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Abstract: To effectively address the increase in maritime accidents and the challenges posed by the
trend toward larger ships for maritime safety, it is crucial to rationally allocate the limited maritime
search and rescue (MSAR) resources and enhance accident response capabilities. We present a
comprehensive method for allocating MSAR resources, aiming to improve the overall efficiency of
MSAR operations. First, we use long short-term memory to predict the number of future accidents
and employ the K-medoids algorithm to identify the accident black spots in the studied area. Next,
we analyze the multi-constraint conditions in the MSAR resource allocation process. A multi-objective
integer programming model is constructed to minimize the response time and allocation cost. Finally,
we use the non-dominated sorting genetic algorithm II (DNSGA-II) with Deb’s rules to solve the
model, and we propose a multi-attribute decision optimization-based method for MSAR resource
allocation. We found that the DNSGA-II exhibits better convergence and generates higher-quality
solutions compared to the NSGA-II, particle swarm optimization (PSO), and enhanced particle swarm
optimization (EPSO) algorithms. Compared with the existing MSAR resource emergency response
system, the optimized scheme reduces the response time and allocation cost by 11.32% and 6.15%,
respectively. The proposed method can offer decision makers new insights when formulating MSAR
resource allocation plans.

Keywords: maritime search and rescue; resource allocations; long short-term memory; k-medoids;
multi-objective optimization

1. Introduction

In the process of global economic integration, the number and scale of transnational
trade are continuously increasing. Due to maritime transportation’s advantages of higher
capacity, lower cost, extensive coverage, and efficiency, the international shipping industry
undertakes about 90% of international trade tasks [1]. Even under the negative impacts of
events such as the COVID-19 pandemic, the Suez Canal blockage, and the Russia–Ukraine
conflict, global maritime logistics still maintain a relatively high level of productivity.
With the rapid development of marine economic activities, the maritime traffic density and
the number of ships entering and leaving ports have increased significantly [2]. Further-
more, the increase in aquaculture activities and fishing vessels, combined with the absence
of distinct routes or markers between islands, has heightened the probability of maritime
accidents. Moreover, influenced by the increasing scale and carrying capacity of ships,
the magnitude of accidents has reached unprecedented levels, causing severe damage
to both the socioeconomic and ecological environments [3]. For instance, the collision
between the “Sanchi” tanker and the “CF Crystal” bulk carrier in 2018 resulted in the
leakage of 111,300 metric tons of condensate oil and nearly 2000 tons of fuel oil. According
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to estimates, the recovery of the marine ecological environment from the damage caused
by the accident is expected to take at least 60 years [4].

Rapid and effective emergency coordination and response can reduce casualties and
economic losses, protect the environment, and ensure the safety of maritime navigation [5].
After a maritime accident, decision makers should formulate corresponding emergency
measures scientifically and flexibly according to the actual situation to ensure that suffi-
cient maritime search and rescue (MSAR) resources can quickly reach the accident site.
In addition, the rational allocation of MSAR resources can significantly enhance overall
rescue efficiency, minimize potential losses caused by accidents, and control the occurrence
of secondary disasters. Due to variable marine climate conditions and unclear disposal
information, the extent of disasters cannot be accurately estimated. Therefore, the allocation
of MSAR resources needs to consider various factors such as the location of rescue bases,
the type of resources, the type of ships and aircraft, and the characteristics of the sea area.

The existing research on MSAR can be roughly divided into two categories: passive re-
sponse and proactive defense. The former focuses on effectively addressing and responding
to accidents to maximize the accuracy and efficiency of MSAR. The main research directions
include the trajectory prediction of objects in distress, the scheduling of MSAR resources,
and search coverage planning for rescue equipment. The latter emphasizes taking measures
before accidents occur to enhance the overall effectiveness of MSAR efforts. The main
research directions include the prediction of demand for MSAR resources and the allocation
of MSAR resources.

The accurate track prediction of objects in distress is the basis of MSAR operations.
Analyzing the drift patterns of maritime targets under the influence of the background
field and establishing a fitting equation for target motion is the essence of target drift
prediction [6]. Due to the influence of environmental factors such as wind, ocean cur-
rents, and waves, objects in distress at sea exhibit significant time-varying characteristics.
Therefore, in the event of a maritime accident, it is essential to accurately predict the drift
trajectory and current location of the distressed target as a first step. However, due to the
complex and changeable marine meteorological environment, it is challenging to predict
the precise location of the object in distress. Usually, only the approximate area where the
target may be located can be determined [7], allowing focused search efforts in that region.

After identifying the critical search areas, the MSAR resources should arrive at the
location of distress as quickly as possible. The scheduling of MSAR resources integrates the
constraints of time variability, demand uncertainty, capacity limitation, and transportation
capacity limitation of rescue equipment, which can be seen as a complex nonlinear decision
problem. These constraints often result in low rescue response efficiency and high costs.
To address these challenges, researchers have developed various search and planning
decision support systems [8]. However, most of the existing studies have adapted methods
and approaches from onshore emergency resource scheduling, with limited consideration
for the unique characteristics of maritime accidents. This limitation makes it difficult to
ensure the scientific validity and efficiency of MSAR resource scheduling [9].

After MSAR equipment arrives at the accident area, excessive search times can result
in individuals going missing or losing their lives. Therefore, a path should be planned
for MSAR equipment to cover the search area quickly. The search coverage problem has
been proven to be an NP-complete problem [10], and it is often solved using the random
coverage algorithm [11]. People in distress at sea have a shorter survival time than those
on land, and the golden rescue time is fleeting. In addition, the uncertainty of the location
of objects in distress, the larger search area, and the variable marine environment make the
search path planning at sea more challenging.

Passive responses after maritime accidents can enhance response efficiency and MSAR
accuracy to a certain extent, thereby reducing losses. However, when accidents occur in
remote seas or as multiple frequent accidents, rescue efficiency may still be severely limited
if the MSAR resources at the rescue base are insufficient. Therefore, it becomes especially
important to allocate sufficient MSAR resources for ships and personnel in distress before
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maritime accidents occur [12,13]. When allocating MSAR resources, it is vital to find the
right balance between response efficiency and cost considerations. Insufficient MSAR
resources at the base nearest the accident area can lead to significant delays and decreased
response efficiency when coordinating and deploying resources from more distant bases.
Conversely, if excessive MSAR resources are allocated to the base, costs may also increase,
affecting the overall economic benefits [14].

Therefore, we conducted interviews with renowned maritime safety experts and
several officials from the South China Sea Rescue Bureau. These experts shared their
personal experiences in maritime search and rescue, which is helpful for us in enhancing
the understanding of the actual requirements for MSAR allocations and developing a
comprehensive method that appropriately addresses these needs. The interviewees pointed
out that the current allocation of MSAR resources often relies on subjective experience. This
subjective reliance can lead to decreased rescue efficiency, hindering timely and effective
responses to maritime accidents. Due to the unique and complex nature of maritime
accidents, a more scientific and systematic approach is necessary for MSAR resource
allocation. Drawing upon an extensive array of the relevant literature, accident reports,
and expert opinions, we recognized the necessity and urgency of developing a novel MSAR
resource allocation method. This method encompasses predicting MSAR resource needs,
allocating models, and employing solution algorithms. Moreover, it can seek to obtain a
balanced solution that optimizes both response times and resource allocation costs, thus
enhancing the overall efficiency of MSAR.

The remainder of this paper is organized as follows. Section 2 provides a review of
MSAR resources to reveal the research gaps in the field. Section 3 discusses the MSAR
resource allocation problem, presents the optimization model for MSAR resource allocation,
and outlines the specific process of solving the model. In Section 4, we apply our method
to the Chinese waters of the South China Sea to validate its rationality. Some conclusions
are drawn in Section 5.

2. Literature Review

Currently, the research field of search and rescue (SAR) resource allocation mainly
focuses on urban emergency responses after natural disasters, which encompasses the
selection of rescue facilities (e.g., hospitals, fire stations, emergency shelters, etc.) and the
allocation of emergency resources in existing warehouses and shelters explicitly [15–17].
In contrast, research on the allocation of MSAR resources is limited. Hence, to enhance the
overall effectiveness of MSAR, it is essential to design a proactive prevention strategy that
focuses on the rational allocation of various types of MSAR resources before accidents.

