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Abstract: The vertical ice breaking of marine structures in ice-covered areas involves the deformation
and failure of an ice sheet. Different from the existing conventional scenarios where the ice sheet is
used as a transportation and support medium, the damage to the ice sheet will be more severe when
a structure penetrates the ice sheet from below, due to the lack of elastic support from the fluid above
the ice sheet. In order to investigate the failure mode of the ice sheet and the ice load characteristics
during vertical penetration, a mesh-free bond-based peridynamic method is used in this paper to
simulate the mechanical behaviors of the ice sheet. The cracks simulated in this study exhibit a higher
level of similarity to experimental results, which improves the accuracy of the ice load. The numerical
model established shows satisfactory applicability for the analysis of penetration failure of an ice
sheet. In addition, the influence of ice thickness, impact velocity, and cylinder diameter on the failure
characteristics of the ice sheet and breakthrough load are analyzed. The results of a parametric study
indicate that the relationship between ice thickness and breakthrough load, as well as the relationship
between load area and breakthrough pressure, can both be fitted using quadratic functions.

Keywords: ice; peridynamics; penetration; crack propagation; breakthrough load; bending failure;
crushing failure

1. Introduction

The upward motion of a marine structure below the ice surface will cause the vertical
penetration of an ice sheet, and the deformation and failure of the ice sheet in this scenario
exhibit more complexity. As a matter of fact, the ice sheet in ice-covered areas could be used
as a supporting medium for the storage of goods/materials and vehicle transportation.
When a load is exerted on the upper surface of the ice sheet, the deformation of the ice
sheet will generate bending stress. The fluid below the ice surface could be regarded as
an elastic foundation, and the downward deflection of the ice sheet will also cause an
increase in the water pressure at the lower surface of the ice sheet. Critical tensile stress
usually occurs on the lower surface of the ice sheet within the load range [1]. When the ice
sheet fails under a vertical load, the cracks will first start from the load area and propagate
outward in the radial direction. Circumferential cracks will then initiate and significant
damage/penetration of the ice will occur. The load at this moment is much higher than
that when radial cracks first appear [2].

In Kerr’s [3] review article, early theoretical research on the penetration failure of ice
sheets were mainly based on elastic theory, plasticity theory and viscoelastic theory, and
subsequent theoretical research mainly focuses on these three. Korunov used the analogy
method to establish a linear relationship between the allowable load of the ice sheet and the
square of the ice thickness [3]. However, Kerr and Palmer [4] pointed out that the bending
stress of the floating ice plate is usually not linearly distributed along the thickness, so
the rationality of the initial assumption in this derivation is doubtful. However, due to
its simple form and good agreement with some test data, this linear relationship has also
been widely used. Gold [5,6] proposed that the range for this linear coefficient is between
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35 t/mm2 and 70 t/mm2. Moreover, Zubov [3] introduced the influence of temperature,
salinity and other factors to further correct the coefficient. In addition, some analyzes based
on elastic thin plate theory were mostly carried out with the consideration of strength
criteria, which are categorized into two types by Kerr. One is to calculate the extreme load
when the first crack initiates in the ice sheet and establish the relationship between the
breakthrough load and extreme load. The other is to directly determine the extreme load
by analyzing the wedge fracture of the ice plate [3]. Bažant et al. [7] calculated the energy
release rate caused by radial crack propagation based on linear elastic fracture mechanics
and thin plate theory and established the relationship between the radial crack length
and load. Persson and Assur [8] solved the breakthrough load of the ice sheet using yield
line theory [3], while Meyerhof [9] and Coon and Mohaghegh [10] used the ultimate load
theory. Based on a plastic limit analysis, Sodhi [11] calculated the breakthrough load by
equating the rate of work carried out by the load and the energy dissipation rate caused
by the compression of radial and circumferential wedges during the deformation of ice
sheets. The results of the theoretical calculation showed good agreement with the test data,
when the energy dissipation caused by radial deformation along the circumferential crack
is ignored. As a matter of fact, there is no universally acknowledged conclusion for the
selection of the yield criterion, and different yield criteria will cause remarkable differences
in the results. In studies based on viscoelastic theory, the creep of the ice material under a
long-term load was emphasized, and the relationship between the breakthrough load and
the fracture time was considered [3,12–14].

