
augmentation and resampling.

3. We will investigate defogging algorithms and multimodal information fusion tech-
niques. We plan to fuse multisource information from infrared or radar into the model
to enhance perception in different environments.

4. We will consider using a more lightweight network structure and employ methods
such as pruning and knowledge distillation to reduce the number of model parameters.
We aim to maintain the higher detection accuracy of the model while compensating
for its shortcomings in detection speed.

5. We will also explore applying the optimized algorithms to complex tasks such as
ship object tracking and ship trajectory planning to offer more dependable technical
support for realizing intelligence and safety in the maritime field.
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