A reasonable MSAR resource allocation plan consists of three steps: first, predicting
the required MSAR resources; second, establishing an MSAR resource allocation model
based on the actual situation; and finally, combining the predicted demand with the model
to formulate a rational resource allocation plan.

The existing research on predicting demand for SAR resources primarily concentrates
on land-based emergencies, typically employing methods such as time-series theory [18],
case-based reasoning [19,20], and neural networks [21]. Methods based on time-series
theory, including autoregressive moving averages, exponential smoothing, and indepen-
dent and identically distributed methods, have been widely used in forecasting emergency
demand. However, these methods often perform poorly when dealing with uncertainty
in multiple demands [22]. The case-based reasoning method makes predictions based on
the similarity between existing cases. This approach is primarily suitable for addressing
straightforward scenarios and exhibits suboptimal performance when applied to intricate
demand-forecasting challenges. In contrast, neural networks can learn the temporal and
spatial correlations in data, excelling in handling complex problems with incomplete infor-
mation and high uncertainty. Due to the distinctions between sea and land environments,
current methods for predicting MSAR resources mainly depend on analyzing historical
cases in conjunction with expert assessments. However, this type of method often suffers
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from significant subjectivity and lacks scientific rigor. Thus, we use neural networks to
forecast the number of accidents and determine the types and quantities of MSAR resources.

In addition to the prediction of MSAR resource demand, the allocation model of MSAR
resources should be established when making the allocation scheme. Typically, there are
two types of available rescue equipment: rescue ships and rescue aircraft. Rescue ships are
the primary tool for MSAR, and they have the advantages of extended endurance, high
passenger capacity, and comprehensive equipment, albeit at lower speed. Rescue aircraft
have the advantages of fast flight speed and a wide search area, but their endurance is
relatively short. In terms of rescue equipment, the existing research on allocating MSAR
resources can be divided into three categories: (1) rescue ships, (2) rescue aircraft, and (3) a
combination of ships and aircraft.

In the MSAR resource allocation research that only focuses on rescue ships, the most
representative study is by the authors of [23]. To increase ship utilization and reduce fleet
operation costs, they developed a multi-objective integer programming model considering
scarce types of rescue ships. This model can provide the U.S. Coast Guard with ship
configuration plans for different seasons. Additionally, it does not consider the factor of
response efficiency, which is a key concern for many MSAR organizations. The authors
of [24] then took the response time into account and developed an event-based, multiple-
ship allocation model based on the maritime conditions in the Aegean Sea. The authors
of [25] established a configuration model considering four types of ships with different
capabilities based on criteria such as the coverage of critical rescue areas and average
response time to multiple accident locations. Subsequently, the authors of [26] conducted
further research on the allocation of rescue ships, considering the workload balance between
ships and the recruitment of new ships for future rescue efforts. The authors of [27]
developed an optimization model considering emergency resources and ships with different
capabilities. Based on the distribution characteristics of accidents, this model was designed
to balance the cost of configuration and the safety of a ship in distress. The model was
applied in China’s Bohai Sea to verify its scientific validity.

Some research studies only consider rescue aircraft in the allocation of resources at
sea. To reduce operating costs, the authors of [28] established an aircraft configuration
optimization model considering the capacity and endurance of the airport. They used
a combination method of optimization and simulation to solve the model. The authors
of [29], aiming to achieve a rapid response to accidents, established an integer linear pro-
gramming model. They used a rule-based algorithm to solve the model and obtain multiple
configuration plans. The authors of [30] developed four single-objective binary integer
programming models, each aiming to optimize a different aspect, including maximizing
the coverage of search areas, minimizing the response time, minimizing the total aircraft
working time, and minimizing overall rescue costs. This method was applied in scenarios
involving aircraft participation in open-sea rescue.

Rescue ships and rescue aircraft have their advantages and disadvantages. Effectively
coordinating the two limited resources is crucial for enhancing the overall efficiency of
MSAR. Currently, there is relatively limited research on the combination of ships and
aircraft. The authors of [31] established a multi-objective integer nonlinear programming
model with the optimization objectives of improving equipment utilization and the survival
rate of castaway individuals in remote maritime emergency responses. They applied the
model in the Bohai Sea to validate its effectiveness. The author of [5] analyzed histori-
cal accident data and discovered that the frequencies of different types of accidents are
correlated with the seasons. Subsequently, he used kernel density estimation to calculate
the probability of future accidents occurring in each region of the study area. Then, he
established a model for the allocation of rescue ships and aircraft under demand uncer-
tainty based on the probabilities. To enhance the efficiency of long-range MSAR responses,
the authors of [32] considered the availability of surrounding islands. They established a
nonlinear optimization model and obtained configuration plans by solving the model with
an improved particle swarm algorithm. The authors of [33] used a geospatial technique
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and a fuzzy analytic hierarchy process approach to obtain risk values for the responsibility
zones of various rescue bases. Based on the obtained risk values, the game theory was
employed for reallocating rescue ships and aircraft.

To facilitate the literature analysis, we present a brief literature summary in Table 1.
It categorizes previous research into three classes: main objectives, problem descriptions,
and model features. The research on MSAR resource allocation mentioned above primarily
focuses on multi-objective optimization involving various rescue resources, multiple rescue
bases, and multiple accident black spots. In terms of predicting potential accidents, the
aforementioned studies only consider the hazard coefficients in different maritime zones
without quantitatively analyzing the types and quantities of accidents across the entire
region, nor did they identify accident black spots within the maritime areas. Furthermore,
although the studies consider integrated configurations involving both aircraft and vessels,
most methods are confined to single-objective optimization problems aiming to minimize
response times only. They disregard the intricate coupling relationship between the re-
sponse time and cost. In addition, the current research on decision making regarding the
capacity of search and rescue equipment in rescue bases and its ability to meet demand is
limited. Regarding multi-objective optimization problems, most methods provide a set of
solutions without quantitatively identifying the optimal solution. Overall, comprehensive
research addressing response efficiency, operational costs, and emergency demand is scarce.

Table 1. Overview of studies on MSAR resource allocation related to this paper.

Reference

Main Objectives Problem Description Model Features

Time Cost Others SAR
Ships

SAR
Aircraft

Emergency
Resources

Rescue
Bases

Black
Spots

Solution
Method

Multi-Obj.
Approach

[23] ✓ ✓ M M EXC FLP
[24] ✓ ✓ ✓ M M M EXC EC
[25] ✓ ✓ M M M EXC WS
[26] ✓ M M M EXC WS
[27] ✓ ✓ M M M M GA WS
[28] ✓ M M M EXC
[29] ✓ M M M RB EC
[30] ✓ ✓ ✓ M M S B-OA WS
[31] ✓ M M M S NSGA-II PS
[32] ✓ M M M M PSO
[33] ✓ M M M AHP+GT

This paper ✓ ✓ M M M M M NSGA-II PS+TOPSIS

M: multi; S: single; GA: genetic algorithm; NSGA-II: non-dominating sorting genetic algorithm II; RB: rule-based
algorithm; EXC: exact approaches (e.g., CPLEX, GUROBI, LINGO, and so on.); EC: epsilon constraint method; GT:
game theory; B-OA: BONMIN outer approximation algorithm; WS: weighted sum method; PS: Pareto solutions;
TOPSIS: Technique for Order Preference by Similarity to Ideal Solution algorithm; FLP: fuzzy linear programming.

Given the above research background, we investigate the coupling relationship be-
tween response efficiency and allocation cost based on the practical operational characteris-
tics of MSAR. We have analyzed the spatial distribution of historical maritime accidents,
considering complex multiple constraints and various factors, and propose a multi-objective
optimization method for the allocation of maritime search and rescue resources.

3. Model and Methods

Figure 1 shows the framework of our MSAR resource allocation optimization method.
In Stage 1, based on the historical maritime accident data, we utilize LSTM and the K-
medoids algorithm to predict the number of accidents and identify the accident black spots
for the next year. The prediction methods are discussed in Section 3.1. The predicted
number of accidents is crucial for determining the necessary MSAR resources. Next, we
discuss the concept of MSAR resource allocation. We then introduce the variables in the
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model and establish a multi-objective optimization model for MSAR resource allocation in
Stage 2. Finally, we provide a detailed explanation of the steps to solve the model using
the DNSGA-II and apply the TOPSIS method to select the compromise solution from the
Pareto solutions in Stage 3.