Theoretical research often requires simplifications and assumptions, which are more
suitable for more ideal situations. However, due to the extremely complicated mechanical
properties of ice materials, experimental methods have been widely applied in the study
of vertical penetration of ice sheets. Frankenstein [15] and Lichtenberger et al. [15–17]
determined the breakthrough load based on full-scale experimental studies and pointed
out that the penetration of the ice sheet is related to the fracture of the circumferential crack
closest to the load area. In addition, Lichtenberger [16] also carried out creep tests under
vertical loading conditions. Many related experimental studies also provide the basis for
the parameters required for load prediction and failure criteria in theoretical research. By
investigating the failure of floating ice plates with fixed boundaries under a vertical load,
Sodhi [2] obtained the relationship between the load and deflection at the moment when
different types of cracks appear. Furthermore, the influence of boundary conditions on
the breakthrough load was analyzed, and it was found that the breakthrough load of a
fixed ice plate was approximately twice that of an ice plate with free boundaries, which is
considered to be related to the movement patterns of wedges during deformation.

The failure criteria of ice when penetration occurs mainly focus on stress, strain and
strain energy density. The strength criterion is often used in some analyzes based on elastic
theory, and the bending failure of ice sheets occurs when the maximum stress inside the
ice plate reaches the ultimate stress [3]. Frederking and Gold [18] and Sodhi [11] proposed
a failure criterion based on deflection and stated that the maximum deflection when fail-
ure occurs is a function of the ice thickness. In the numerical algorithm developed by
Bažant et al. [19] for a model of a small object penetrating an ice sheet, the initiation of
cracks on the ice sheet is determined based on the yield criterion with a fracture-based flow
rule. Failure criteria based on stress, strain and other parameters are mainly suitable for
short-term loading conditions [20]. Based on the test results of 40 prototype loadings, Bel-
tos [21,22] proposed a failure criterion based on strain energy density with a consideration
of the viscoelastic behavior of ice, which could be used to predict the initial damage of
floating ice sheets under sustained loads.

In general, the above-mentioned studies based on theoretical and experimental meth-
ods are mostly suitable for scenarios where the ice sheet floats on water and the load
is vertically downward. When a marine structure penetrates the ice sheet upward, no
additional fluid pressure is exerted on the lower surface of the ice plate, and the extreme
load-bearing capacity of the ice sheet will be weakened. Wang et al. [23] performed a
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vertical penetration test of an ice sheet with no influence of water below the ice plate. It
was found that the breakthrough load of the ice sheet also conforms to a quadratic rela-
tionship with the ice thickness, and the cracks propagate from the center to the boundary,
which is consistent with the conclusion in the aforementioned studies. Wang et al. [24] also
simulated the penetration of ice sheets caused by the vertical motion of a cylinder using
LS-DYNA software, and the numerical results showed that the damage range under a con-
centrated load is smaller than that under a uniform load, and the tensile limit was reached
faster to cause fracture. In addition, the effects of vertical speed and contact angle on the
failure mode and breakthrough load of the ice sheet were also discussed. Wang et al. [25]
conducted a numerical study with the influence of a fluid below the ice sheet, using a
fluid–structure coupling method based on structured arbitrary Lagrangian Euler (S-ALE)
in LS-DYNA. The comparison of the results with or without water foundation showed
that the water cushion effect has a significant impact on the failure mode of the ice sheet,
while its effect on the breakthrough load is weak. It should be noted that establishing an
adequate numerical model is useful and effective for solving such problems. Besides the
widely used finite element methods mentioned above, some meshless methods (such as the
discrete element method) gradually show a higher level of capability for simulating crack
propagation in ice sheets [26–28], which further ensures the computational accuracy of the
ice load. Meanwhile, since the mechanical properties of ice are complicated, the numerical
modelling of vertical penetration of ice sheets still faces major challenges.

Peridynamic (PD) theory was first proposed by Professor Silling in 2000, and the
corresponding numerical algorithm was proposed in 2005 [29,30]. Different from classical
continuum mechanics, it is based on non-local interactions and uses integral equations for
solution. It avoids the continuity assumption and the difficulty of solving partial differential
equations in traditional numerical methods [31]. It has obvious advantages in solving
discontinuous problems such as crack propagation in materials and has achieved great
results in the analysis of damage problems such as concrete and composite materials [31].
Considering the brittleness of ice, the peridynamic method has gradually become an
important simulation tool for the description of the fracture of ice materials, and agreeable
numerical results could be obtained in the simulation of the interaction between ice and
marine structures [32–36]. Based on state-based peridynamics, Liu et al. [37] investigated
the failure of an ice sheet caused by a horizontally moving cylinder and analyzed the
repetitive nature of the ice force and the relationship between the damage zone length and
ice thickness. Though this study primarily emphasized the crushing failure of ice sheets, it
showed a possible applicability of peridynamics for solving the propagation of radial or
circumferential cracks in ice sheets under a vertical load, which is conducive to a deeper
understanding of penetration failure mechanisms.

In this paper, the vertical penetration of ice sheets caused by an ascending rigid
cylinder is simulated using a bond-based peridynamic method. Ice is simplified as an elastic-
brittle material, conforming to a linear elastic constitutive relation. The crack initiation
and propagation are simulated, and the vertical load exerted on the cylinder is recorded.
In addition, for the purpose of deeply exploring the penetration failure mechanism of ice
sheets, the variations of failure mode and breakthrough load with ice thickness, vertical
velocity and loading area are discussed in detail.

2. Peridynamic Framework

In the peridynamic framework, the material is discretized into a series of points with a
certain mass and volume. As shown in Figure 1, it is assumed that the interactions only
exist between a material point and those within a certain distance from it, and a pair of
material points with interaction are connected by virtual bonds.
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The equation of motion for material point x is

ρ
..
u(x) =

∫
Hx

f
(
u
(
x′
)
− u(x), x′ − x)dVx + b(x) (1)

where x′ is a material point whose initial position is located in the peridynamic horizon of
x (Hx). The motion of material point x is governed by the resultant force of the interactions
(f) with other material points within peridynamic horizon and external forces (b). The
interaction force is described by the displacement (u) and initial coordinates of the material
points. And ρ and Vx are the mass density and volume of x, respectively. For more details,
please refer to [29].

The interaction force f for a PMB material can be expressed as follows [38]:

f(η, ξ) = csµ(t, ξ) · ξ + η

|ξ + η| (2)

where ξ and η represent the relative position and relative displacement, respectively,
between material points x and x′. c is a constant that describes the elasticity of the material,
which can be obtained based on the bulk modulus K as [30]

c =
18K
πδ4 (3)

where δ is the radius of the peridynamic horizon. In order to further represent the varying
degrees of interaction imposed by the material points x′ at different positions, the bond
constant can be revised as [39]

c =

{
36E
πδ4 (1 −

ξ2

δ2 ), i f |ξ| ≤ δ

0, otherwise
(4)

where E is the elastic modulus. And the bond stretch rate s is defined as [30]

s =
|ξ + η| − |ξ|

|ξ| (5)

It is noteworthy that the sign of s indicates the stretch state of the bond (tension or
compression). And the bond is assumed to be broken if s exceeds a critical value s0, and a
scalar quantity µ(t, ξ) is constructed to describe the damage state of the bond as [40]

µ(t, ξ) =

{
1, s(t′,ξ) < s0
0, s(t′,ξ) ≥ s0

(6)
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According to [40], the critical stretch rate s0 should be obtained based on the energy
release rate of the fracture surface (G0) as

s0 =

√
10G0

πcδ5 (7)