Figure 1. The framework of the proposed optimized allocation method.

3.1. Prediction of Demand for MSAR Resources
3.1.1. LSTM

LSTM is a type of temporal recurrent neural network and is an extension of the
recurrent neural network. LSTM can efficiently store or discard information by employing
gate mechanisms, significantly enhancing its memory capacity. The remarkable memory
capability of LSTM enables it to converge more quickly when dealing with long sequence
problems, thereby avoiding some common issues, like long-term dependencies, gradient
explosions, and gradient vanishing, that typically arise in conventional recurrent neural
networks. LSTM is highly proficient in predicting time-series data [34]. Through time-series
analysis of historical maritime accident data, LSTM can unveil seasonal patterns, long-term
trends, and cyclic variations in accident frequency. Besides these attributes, LSTM can
capture nonlinear relationships within the data. In contrast, simple statistical methods
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might struggle to capture these nonlinear relationships due to their limitations in dealing
with complex data patterns. Figure 2 illustrates the structure of the LSTM network.

Figure 2. The structure of LSTM.

In this paper, we initially divide the historical maritime accident data from 2010 to
2021 into monthly intervals. The frequency of accidents occurring each month is recorded
as Oi ∈ O, forming a time-series dataset, denoted as O = (O1, O2, ..., Oi, ..., Om), where m is
the collection node. Then, we employ LSTM to learn O = (O1, O2, ..., Oi, ..., Om) and obtain
the number of maritime accidents that occurred each month in 2022.

Each LSTM cell introduces a memory cell Ct in addition to the regular output from
each unit ht and incorporates three gates: the forget gate, input gate, and output gate [35].
The forget gate, described by Equations (1) and (2), determines whether the information
from each time step should be retained or discarded. The input gate controls the amount
of new information added to the cell, represented by Equations (3)–(5). The state of the
cell at the current time is represented by Equation (6). Lastly, the output gate, defined in
Equations (7) and (8), controls the amount of information transmitted from the current state
of the cell to the current hidden state, where Ft, It, and Ot are the values of the forget gate,
input gate, and output gate, respectively. xt is the input value at the current moment. ht−1
represents all the outputs of the model from the previous moment. WF, WI , and WO are
the weight matrices of the forget gate, input gate, and output gate, respectively, whereas
bF, bI , and bO are the bias quantities for the forget gate, memory gate, and output gate,
respectively. WC represents the weight matrices of the candidate vector, and bC is the bias
quantity of the candidate vector. Ct represents the candidate vectors at the t-th time step. C̃
is the temporary memory cell. The final output of the LSTM is Ht.

Ft = σ(WF · [ht−1, xt] + bF) (1)

σ =
1

1− ex (2)

It = σ(WI · [ht−1, xt] + bI) (3)

C̃ = tanh(WC · [ht−1, xt] + bC) (4)

tan =
ex − e−x

ex + e−x (5)

Ct = ft · Ct−1 + it · C̃t (6)
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Ot = σ(WO · [ht−1, xt] + bO) (7)

Ht = Ot · tanh(Ct) (8)

3.1.2. K-Medoids

The K-medoids and K-means algorithms are distance-based clustering methods [36].
This type of method is widely used in traffic accident analysis due to its advantages, such as
simplicity, practicality, and fast convergence. The K-means algorithm calculates the “mean”
within clusters, whereas the K-medoids algorithm calculates the “median” within clusters.
Therefore, the K-medoids algorithm exhibits greater robustness when dealing with noise
and outliers. K-medoids can be divided into the following four steps:

Step 1: Construct a dataset X = {X1, X2, ..., Xn} of historical maritime accidents;
each object Xi = (loni, lati) includes two features: longitude and latitude. Subsequently,
the dataset is divided into k clusters P = {P1, P2, ..., Pn}, k < n. The selected accident black
spot is Pi = (lonp

i , latp
i ).

Step 2: The K-medoids algorithm utilizes distance to measure the similarity between
individuals. The common distance metrics include the Euclidean distance, Manhattan
distance, Chebyshev distance, and Minkowski distance [36]. In this paper, we employ
the Euclidean distance to quantify the similarity between individuals. Let dis denote the
Euclidean distance between the sample points. We assign each point to the cluster whose
center is closest to it.

dis(Xi, Pi) =
√
(lonp

i − loni)2 + (latp
i − lati)2 (9)

Step 3: Select a non-accident black-spot sample Xrandom to replace an accident black
spot Pi and compute the sum of intra-cluster distances E using Equation (10). If the value
decreases, replace the accident black spot Pi with the new sample Xrandom, forming a new
set of accident black spots.

E = ∑
i∈k

∑
s∈P

dis(s, Pi) (10)

Step 4: Repeat steps 2 and 3 until the updated accident black spots no longer change,
concluding the clustering process and generating the final set of k-determined accident black spots.

3.2. Multi-Objective Optimization Model
3.2.1. Problem Description

The occurrence of maritime accidents is difficult to predict in advance, often accompa-
nied by challenges such as difficulties in ensuring human survival, marine environmental
pollution, and property losses. To initiate emergency rescue operations as early as possible
and thereby reduce the impact of the accident, the command center must promptly and
efficiently allocate sufficient MSAR resources to the accident area based on the specific
circumstances of the accident. Typically, the available rescue equipment includes rescue
ships and rescue aircraft. Effective collaboration between these two types of equipment can
increase the probability of successful maritime rescue missions. Conversely, inadequate
rescue resources at the rescue base can lead to missing the critical window for rescue. There
are two core issues related to maritime emergency response support: (1) predicting the
numbers and types of accidents in the sea for the next year and determining the locations
of potential accident black spots, and (2) efficiently allocating various MSAR resources to
multiple rescue bases, considering multiple constraints such as resource limitations, rescue
base capacity, and accident demand. The optimized allocation should aim to minimize
response time and costs. To deal with such problems, we establish an MSAR resource
allocation model in this section.

Figure 3 illustrates the concept of MSAR resource allocation. The emergency resources
(e.g., water, life jackets, etc.), rescue ships (e.g., tugboats, fireboats, etc.), and rescue aircraft
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used in the MSAR process are collectively referred to as MSAR resources. The widely
accepted definition of accident black spots was proposed by the authors of [37], who stated
that “a location is considered an accident black spot if its expected accident occurrence
rate is higher than the accident rate in similar locations”. While this definition is compre-
hensive in its consideration, it places a greater emphasis on guidance rather than practical
application. In this paper, the concept of an accident black spot extends beyond an isolated
accident to encompass a point that reflects the distribution characteristics of accidents in
the surrounding maritime area [38].

Figure 3. Diagram of MSAR resource allocation concept.

We propose four assumptions for the MSAR resource allocation model:

(1) Rescue bases are not allowed to borrow rescue resources from each other.
(2) Rescue aircraft and ships must depart from their respective rescue bases to carry out

rescue missions. To ensure the effectiveness of the model, we consider the worst-case
scenario where there is no available rescue equipment near the accident black spot.

(3) Rescue ships and aircraft do not experience malfunctions during rescue missions.
(4) The rescue mission cannot be interrupted by unexpected factors such as adverse

weather conditions or successful self-rescue.

3.2.2. Notations and Definitions

Based on the problem description, we establish a multi-objective optimization model.
We provide specific descriptions of the sets and indices, normal parameters, and decision
variables. It should be noted that, except for the variables related to the actual allocation of
MSAR resources by the rescue bases (YQik,c, YQia,c, and YQib,c) and the actual provision of
MSAR resources to accident black spots (RQidk,ct, RQida,ct, and RQidb,ct), all other param-
eters can be obtained from historical data and the results of the LSTM network and the
K-medoids algorithm.

Sets and indexes:
a ∈ A: Set of MSAR aircraft types.
b ∈ B: Set of MSAR ship types.
k ∈ K: Set of emergency resources.
e ∈ E: Set of accident types.
d ∈ D: Set of accident black spots.
i ∈ I: Set of rescue bases.