Moreover, it can also be roughly approximated as [41]

s0 =
σt

E
(8)

where σt is the tension strength. Furthermore, another coefficient φ(x, t) is defined to
describe the local damage as [40]

φ(x, t) = 1 −
∫

Hx
µ(x, t, ξ)dVξ∫

Hx
dVξ

(9)

3. Numerical Implementation
3.1. Constitutive Model of Ice

Under different freezing temperatures, durations and water conditions, the physical
properties of ice (salinity, density, porosity, grain structure, etc.) are different [42], which
further leads to differences in its mechanical properties (elastic modulus, flexural strength,
compression strength, etc.). When the loading rate is high, the ice material exhibits brittle
failure [43]. Considering the thickness of the ice specimen and the ascending speed of the
rigid cylinder in this paper, ice is regarded as an elastic-brittle material in the numerical
model and satisfies the linear elastic constitutive relationship.

In addition, the ice material shows an obvious strength difference in tension and
compression. Relevant test data show that the compressive strength of ice is generally 3
to 5 times the tensile strength [44]. Therefore, a relationship of sc = −4·st is induced in
the numerical model, where st and sc represent the critical tensile stretch and compressive
strength, respectively. The peridynamic material constitutive relationship of ice is shown in
Figure 2.
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3.2. Contact Algorithm

The interaction between a rigid impactor and a deformable target object controlled
by peridynamics is solved according to [40]. As shown in Figure 3a, the impactor initially
moves towards the target object at velocity v. At the end of the next time step t + ∆t, a
material point enters the interior of the rigid impactor. To prevent interpenetration between
the rigid impactor and the target object, the material point is moved to a position on the
outer surface of the impactor closest to its initial position, as shown in Figure 3c. The new
position of the material point is usually determined based on the geometric characteristics
of the rigid impactor.
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Therefore, the velocity of the material point x(k) is [40]

vt+∆t
(k) =

ut+∆t
(k) − ut

(k)

∆t
(10)

where ut+∆t
(k) is the adjusted displacement in the current time step, and ut

(k) is the displace-
ment in the last time step. The contact force caused by the penetration of a material point
into the rigid impactor can be obtained as [40]

Ft+∆t
(k) = −1 × ρ(k)

(
vt+∆t
(k) − vt+∆t

(k)

)
∆t

V(k) (11)

where vt+∆t
(k) is the velocity before the position adjustment. By summing up the contact

forces exerted by all material points located inside the rigid impactor, the resultant force on
the rigid impact body can be expressed as [40]

Ft+∆t = ∑
k=1

Ft+∆t
(k) (12)

3.3. Numerical Algorithm

The peridynamic equation of motion for the numerical implementation is

ρ
..
ui =

m

∑
j=1

f
(
uj − ui, xj − xi

)
Vj + bi (13)

where xj is a material point located within the peridynamic horizon of xi in the initial state,
and m is the total number of material points within the horizon.

The acceleration, velocity and displacement of the material point are calculated
as follows:

..
un

i =
fn

i + bn
i

ρ
(14)

.
un+1

i =
.
un

i +
..
un

i · ∆t (15)

un+1
i = un

i +
.
un+1

i · ∆t (16)

And the stability criterion on the time step size can be expressed as [40]

∆t <

√
2ρ

∑j CijVj
(17)
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where
Cij =

∂f
∂η

(18)

3.4. Numerical Validation

The peridynamic model of ice is numerically validated based on the three-point
bending test. As shown in Table 1, the main parameters are taken according to [45].
The material point size ∆x is 0.007 m, and there are 9300 material points in total. The
peridynamic horizon is 3·∆x and the time step ∆t is 2.5 × 10−6 s. Three layers of material
points are placed near the two simple supports at the bottom of the ice sample and are set
as rigid fixed. A vertical downward velocity of 0.763 mm/s is applied at the center of the
upper surface of the ice specimen.