Normal parameters:
Sde: The forecasted number of accidents e in accident black spot d.
Ye: Threshold of the number of accidents e.
Pek: The number of emergency resources k required for accident e.
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Pea: The number of MSAR aircraft a required for accident e.
Peb: The number of MSAR ships b required for accident e.
FQdk,c: The number of emergency resources k required for black spot d.
FQda,c: The number of MSAR aircraft a required for black spot d.
FQdbi,c: The number of MSAR ships b required for black spot d.
MQik: The maximum number of emergency resources k that rescue base i can hold.
MQia: The maximum number of MSAR aircraft a that rescue base i can hold.
MQib: The maximum number of MSAR ships b that rescue base i can hold.
UNA: Total number of MSAR aircraft.
UNB: Total number of MSAR ships.
Va: The speed of MSAR aircraft a.
Vb: The speed of MSAR ship b in still water.
Ωi: Weight of storage emergency resources at base i.
LTid: Distance between rescue base i and the location of black spot d.
Tid: Response time coefficient of rescue base i to black spot d.
Ra: The unit transportation cost of MSAR aircraft a.
Rb: The unit transportation cost of MSAR ship b.
Cik: The maintenance cost of emergency resources k at rescue base i.
Cia: The maintenance cost of MSAR aircraft a at rescue base i.
Cib: The maintenance cost of MSAR ship b at rescue base i.
CSi: Fixed cost of rescue base i.
YC: Transportation cost.
BC: Storage cost.
GC: Fixed cost.
θ1−3: The function of θ1−3 is to unify dimensions.

Decision variables:
ϕid,a: 1, if MSAR aircraft a at rescue base i provides rescue services to accident black spot d,
and 0 otherwise, i ∈ I, d ∈ D.
ϕid,b: 1, if MSAR ship b at rescue base i provides rescue services to accident black spot d,
and 0 otherwise, i ∈ I, d ∈ D.
RQidk,ct: The actual number of emergency resources k provided by rescue base i to accident
black spot d.
RQida,ct: The actual number of MSAR aircraft a provided by rescue base i to accident black
spot d.
RQidb,ct: The actual number of MSAR ships b provided by rescue base i to accident black
spot d.
YQik,c: The actual number of emergency resources k equipped at rescue base i.
YQia,c: The actual number of MSAR aircraft a equipped at rescue base i.
YQib,c: The actual number of MSAR ships b equipped at rescue base i.

3.2.3. Objective Functions and Constraints of the Multi-Objective Model

In this model, the first objective is to minimize the emergency response time, as
expressed in Equation (11). The second objective is to minimize the allocation cost, as
expressed in Equations (12)–(15). The constraints are expressed in Equations (16)–(21).

Objective functions:

min f1 = θ1 ∑
i∈I

∑
d∈D

Tid + θ2 ∑
i∈I

∑
d∈D

∑
k∈K

αidTidYQik,c − θ3lg ∑
i∈I

∑
d∈D

Tid (11)

min f2 = YC + BC + GC (12)

YC = ∑
i∈I

∑
d∈D

( ∑
a∈A

ϕid,aRQida,ctLTid

Va
Ra + ∑

b∈B

ϕid,bRQidb,ctLTid

Vb
Rb) (13)



J. Mar. Sci. Eng. 2024, 12, 184 11 of 26

BC = ∑
i∈I

(∑
k∈K

ΩiCikYQik,c + ∑
a∈A

CiaYQia,c + ∑
b∈B

CibYQib,c) (14)

GC = ∑
i∈I

CSi (15)

Constraints:

Tid = max
{

max
ϕid,aLTid

Va
, max

ϕid,bLTid

Vb

}
, ∀i ∈ I, d ∈ D, a ∈ A, b ∈ B (16)

FQdk,c = ∑
e∈E

∑
k∈K

[
Sde
Ye

]
Pek, FQda,c = ∑

e∈E
∑

a∈A

[
Sde
Ye

]
Pea, FQdb,c = ∑

e∈E
∑
b∈B

[
Sde
Ye

]
Peb, ∀i ∈ I, d ∈ D, k ∈ K, a ∈ A, b ∈ B (17)

0 ≤ RQidk,ct ≤ YQik,c ≤ MQik, ∀i ∈ I, d ∈ D, k ∈ K (18)

Sd ≤ RQida,ct ≤ YQia,c ≤ MAQi, Sd ≤ RQidb,ct ≤ YQib,c ≤ MBQi, ∀i ∈ I, d ∈ D, a ∈ A, b ∈ B (19)

Fdk,c ≤∑
i∈I

RQidk,ct, Fda,c ≤ ∑
a∈A

RQida,ct, Fdb,c ≤ ∑
b∈B

RQidb,ct, ∀i ∈ I, d ∈ D, k ∈ K, a ∈ A, b ∈ B (20)

0 ≤∑
i∈I

∑
d∈D

∑
a∈A

RQida,ct ≤ UNA, 0 ≤∑
i∈I

∑
d∈D

∑
b∈B

RQidb,ct ≤ UNB, ∀i ∈ I, d ∈ D, a ∈ A, b ∈ B (21)

In the above optimization model, Equation (11) represents the efficiency objective,
mainly consisting of three parts. The first part is the response time of the rescue forces.
The second part is the response time of the emergency supplies, aiming to minimize
response time while meeting the emergency response requirements to accidents. The third
part is the safety index of the accident black spot, which is proportional to the shortest
response time for the accident black spot. The safety index indicates that the accident black
spot with a shorter response time is considered safer.

Equations (12)–(15) represent the economic objective, where the allocation cost consists
of three parts. The first part concerns the transportation cost of resources. This cost refers
to the expenses involved in transporting MSAR resources from their bases to accident black
spots. It can ensure that more rescue forces are allocated to rescue bases closer to accident
black spots. The second part is the storage cost of MSAR resources. The third part is the
fixed costs required for maintaining the rescue resources at each base. These costs do not
include the expenses associated with conducting SAR actions at the accident site once the
MSAR resources have arrived.

Equation (16) is used to calculate the response time of rescue base i to accident black
spot d. The response time refers to the time it takes for all the rescue equipment dispatched
from rescue base i to reach accident black spot d. Equation (17) is used to calculate the
type and number of emergency resources, MSAR ships, and MSAR aircraft required for
accident black spot d. Equation (18) indicates that the number of emergency resources
provided by rescue base i to accident black spot d cannot exceed the amount stored within
the rescue base itself, and the stored quantity of emergency supplies within rescue base i
cannot surpass its capacity. Equation (19) indicates that when providing MSAR ships and
aircraft to accident black spot d, rescue base i needs to consider the different accident types
at black spot d. This constraint ensures that suitable rescue equipment is available for each
type of accident. Moreover, the number of MSAR ships and aircraft dispatched to black
spot d from rescue base i cannot exceed the total amount of rescue equipment stored at
rescue base i. In addition, the amount of rescue equipment stored at rescue base i cannot
surpass the available berth capacity. Equation (20) indicates that the total number of MSAR
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resources provided by all rescue bases to each accident black spot cannot be less than the
predicted amount of MSAR resources required for that accident black spot. Equation (21)
states that the total amount of rescue equipment dispatched by all rescue bases cannot
exceed the actual amount of rescue equipment available within the entire maritime area.

3.3. Algorithm Design and Decision Support
3.3.1. DNSGA-II

This paper deals with constrained multi-objective optimization problems. When
dealing with multi-objective problems involving complex constraints, the traditional ant
colony and particle swarm algorithms often encounter challenges, such as becoming
trapped in local optima and exhibiting poor convergence for Pareto solutions. To achieve
more reasonable global optimal solutions, we adopt the non-dominated sorting genetic
algorithm II (NSGA-II) with Deb’s rules to solve the multi-objective allocation problem
of MSAR resources. The NSGA-II is a multi-objective optimization algorithm based on
genetic algorithms [39]. It utilizes a global optimal approximation approach to obtain a
Pareto-optimal solution set for multiple objectives, providing decision makers with various
preference options. The NSGA-II is widely favored for solving bi-objective and tri-objective
optimization problems due to its rapid execution and strong convergence properties.