Table 1. Computation parameters.

Parameter Value

Size parameter

Length (L) 0.65 m
Span between supports (L0) 0.60 m

Height (h) 0.07 m
Width (b) 0.07 m

Material parameter
Elastic modulus (E) 6.81 GPa

Density ( ρ) 896.977 kg·m3

Poisson ratio (γ) 1/3

The crack initiation and propagation in the ice specimen are shown in Figure 4.
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As shown in Figure 5a, the simulated midpoint deflection before the ice specimen
breaks agrees well with the test result. Considering the initial defects in the test specimen
and the influence of the test measurement accuracy, the fracture calculated based on the
idealized numerical model occurs later. Furthermore, as illustrated in Figure 5b, the
experimentally measured bending stress agrees well with the numerical result. Since there
exist accuracy errors in the experimental measurement, and the unloading in numerical
simulation is mainly related to the fracture of the particles at the center of the bottom, the
unloading moment is slightly advanced.
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As shown in Table 2, the comparison shows that the fracture time, midpoint deflection
and bending strength of the ice beam sample obtained with peridynamic simulation are in
good agreement with the test results.

Table 2. Comparison of numerical results and test results.

Test Results Numerical Results Error

Rupture time (s) 0.47 0.5125 9.04%
Maximum deflection (mm) 0.35 0.3743 6.94%

Flexural strength (MPa) 2.50 2.4103 3.59%

4. Numerical Result

The main parameters in the numerical simulation are consistent with the experimental
conditions in [23], as shown in Table 3. The edges of the ice in the thickness direction are
divided into six material points, with an interparticle distance of 0.005 m. Since the material
points have the same scale in all directions, the number of discrete material points in the
length and width direction is 100. The peridynamic horizon δ is 3·∆x, and the time step
∆t is 2.0 × 10−6 s. In addition, the surroundings of the ice sheet are rigid fixed. The rigid
cylinder is moving towards the ice sheet at a constant speed, as shown in Figure 6.

Table 3. Computation parameters.

Parameter Value

Ice

Dimension (a × b) 0.5 m × 0.5 m
Thickness (h) 0.03 m
Density (ρ) 917 kg/m3

Elastic modulus (E) 1.0 GPa
Poisson ratio (υ) 0.3

Compressive strength (σc) 2.41 MPa

Rigid cylinder
Diameter (D) 0.03 m
Height (h0) 0.05 m
Speed (v) 0.004 m/s

As shown in Figure 7, the crack propagation in the ice sheet obtained with numerical
simulation is similar to that in the experimental observations. The cracks are primarily
distributed radially, initiating from the center of the ice sheet and gradually propagating
towards the edges. Eventually, a series of wedge-shaped bodies are formed with the fracture
of radial cracks. The test results show that both the number of cracks formed in the ice sheet
and the number of wedge-shaped bodies are seven, while these amounts are both eight in
the simulation results. The main reason for this difference lies in the effects introduced by



J. Mar. Sci. Eng. 2024, 12, 188 9 of 18

the experimental operations, such as minor shape errors in the ice sheet and the presence of
air bubbles inside caused by the freezing conditions. In contrast, the ice sheet model in the
numerical simulation is relatively ideal, and the calculated damage distribution exhibits
agreeable symmetry. The generation of circumferential cracks is observed, which only
appears around the loading area and at the corners of the ice sheets, due to factors such as
the size limitation and boundary conditions of the ice sheet.
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The history of the ice load on the rigid cylinder obtained from the numerical simulation
is shown in Figure 8. During the interaction between the cylindrical structure and the
ice sheet, the ice load gradually increases. The ice sheet is fully penetrated at 0.924 s and
the ice load is rapidly unloaded. The numerical simulation shows a good agreement with
the experimental results in the variation trend of the ice load. Since the time step in the
numerical calculation is smaller, it can capture more details in the loading phase than
the experimental method. It seems that the ice load history can be roughly divided into
three stages according to the slope of the ice load over time. During the first stage, low-
level contact between the two occurs, and few obvious cracks are formed in the ice sheet.
Therefore, the ice sheet can be approximately considered to be elastic deformed, and the ice
load shows a linearly increasing trend. In the second stage, accompanied by the generation
of radial cracks, the ice load shows “jagged” fluctuations compared with the previous stage.
The existence of radial cracks weakens the load-bearing capacity of the ice sheet, and the
load slope in the second stage decreases compared with that in the first stage. In the third
stage, accompanied by the generation of circumferential cracks around the loading area
and at the corners of the ice sheet, the ice sheet is further damaged and the load slope
further decreases.
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Figure 8. The history of ice load on the rigid cylinder.