It should be noted that the traditional one-dimensional real-number encoding used
in the NSGA-II is inconsistent with the two-dimensional compositional nature of the
multi-objective allocation problem for MSAR resources discussed in this paper. In addi-
tion, the strict supply–demand constraints defined in Equations (18)–(21) make it easy
for individuals in the NSGA-II’s evaluation process to violate these constraints and be-
come infeasible. Therefore, building upon the original algorithm, we have developed a
two-dimensional integer vector encoding scheme and integrated Deb’s rules. This en-
hancement aims to improve the NSGA-II’s performance in solving the allocation problem.
The fundamental steps of the proposed DNSGA-II are outlined below:

Step 1: Randomly generate an initial population, where each individual is represented
by a two-dimensional integer vector with constraints (18) and (19).

Step 2: Compute the objective function value of each individual in the initial popula-
tion according to Equations (11)–(15).

Step 3: Utilize a fast, non-dominated ordering mechanism based on the objective func-
tion values of each individual to sort the initial population, followed by the computation of
crowding distances for each individual.

Step 4: Utilize the roulette wheel selection mechanism; individuals are chosen from
the initial population. Subsequently, the selected individuals undergo crossover and muta-
tion using partial matching crossover techniques and random exchange techniques [40],
resulting in the generation of the evolved population.

Step 5: Calculate the objective function values for each individual in the evolved population.
Step 6: Combine the initial and evolved populations into a single composite popula-

tion, and then conduct environmental selection. Utilize the fast, non-dominated sorting
mechanism to rank the composite population based on the objective function values and
compute the crowding distances for each individual. Subsequently, select a number of the
best individuals from the composite population based on their non-dominated ranks and
crowding distances to form a new initial population.

Step 7: If the algorithm reaches the termination condition (e.g., maximum iteration
count), stop the evolution and output the current initial population. Otherwise, proceed to
Step 4 to continue the evolution of the initial population.

Regarding the evolutionary mechanism of the NSGA-II, specific details can be found
in the literature [39] and are not reiterated here. To further elucidate the scope of this
paper’s work, a detailed explanation is provided below for the two-dimensional integer
vector encoding scheme and Deb’s constraint dominance criteria.

Individual coding scheme: The multi-objective allocation problem of MSAR resources
discussed in this paper primarily focuses on the allocation of R types of MSAR resources
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among I rescue bases to meet the emergency needs of D accident black spots. This prob-
lem exhibits the typical characteristics of a two-dimensional combinatorial optimization
problem. After the combination of the practical aspects of MSAR resource allocation and
the encoding characteristics of the NSGA-II, we design a two-dimensional integer vector
encoding scheme, represented by Equation (22), to define the candidate solutions.

In individual A, each row represents rescue base Ii, and each column represents
accident black spot Hd. The integer vector Wid in row i and column d represents the
allocation of MSAR resources from rescue base Ii to black spot Hd. If Wid > 0, rescue
base Ii is involved in the rescue of black spot Hd and contributes Wid units of MSAR
resources. Conversely, if Wid = 0, rescue base Ii does not participate in the rescue operation
at black spot Hd and does not provide any MSAR resources for Hd. When initializing each
individual in the population, we apply Equation (23) for ∀i ∈ I, d ∈ D, r ∈ K ∪ A ∪ B.

A =


W11 W12 · · · W1d

W21 W22 · · · W2d

...
...

. . .
...

Wi1 Wi2 · · · Wid

 (22)


wid

r , ∀r ∈ K ← rand(0, min
{

YQik,c, FQdk,c
}
)

wid
r , ∀r ∈ A← rand(0, min

{
YQia,c, FQda,c

}
)

wid
r , ∀r ∈ B← rand(0, min

{
YQib,c, FQdb,c

}
)

(23)

It can be observed that each individual generated initially satisfies constraints (18)
and (19) but may not necessarily satisfy constraints (20) and (21). Even if some individuals
initially satisfy all constraints, they may potentially violate these constraints after under-
going crossover and mutation operations, rendering them infeasible. When a significant
number of infeasible individuals appear in the population, the convergence and search
efficiency of the algorithm are significantly reduced. Therefore, we employ constraint
violation degrees in non-dominated sorting to increase the probability of eliminating infea-
sible solutions, encouraging each individual to approach the feasible region rapidly and
enhancing the capability of the algorithm to explore feasible solutions.

Deb’s constraint dominance criteria: The optimal individuals are chosen based
on two types of information: Pareto dominance and constraint violation degree. For
feasible solutions, we apply the fast, non-dominated sorting mechanism. For infeasible
solutions that violate the constraints, we utilize the constraint violation value (CV) to
measure the extent of constraint violation quantitatively [41]. Solutions with a higher CV
are more likely to be eliminated, whereas solutions with a lower CV are more likely to be
retained in the next-generation population. The CV of infeasible solutions is calculated
using Equations (24) and (25), where G represents the number of inequality constraints, K
represents the number of equality constraints, g(x) represents the inequality constraints,
and CV(x) represents the equality constraints.

CVx = ∑
g∈G

gg(x) + ∑
k∈K
|hk(x)| (24)

gx =

{
0 gx ⩾ 0
−gx gx < 0

(25)

3.3.2. Multi-Attribute Decision Optimization-Based Method

In multi-objective optimization problems, decision makers often face a dilemma
in selecting the optimal solution because each non-dominated solution corresponds to
different optimal values for each objective function. To assist in this decision-making
process, we utilize the Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS) to rank the optimization solutions. This approach allows decision makers to select
the compromise solution from the Pareto solution set. The main steps are as follows:
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Step 1: Calculate objective weights Wo. Construct a decision matrix G = (gij)m×n,
i ∈ [1, m], j ∈ [1, n], composed of Pareto-optimal solutions. Normalize the decision matrix
G = (gij)m×n to G

′
= (g

′
ij)m×n using Equation (26). Compute the entropy value hj of the

j-th optimization objective using Equation (27), and compute the objective weights using
Equation (28), where m is the number of Pareto solutions.

g
′
ij =

max(gij)− gij

max(gij)−max(gij)
(26)

hj = −
1

ln(m)

m

∑
i=1

yij ln(yij), yij =
g
′
ij

∑m
i=1 g′ij

(27)

Wo
j = −

1− hj

m−∑m
i=1 hj

(28)

Step 2: Calculate the subjective and objective weight ratio coefficients us and uo using
Equation (29), where k = 0.5 is the equilibrium coefficient.

us = exp(−
[

1 +
k ∑m

i=1 ∑n
j=1 ws

j (1−g
′
ij)

(1−k)

]
)

uo = exp(−
[

1 +
k ∑m

i=1 ∑n
j=1 ws

o(1−g
′
ij)

(1−k)

]
)

(29)

Step 3: Calculate the combined weight W = [w1, w2, · · · , wj, · · · , wr], where the
components of W satisfy Equation (30).

Wj =
us

us + uo Ws
j +

uo

us + uo Wo
j (30)

Step 4: Calculate the normalized weighted matrix Zij = (zij)m×n = (wj · g
′
ij)m×n based

on Equations (26) and (30), and obtain the positive ideal solution vector S+ and the negative
ideal solution vector S− using Equation (31).{

S+ = [z+1 , z+2 , · · · , z+n ] = min(zij)
S− = [z−1 , z−2 , · · · , z−n ] = max(zij)

(31)

Step 5: Calculate the Euclidean distance d+i and d−i between the feasible solution and
S+ and S−i . d+i =

√
∑n

j (z
+
j − zij)2

d−i =
√

∑n
j (z
−
j − zij)2

(32)

Step 6: Calculate the relative proximity Di between each optimization solution and
the ideal solution.

Di =
d−i

d+i + d−i
(33)

Step 7: Optimization scheme selection. We rank the feasible solutions in descending
order according to their Di. The solution with a larger Di is closer to the optimal solution.
The solution with the maximum Di represents our selected compromise solution.

4. An Application of the Proposed Methodology

The South China Sea is one of the world’s busiest maritime transportation routes. Its
unique natural environment and geographical location contribute to a higher possibility
of accidents compared to other maritime regions. Therefore, in this section, we utilize
historical maritime accident data and MSAR resource information from the South China Sea
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to conduct simulation experiments. We aim to validate the model and method presented in
this paper through the following experiments.

4.1. Prediction of MSAR Resources
4.1.1. Maritime Accident Prediction

Data Preparation: We collected and organized the frequency of accidents that occurred
in the South China Sea every month from 2010 to 2021, as presented in Figure 4. It can be
observed that the number of accidents was higher in February, March–April, July–August,
and October. These fluctuations were primarily influenced by weather and environmental
factors in the South China Sea. For instance, the frequent influence of cold air in February,
thick sea fog during March–April, frequent typhoons in July–August, and the dry northeast
monsoon in October contributed significantly. In addition, other factors like shallow waters,
reefs, and coral reefs also contributed to the increased occurrence of accidents.

Figure 4. The number of accidents that occurred in the South China Sea every month from 2010
to 2021.

Evaluation Criteria for Prediction Performance: The mean absolute percentage error
(MAPE) and root-mean-squared error (RMSE) are commonly employed metrics used to
evaluate the quality of model predictions [34]. The MAPE measures the relative deviation
between predicted and actual values but cannot directly obtain the magnitude of differences
between them. In contrast, the RMSE can quantify the absolute error between predicted
and actual values, complementing the limitations of the MAPE. The combination of the
two evaluation criteria can offer a more comprehensive assessment of a model’s predictive
performance. The MAPE and RMSE are expressed in Equations (34) and (35), where N is
the sample size, Xi is the i-th actual value, and Yi is the i-th predicted value:

MAPE =
1
N

N

∑
j=1

∣∣∣∣Xi −Yi
Xi

∣∣∣∣ (34)

RMSE =

√
∑N

j=1(Xi −Yi)2

N
(35)

LSTM training: We divided the collected data into a training set and a test set in a
9:1 ratio, which served as the input for the LSTM model to predict the monthly accident
counts in the South China Sea for the year 2022. The learning rate is a crucial parameter
for the LSTM model, as it controls the speed of network learning and convergence and
significantly influences the prediction results. To achieve the best prediction results, we
conducted experiments with different learning rates (ranging from 0.01 to 0.1), keeping
the number of iterations (250), input layer nodes (1), and output layer nodes (1) constant.
Figure 5 shows the prediction results as the learning rate increased from 0.01 to 0.1.
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(a) The LSTM prediction results at learning rate 0.01. (b) The LSTM prediction results at learning rate 0.02.

(c) The LSTM prediction results at learning rate 0.03. (d) The LSTM prediction results at learning rate 0.04.

(e) The LSTM prediction results at learning rate 0.05. (f) The LSTM prediction results at learning rate 0.06.

(g) The LSTM prediction results at learning rate 0.07. (h) The LSTM prediction results at learning rate 0.08.

(i) The LSTM prediction results at learning rate 0.09. (j) The LSTM prediction results at learning rate 0.1.

Figure 5. The LSTM prediction results at different learning rates.

To intuitively compare the errors of the models, we summarize the MAPE and RMSE
values at different learning rates in Table 2. The table reveals that the prediction error
consistently decreased as the learning rate increased from 0.01 to 0.05. However, the error
started to rise when the learning rate increased from 0.05 to 0.07. Subsequently, the error
decreased at a learning rate of 0.08 and increased again as the learning rate reached 0.1.
Consequently, it can be deduced that with learning rates of 0.05 and 0.08, the error reached
a local optimization. In contrast, the predictive model with a learning rate of 0.05 achieved
fewer errors between the two local optimal solutions. Therefore, we selected the predicted
result with a learning rate of 0.05 for further analysis in this paper.
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Table 2. The prediction errors of LSTM at different learning rates.

No. 1 2 3 4 5 6 7 8 9 10

Learning rate 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
MAPE 8.4167 5.4440 3.5315 2.6721 1.5839 4.1607 7.2514 5.3333 8.5214 9.75
RMSE 9.0784 6.0553 4.4064 3.2404 1.9758 4.6904 8.0881 6.0415 9.2195 10.5633

4.1.2. Identification of Maritime Accident Black Spots

We present the historical accident data in the South China Sea from 2010 to 2021 on
a nautical chart. In Figure 6, each black point represents an accident; some accidents that
occurred in sensitive maritime areas are not shown. It can be observed that the South China
Sea features numerous and relatively dispersed islands. Areas near the coastline exhibit a
higher frequency of accidents, whereas regions farther from the coastline experience fewer
accidents due to the lower shipping traffic.

Figure 6. Locations of rescue bases and accident black spots.

We utilized the K-medoids algorithm to cluster the accident data, resulting in the
identification of eight accident black spots. The black spots in various regions are denoted
by black triangles (H1–H8). The rescue bases are the following: Shantou base (I1), Shenzhen
base (I2), Guangzhou base (I3), Yangjiang base (I4), Zhanjiang base (I5), Haikou base (I8),
Beihai base (I7), and Sanya base (I8). Their locations are represented by red stars.

Figure 7a illustrates the distributions of various types of maritime accidents from
2010 to 2021, including medical rescues (C1), capsizes (C2), mechanical failures (C3), fires
(C4), missing persons (C5), ship groundings (C6), collisions (C7), and ship flooding (C8).
The proportions of each type of maritime accident are as follows: C1 (25.83%); C2 (13.19%);
C3 (16.79%); C4 (3.29%); C5 (20.81%); C6 (6.07%); C7 (3.02%); and C8 (5.03%). Figure 7b
shows the proportions of accidents in each accident black spot, whereas Figure 8 displays
the distribution of the different types of accidents in each accident black spot. Based on the
prediction results, clustering outcomes, and statistical data, we determined the number of
each type of accident occurring at each accident black spot for the year 2022, as presented
in Table 3. For example, the numbers of the eight types of accidents at black spot H1 are 6,
1, 4, 1, 1, 2, 0, and 0, respectively.
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(a) The proportion of different accident types during 2010–2021. (b) The proportion of accidents at each black spot during 2010–2021.

Figure 7. The distributions of accident types and accidents at each black spot during 2010–2021.

Figure 8. Locations of rescue bases and accident black spots.

Table 3. The number of each different type of accident occurring at each accident black spot for the
year 2022.

Black Spot
Number of Predicted Accidents

C1 C2 C3 C4 C5 C6 C7 C8

H1 6 1 4 1 1 2 0 0
H2 11 1 2 1 2 1 0 1
H3 9 7 8 1 7 4 2 3
H4 7 2 5 1 12 2 1 1
H5 6 5 9 1 13 2 2 3
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Table 3. Cont.

Black Spot
Number of Predicted Accidents

C1 C2 C3 C4 C5 C6 C7 C8

H6 8 7 4 1 7 2 1 3
H7 7 6 6 1 8 1 1 2
H8 9 1 2 1 1 1 1 0

4.2. MSAR Resource Allocation Optimization
4.2.1. Test Case

We chose the rescue bases and MSAR resource data in the South China Sea as the basis
for our simulation experiments. Table 4 provides the latitude and longitude coordinates
for each rescue base and accident black spot. Detailed information on the available rescue
equipment at each rescue base is listed in Table 5, including the quantities, driving speeds,
and transportation costs.

Table 6 offers insights into the fixed costs, maximum storage capacities, and storage
coefficients for the four types of emergency resources allocated to each rescue base. Specifi-
cally, water (K1) is 10 gallons/unit, food (K2) is 5 packs/unit, life jackets (K4) are 10/unit,
and medical kits (K4) are 1/unit. Table 7 presents the resource requirements for the eight
accident types and the fixed costs of allocating each MSAR resource, as summarized in [42].

We determined the thresholds for each type of accident based on the recommendations
of maritime safety experts. The thresholds for accident categories C1–C8 are as follows: 10,
6, 10, 8, 6, 5, 3, and 8. Typically, accidents involving medical rescue, capsize, and missing
persons require urgent aircraft dispatch for support. The thresholds for rescue aircraft for
C1, C2, and C5 are 35, 30, and 30, respectively.

Table 4. The location of each rescue base and accident black spot.

Rescue Base Lon. (E) Lat. (N) Black Spot Lon. (E) Lat. (N)

Shantou (I1) 116.45 23.18 H1 117.41 22.57
Shenzhen (I2) 113.52 22.31 H2 115.54 22.33

Guangzhou (I3) 113.33 22.52 H3 115.01 21.11
Yangjiang (I4) 112.00 21.52 H4 113.18 21.08
Zhanjiang (I5) 110.24 21.15 H5 111.18 20.24

Haikou (I6) 110.16 20.01 H6 108.49 20.43
Beihai (I7) 109.04 21.28 H7 108.38 17.55
Sanya (I8) 109.3 18.13 H8 111.34 17.01

Table 5. Detailed information on MSAR resources.