As shown in Table 4, the simulated fracture time and breakthrough load agree well
with the experimental data in [23].

Table 4. Comparison of numerical results and test results.

Test Results Numerical Results Error

Rupture time (s) 1.093 0.926 15.28%
Breakthrough load (N) 1158.45 1140.80 1.52%

In order to mitigate the influence of the material point spacing on the calculation
results, the ice loads are further computed for material point spacings of 0.0025 m and
0.01 m under identical conditions. As shown in Figure 9, the ice load curves almost overlap
for material point spacings of 0.0025 m and 0.005 m, while a noticeable difference exists
when the material point spacing is 0.01 m. It can be proved that a material point spacing of
0.005 m is sufficient to achieve a high level of computational accuracy.
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5. Parametric Analysis

In this section, the influence of ice thickness, impact velocity and cylinder diameter on
the failure characteristics and breakthrough load of an ice sheet is investigated in detail.
The computation parameters are shown in Table 5.
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Table 5. Computation parameters.

Ice Thickness
(m)

Impact Velocity
(m/s)

Cylinder Diameter
(m)

1

0.015

0.004 0.0300
0.020
0.025
0.030
0.035

2 0.030

0.002

0.0300
0.004
0.006
0.008
0.010

3 0.030 0.004

0.0225
0.0300
0.0375
0.0450
0.0525

5.1. Ice Thickness

The crack initiation and propagation in the ice sheet under different thicknesses are
shown in Figure 10. It can be seen that there are eight radial cracks in the ice sheet, and their
distribution shows obvious diagonal symmetry. For a thinner (T = 0.015 m) ice sheet, the
distribution of radial cracks in the two diagonal directions is different. Studies have shown
that two approximately vertical cracks will appear in the initial stage when a vertical load
is exerted on an ice sheet. Combined with the results calculated in this article, it can be
concluded that the failure of square ice plates with a low thickness under a vertical load is
not diagonally isotropic. When the ice thickness is 0.020 m or 0.025 m, the distribution of
radial cracks is generally “X”-shaped, and all four branches are composed of two radial
cracks a small distance apart. As the ice thickness increases, the stiffness of the ice sheet
gradually increases. The curvature of the radial cracks in the 0.025 m thick ice sheet is
smaller than that in the 0.020 m thick one. If the ice thickness reaches 0.030 m, the radial
cracks transform into a cross-shaped distribution. When the ice thickness further increases,
instead of bending, crashing becomes the key factor during the failure of the ice sheet.
None of the radial cracks propagate to the edge of the ice sheet, and the spacing between
each crack is roughly the same.

Two circumferential cracks are formed in the upper surface of the ice sheet for the
scenarios with different thicknesses in this paper. According to the curvature of the outer
circumstantial cracks at the four corners, it can be concluded that the radius of the outer
circumstantial cracks will increase with the ice thickness. However, this increase is not very
pronounced due to the influence of the rigid boundary. When the ice thickness is in the
range of 0.015–0.030 m, the diameter of the inner circumferential crack is roughly equivalent
to that of a rigid cylinder. Considering the obvious change in the cause of damage to the
0.035 m thick ice sheet, its central penetration area increases significantly. It is worth noting
that the curvature of the outer circumferential crack is significantly reduced at this time,
and the part of the ice sheet around these cracks is obviously damaged but does not break.