No. MSAR Equipment Quantity Speed
(km/h)

Transportation Cost
(EUR/h)

1 Marine professional
rescue ship (B1)

10 34.26 500

2 Medium endurance
multitasked ship (B2)

4 51.39 1000

3 MSAR lifeboat (B3) 19 59.62 1000
4 EC225 helicopter (A1) 2 275 1800
5 S-76C helicopter (A2) 3 287 1600
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Table 6. Emergency storage quantity of different emergency resources.

I1 I2 I3 I4 I5 I6 I7 I8

K1 125 120 135 119 85 76 124 180
K1 178 154 216 221 168 154 263 336
K1 127 164 186 81 157 120 330 312
K1 108 90 49 80 54 46 111 154
Ωi 0.8 0.9 0.85 0.95 1.1 1.25 1.15 1.2
CSi 7890 4740 5749 4700 7800 9890 6785 8452

Table 7. The amount of MSAR resources required for different types of maritime accidents and the
price of MSAR resources.

Accident
Type

Emergency
Resources

MSAR
Equipment

K1 K2 K3 K4 A1 A2 B1 B2 B3

C1 2 5 1 4 1 0 0 0 0
C2 4 6 15 3 0 1 0 0 1
C3 4 10 10 2 0 0 1 0 0
C4 10 16 2 1 0 0 1 0 0
C5 2 4 5 2 0 1 0 0 1
C6 2 10 10 2 0 0 0 1 0
C7 10 10 12 1 0 0 1 0 0
C8 6 10 15 3 0 0 1 0 0

Maintenance
cost

(EUR/unit) (EUR/year)

60 60 5 20 2000 2000 1200 1500 1800

4.2.2. Performance Evaluation

The DNSGA-II described in Section 3.3.1 was programmed using MATLAB 2022b.
To verify the efficiency of the DNSGA-II, we also employed the NSGA-II and the particle
swarm optimization algorithm to solve the problems discussed in this paper. Further-
more, we compared the existing MSAR allocation algorithm (enhanced particle swarm
optimization, EPSO [32]) with our model. For the NSGA-II and DNSGA-II, we set the
population size, maximum iterations, crossover rate, and mutation rate to 50, 500, 0.9,
and 0.1, respectively. In the PSO algorithm [14], we set the number of particles to 50.
The maximum number of iterations was set to 500. The maximum particle velocity was
set to 0.15. Both learning factors were set to 2.0. The maximum and minimum values for
the inertia weight were set to 0.9 and 0.4, respectively. We adopted the parameter settings
for EPSO from [32], with 6000 iterations and 80 particles. The inertia weight, individual
learning rate, and group learning rate were set to 0.9, 0.8, and 0.3, respectively.

These numerical experiments were implemented using a computer with an Intel(R)
Core(TM) i5-13400FCPU @ 2.50 gigahertz and 16 gigabytes of RAM. To obtain the approxi-
mate solutions for the problem, we conducted ten independent runs using the DNSGA-II,
NSGA-II, PSO, and EPSO algorithms. The integrated Pareto frontiers resulting from the ten
runs are presented in Figure 9.

To further assess and compare the performance of the four algorithms (DNSGA-II,
NSGA-II, PSO, and EPSO), we chose the hyper-volume (HV) and quantity metric (QM).
The HV was designed to calculate the volume of the region in the objective space enclosed
by the non-dominated solution set and a reference point. It reflects the overall performance
of an algorithm [43]. Equation (36) is the calculation formula for the HV, where σ represents
the Lebesgue measure, quantifying the volume of the region in the objective space; |s| is the
number of non-dominated solutions in the set; and vc represents the hyper-volume formed
by the reference point and the c-th solution in the Pareto solution set. The QM measures the
number of non-dominated feasible solutions obtained by an algorithm [44]. It represents
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the count of non-dominated solutions that satisfy all constraints, providing an intuitive
measure of an algorithm’s exploration capability.

HV = σ ·U|s|x=1(vc) (36)

We ran each of the four algorithms ten times and then combined the solutions from
the ten runs. Subsequently, we eliminated duplicate and dominated solutions to obtain
a Pareto solution set for each algorithm in a single experiment. The performance of the
three algorithms was compared using the HV metric (where H̄V is the average HV value,
and H̃V is the standard deviation of HV), the QM metric, and the required CPU time (in
seconds) for each algorithm’s Pareto solution set. The results for each algorithm in the HV
metric were obtained by selecting the minimum values of the two objective functions as
reference points.

Figure 9. Pareto frontier distributions of DNSGA-II, PSO, NSGA-II, and EPSO.

Table 8 presents the comparative results of the three algorithms, and the last row
displays the average results (Avg) of the four evaluation metrics after 10 experiments.
Specifically, the HV is a commonly used metric to measure the overall quality of a Pareto
solution set obtained using multi-objective optimization algorithms. A larger H̄V indicates
better quality in the obtained solutions using the algorithm. A smaller H̃V implies that the
distribution of the solution set in the objective space exhibits relatively low fluctuations,
indicating better stability of the algorithm. Regarding the QM, a larger QM value indicates
a higher number of feasible solutions obtained, providing more choices for decision makers
and signifying superior algorithm performance. In addition, there is no doubt that a smaller
CPU value indicates that the algorithm solves the model more quickly.

Table 8 shows that for the multi-objective optimization model established in this
paper, the DNSGA-II achieved the highest (H̄V = 744.66) and the smallest (H̃V = 23.26)
values in the HV metric test results. In addition, in the QM metric results, the DNSGA-
II achieved the highest QM value (43.67). Compared to the NSGA-II, PSO, and EPSO,
the DNSGA-II generated higher-quality, non-dominated solutions with only 10.9∼19.3%
extra computation. The added time is not substantial and is acceptable relative to the degree
of performance enhancement. The above experimental results indicate that under the drive
of constraint dominance, the DNSGA-II can significantly reduce individual constraint
violations, pushing individuals to evolve rapidly into the feasible region. In addition, the
quality of the solutions obtained using the DNSGA-II is far superior to that of the other
three algorithms, offering decision makers better and more diversified MSAR resource
allocation solutions.
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Table 8. Performance comparison of DNSGA-II, PSO, NSGA-II, and EPSO.

No.
DNSGA-II PSO NSGA-II EPSO

H̄V H̃V QM CPU(s) H̄V H̃V QM CPU(s) H̄V H̃V QM CPU(s) H̄V H̃V QM CPU(s)

1 742.31 22.58 37 384.32 698.23 27.54 28 313.5 716.24 24.83 28 346.60 725.64 23.67 31 326.41
2 743.45 23.21 36 384.94 697.54 26.78 27 312.93 718.43 25.21 29 344.02 715.8 23.58 28 324.57
3 738.42 23.67 33 372.23 697.54 27.41 27 312.93 717.92 24.92 29 348.02 716.58 22.57 31 326.86
4 745.32 22.53 42 383.02 695.32 25.81 27 312.34 721.23 24.31 28 342.93 718.26 24.57 34 326.58
5 743.28 23.51 40 394.28 694.83 28.13 24 314.63 715.92 25.63 25 346.11 725.14 23.54 32 332.15
6 747.26 24.24 41 396.92 695.83 27.62 23 314.02 718.72 24.92 27 345.23 719.68 23.54 32 325.24
7 753.45 24.65 36 384.49 697.38 27.71 23 313.52 715.32 23.51 28 345.42 721.24 24.15 34 329.45
8 745.54 23.16 37 384.76 696.45 27.65 26 313.65 717.10 24.89 28 346.26 724.64 24.61 29 330.15
9 752.62 23.49 35 382.65 697.29 27.16 29 314.31 715.92 24.71 30 348.35 721.54 22.44 31 326.54
10 734.92 21.53 39 386.56 695.24 28.52 27 312.89 719.23 23.96 25 347.32 715.64 23.61 29 324.59

Avg 744.66 23.26 37.67 388.42 695.17 27.43 26.33 313.45 717.60 24.69 27.78 346.16 720.42 23.63 31.1 327.25

The convergence of algorithms is a crucial criterion for evaluating their performance,
aiming to illustrate their capability to approach the optimal or desired solution [45]. We
used the generation distance (GD) metric to assess the convergence performance of the
algorithms. The GD value is the average Euclidean distance between each solution gen-
erated by the algorithm in each iteration and the known optimal solution. A smaller GD
value implies that the solutions in the set are closer to the optimal solution. Figure 10
illustrates the iterative processes of the four algorithms. It can be observed that in the initial
40 iterations, all three algorithms converged rapidly. The DNSGA-II exhibited a lower
GD than the other three algorithms. After a limited number of iterations, all algorithms
tended to reach a stable state. The GD value for PSO stabilized at around 126 after the
182nd iteration, the GD value for the NSGA-II stabilized at around 109 after the 228th
iteration, the GD value for EPSO stabilized at around 94 after the 344th iteration, and the
GD value for the DNSGA-II stabilized at around 72 after the 355th iteration. The above
results demonstrate that the DNSGA-II exhibits good convergence performance.