The breakthrough load for different ice thicknesses is shown in Figure 11. It can be
seen from the numerical results that the breakthrough load increases with the ice thickness,
which is related to the higher stiffness of the thicker ice sheet. The numerical results are in
good agreement with the test data measured in [23], and a large deviation occurs only in the
case where the ice thickness is 0.025 m. A quadratic relationship between the breakthrough
load and ice thickness is determined based on both the numerical results in this paper
and the experimental data in [23]. Since the test measurements may be interfered with by
the test operations or other uncontrollable factors, the experimental results exhibit more
discreteness than the numerical results. Therefore, the numerical model established in
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this paper can more accurately evaluate the breakthrough load of an ice sheet and avoid
strong discrete results, which is conducive to in-depth analysis of the penetration damage
mechanism of the ice sheet. Gold [6] proposed that the breakthrough load of the ice sheet is
350 to 7000 times the square of the ice thickness, where the units of penetration load and ice
thickness are kN and m, respectively. However, in their study, there was a fluid foundation
below the ice sheet, and the deformation of the ice sheet was smaller than that without a
fluid foundation, so the load-bearing capacity was relatively large. According to the results
calculated in this article, the multiple range of the penetration load of the ice sheet and the
square of the ice sheet thickness is between 1012.22 and 1267.56, which is still in the range
presented by Gold [6].
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5.2. Impact Velocity

The crack initiation and propagation in the ice sheet under different impact velocities
are shown in Figure 12. If the ice sheet is loaded at low speed (0.002 m/s), only four
radial cracks are formed, with a cross-shaped distribution. When the impact velocity is
in the range of 0.004–0.008 m/s, although the overall distribution of radial cracks is still
cross-shaped, each branch is composed of two cracks, which results in an increase in the
total number of radial cracks to eight. Interestingly, when the impact velocity is 0.006 m/s,
the distance between the two radial cracks on each branch of the “cross” is the largest.
However, the interval of eight radial cracks is very uniform when the impact velocity is
0.010 m/s.
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Moreover, it is found that the influence of velocity on the circumferential crack radius
at the edge of the ice plate is very limited. In low-speed scenarios, the inner circumferential
crack is approximately square, and its length is similar to the diameter of the rigid cylinder.
When the impact velocity is 0.004 m/s or 0.006 m/s, the inner circumferential crack is
consistent with the circumference of the top surface of the rigid cylinder. As the impact
speed increases, the material points on the lower surface/contact area are more suscepti-
ble to crushing failure, so the circumferential crack area formed on the upper surface is
significantly reduced or even disappears.

The breakthrough load under different impact velocities is shown in Figure 13. The
numerical results show that when the impact velocity increases from 0.002 m/s to 0.010 m/s,
the breakthrough load first increases and then decreases and reaches a minimum value
when the impact velocity is 0.006 m/s. It should be noted that the contact between the
rigid cylinder and ice sheet is more of a quasi-static loading when the impact velocity is
low. At the same moment of loading, the deformation of the ice sheet is small and the load
exerted on the ice sheet is relatively small, which directly leads to the slow propagation
of cracks in the ice sheet and the later appearance of the fracture. Therefore, long-term
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full contact increases the load when the ice sheet is actually penetrated. When the speed
reaches a certain level, the higher speed will cause the ice sheet to deform significantly
and the upper surface and lower surface of the ice sheet will reach the tensile strength and
compressive strength, respectively, in a short time, which causes the earlier brittle fracture
of the ice sheet. Due to the limited range of impact velocities in the calculation conditions,
the difference between the maximum and minimum values of the breakthrough load is only
65.5 N. However, the results still indicate that there might be a relatively safe speed within
a certain range, and the load on the structure is lower when vertical penetration occurs.
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5.3. Cylinder Diameter