Figure 10. The convergence processes of the algorithms.

4.2.3. Computation Results

In Figure 9, it can be observed that, like most multi-objective optimizations, the Pareto
solution set obtained using the DNSGA-II consists of multiple non-dominated solutions.
Each solution in the Pareto solution set corresponds to an optimization plan and does
not directly provide specific decisions for MSAR resource allocation. When the values of
both objectives fall within an acceptable range, the optimal solution is selected based on
the decision maker’s preference. Due to social responsibility, decision makers typically
prioritize response efficiency over cost when making MSAR decisions.

Based on the Pareto-optimal solutions obtained using the DNSGA-II, we constructed a
decision matrix of size 36 × 2. The objective weights Wo = (0.6333, 0.3667) were calculated
using Equations (26)–(29), and subjective weights Ws = (0.7, 0.3) were assigned based
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on the experience of maritime security experts. According to Equation (32), the relative
proximity of each individual in the Pareto-optimal solution set was computed.

The solution with the highest relative proximity value (D3 = 0.9087) was chosen as the
optimal solution. The optimal allocating scheme is shown in Table 9. The response time
value is 19.97 h, and the allocation cost is EUR 1.83 × 106. It was found that the Guangzhou
base (I2) was relatively close to black spots H1, H2, and H3, which is a key reason for the
higher allocation of emergency resources and rescue forces. Similarly, the Sanya base (I8)
was closer to black spots H7 and H8, and given that black spot eight frequently experiences
medical rescue (C1) accidents, it also receives a larger allocation of rescue equipment.

Table 9. Emergency resource scheduling scheme.

K1 K2 K3 K4 A1 A2 B1 B2 B3

I1 98 173 125 79 1 0 1 0 1
I2 82 152 133 89 0 1 2 1 3
I3 96 143 129 45 0 0 1 1 2
I4 101 181 69 79 0 1 2 0 2
I5 85 152 145 52 0 0 1 0 0
I6 62 148 137 36 0 0 1 0 1
I7 116 236 248 87 1 0 1 0 1
I8 167 302 306 135 0 1 1 1 3

To further validate the optimization capabilities of the model and algorithm proposed
in this paper, we analyzed and compared the obtained optimal allocation scheme with
the existing MSAR resource emergency response system in the South China Sea. Table 10
lists the actual allocation of MSAR resources to each rescue base in the South China Sea
in 2022. Table 11 compares the costs, response times, and number of MSAR resources
used before and after optimization. It can be seen that the allocation cost decreased by
6.15% after optimization. In addition, due to the different allocations of rescue aircraft to
rescue bases, the response time decreased by 11.32%. Furthermore, except for the quantity
of rescue aircraft, the allocation of rescue ships decreased by 21.21%, and the amounts
of the four types of emergency resources decreased by 10.82%, 6.71%, 10.6%, and 4.90%,
respectively. The results of the case study validate the effectiveness of the multi-objective
optimization method proposed in this paper. Moreover, compared to other methods,
the solution obtained in this paper better balances efficiency and cost objectives, providing
more effective decision support for MSAR resource allocation.

Table 10. The actual number of MSAR resources allocated to each rescue base in the South China Sea.

K1 K2 K3 K4 A1 A2 B1 B2 B3

I1 118 163 125 99 1 0 2 1 3
I2 102 142 163 89 0 0 0 1 0
I3 125 200 179 47 0 1 3 1 3
I4 115 221 80 75 0 1 2 0 2
I5 80 145 155 55 0 0 1 0 1
I6 70 152 117 36 0 0 2 0 1
I7 115 259 302 91 1 0 2 0 3
I8 180 312 308 141 0 1 1 1 3

Table 11. Comparison of MSAR resource allocations before and after optimization.

Before
Optimization

After
Optimization

Difference
Percentage

Response time 22.52 19.97 −11.32%
Allocation cost 1.95× 106 1.83× 106 −6.15%

Number of MSAR ships 33 26 −21.21%
Number of MSAR aircraft 5 5 0

Number of K1 905 807 −10.82%
Number of K2 1594 1487 −6.71%
Number of K3 1429 1292 −10.6%
Number of K4 633 602 −4.90%
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5. Conclusions

MSAR resource allocation is a fundamental prerequisite for prompt emergency re-
sponse and rescue operations after maritime accidents. To meet the emergency requirements
of maritime accidents, we analyzed and summarized relevant research work and proposed
a comprehensive MSAR resource allocation method with the aim of improving timeliness
and reducing costs. We employed LSTM to predict the number of maritime accidents and
used the K-medoids algorithm to identify accident black spots that reflect the accident
distribution characteristics of the sea area to determine the specific resource requirements
for rescue. We also established a mathematical model that focuses on the configuration of
the locations and quantities of four primary emergency resources, rescue ships, and aircraft
for optimization, with the objective of minimizing response times and costs. Subsequently,
we solved this model by employing the DNSGA-II. Finally, we proposed a multi-attribute
decision optimization-based method for selecting the optimal MSAR equipment allocation.
We applied the method to the South China Sea and analyzed MSAR missions in the South
China Sea as a case study. The optimization results validate the feasibility and rationality
of our method.

Compared to previous research, we incorporated additional content into our analysis:
(1) We utilized the gathered raw data in a more sophisticated predictive model to forecast
the number and types of future accidents. (2) We expanded the optimization objectives
to include the allocation quantities of the four primary emergency resources and rescue
equipment, considering multiple working capabilities and additional constraints to estab-
lish a comprehensive optimization model. (3) We addressed the problem of selecting an
ideal solution that balances response efficiency and cost among the obtained non-dominant
solutions. (4) We applied our model and algorithm to MSAR resource allocation in the
South China Sea, addressing the issue of low overall emergency efficiency in the region. We
compared the DNSGA-II with commonly used methods, such as NSGA-II, PSO, and EPSO,
through multiple experiments. The results showed that, although the DNSGA-II has higher
computational requirements, it demonstrates better stability and convergence. Furthermore,
it can obtain solutions with shorter response times and lower allocation costs. Compared
with the existing MSAR resource emergency response system, the optimized response time
and allocation cost decreased by 11.32% and 6.15%, respectively. The results validate the
feasibility and rationality of our model and algorithm.

Although our method considers various real-world constraints and can be applied to
maritime search and rescue resource allocation tasks, it also has some limitations. In practi-
cal applications, the allocation of MSAR resources is also affected by some other complex
constraints, such as the impact of accident grade on demand for search and rescue re-
sources and the influence of the marine environment on navigation speed. These complex
constraints make the modeling and solving process challenging. In addition, we did not
consider the role of islands in supporting SAR operations when selecting locations for the
allocation of MSAR resources. In establishing the allocation model, we did not consider the
costs incurred by the equipment involved in rescue operations. Furthermore, in maritime
accident prediction, our method is solely based on historical accident data points, without
considering the influence of environmental factors and maritime traffic flow. To enhance
the applicability and rationality of our model, we plan to conduct further research on
optimization problems that involve these constraints, thereby making the MSAR resource
allocation plan more complex.
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8. Vidan, P.; Hasanspahić, N.; Grbić, T. Comparative analysis of renowned softwares for search and rescue operations. Naše More
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