The crack initiation and propagation in the ice sheet under different cylinder diameters
are shown in Figure 14. It reveals that the cylinder diameter has a significant influence
on the distribution of cracks in the ice sheet. If the cylinder diameter is 0.0225 m, there
are a total of eight radial cracks in the ice sheet, and the spacing between each crack is
approximately the same. Due to the small load-bearing area, the ice sheet undergoes
compression failure more rapidly. And as a result, the radial cracks do not propagate to
the edge of the ice sheet. When the cylinder diameter is 0.03 m, the radial cracks exhibit a
cross-shaped distribution. As the cylinder diameter continues to increase to 0.0375 m, the
radial cracks exhibit an “X”-shaped distribution. When the cylinder diameter increases to
0.045 and above, the number of radial cracks decreases to four.

The loading area has a certain influence on the distribution of circumferential cracks
as well. When the load action area is small, compressive failure leads to a certain degree of
damage at the middle part of each edge, and no circumferential cracks form at the corners
of the ice sheet. A comparative analysis of the outer circumferential crack indicates that its
diameter is less sensitive to the load action area. In addition, it can be seen from the figure
that the radius of the inner circumferential crack will gradually increase as the cylinder
diameter increases.

The breakthrough load for different cylinder diameters is shown in Figure 15. It can
be seen that as the cylinder diameter increases, the breakthrough load of the ice plate
gradually increases, but the rate of increase will gradually decrease. When the cylinder
diameter is smaller, the ice sheet is subjected to a load similar to a concentrated force,
and the upper surface of the ice sheet will crack faster due to the tensile effect, so the
breakthrough load is relatively small. Frankenstein’s research results show that when the
ratio of the diameter of the (circular) loading area to the ice thickness is less than 2.0, the
effect of a uniformly distributed load can be regarded as a concentrated force. Therefore,
based on the combinations of ice thickness and cylinder diameter in this section, the vertical
load applied to the ice sheet can be considered a concentrated force. When the loading
is more concentrated, the ice sheet is more likely to undergo crushing failure in a short
period of time, which leads to a pronounced increase in breakthrough load with cylinder
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diameter. In addition, Figure 16 shows that the smaller the cylinder diameter, the higher
the pressure imposed by the breakthrough load on the upper surface of the ice sheet. And
the relationship between the penetration pressure and contact area can also be fitted with a
quadratic function.
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6. Conclusions

In this paper, a numerical model to describe the interaction between an ice sheet and
a vertically ascending rigid cylinder is established using the peridynamic method. It has
been proved that the numerical model shows a higher accuracy in simulating the crack
distribution in ice sheets and calculating the ice load, which can provide strong support
for the study of failure characteristics in ice sheets due to vertical penetration in different
scenarios. Based on the numerical model, the influence of ice thickness, impact velocity
and cylinder diameter on the crack propagation in the ice sheet and breakthrough load are
discussed in detail. The main conclusions are as follows:

(1) As the ice thickness increases, the cracks will change from only diagonal symmetry
to complete symmetry, and the role of crushing as the cause of failure will be more
prominent. The breakthrough load is positively related to the ice thickness, and the
relationship can be fitted with a quadratic function.

(2) If the impact velocity is within a certain range, there is no obvious difference in the
crack distribution in the ice sheet. There might be an impact velocity within this range,
and the structure will experience a minimal ice load when vertically penetrating the
ice sheet with it.

(3) As the cylinder diameter increases, the number of radial cracks in the ice sheet
gradually decreases and gathers diagonally, and the breakthrough load gradually
increases. The breakthrough pressure is inversely proportional to the contact area,
and the relationship between the two can also be described using a quadratic function.

The range of calculation parameters (such as ice thickness and cylinder diameter)
selected in this paper is limited and should be expanded appropriately in subsequent
studies to improve the accuracy of the fitted curves. In addition, the boundary of the ice
plate also has an impact on the crack propagation and ice load, so the effects of the size of
fixed ice plates and boundary conditions should be further investigated in the future.
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