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Abstract: Capsizing accidents are regarded as marine accidents with a high rate of casualties per
accident. Approximately 89% of all such accidents involve small ships (vessels with gross tonnage of
less than 10 tons). Stability calculations are critical for assessing the risk of capsizing incidents and
evaluating a ship’s seaworthiness. Despite the high frequency of capsizing accidents involving them,
small ships are generally exempt from adhering to stability regulations, thus remaining systemically
exposed to the risk of capsizing. Moreover, the absence of essential design documents complicates
direct ship stability calculations. This study utilizes hull form feature data—obtained from the
general arrangement of small ships—as input for a deep learning model. The model is structured
as a multilayer neural network and aims to infer hydrostatic curves, which are required data for
stability calculations.

Keywords: hull form; deep learning model; hydrostatic curve modelling; small ships

1. Introduction
1.1. Background of Research

Capsizing accidents occur when external forces cause a stable ship to lose its stability,
leading to overturning. Since 2018, an average of 92 such incidents have occurred annually.
As shown in Figure 1, the rate of human casualties (number of deaths and missing persons
per incident) per capsizing incident is 0.238 (casualties/incident), making it the second-
highest type of marine accident in terms of human casualties, following safety incidents
(0.355 casualties/incident). Over the past five years since 2018, there have been 109 deaths
and missing persons. During the same period, 480 ships were involved in capsizing
incidents, of which small ships accounted for 89% (428 ships). These statistics confirm that
capsizing is a high-risk maritime accident, particularly dangerous to human life on small
ships, as found in the survey.

Despite their relatively high frequency of capsizing accidents, small ships are exempt
from regulations closely related to their seaworthiness evaluation, specifically in terms
of stability standards. Small ships that are not subject to stability regulations lack even
minimal assessments of seaworthiness. Essential design documents required for stability
calculations—such as general arrangement, lines, midship section, and construction profile
and deck plan—are often missing. This makes direct calculations of stability practically
difficult. Therefore, there is a pressing need to assess whether appropriate seaworthiness
can be ensured through stability calculations, as small ships are systematically exposed to
the risk of capsizing. As the majority of domestic coastal ships are chine-type fiberglass
reinforced plastic (FRP) vessels, we use major hull form feature data available from limited
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design documents, such as the general arrangement, as input. As shown in Figure 2, we
apply a multilayer neural network-based deep learning model to infer hydrostatic curves.
This is to evaluate the possibility of direct stability calculations for small ships.
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1.2. Status of Related Research

Research on the hull form features of small ships primarily focuses on improving
resistance and stability [1–3]. In particular, most studies on stability performance have
focused on small fishing vessels, considering that the majority of small ships are fishing
boats. These studies often involve the development of simplified formulas for estimating
GM (metacentric height) due to the stability test exemption for fishing vessels under 24 m
in length, or they perform estimates based on stability standards for ships with a length
of 24 m or more [4,5]. Some countries have partially adopted these stability standards
for small ships; however, such adoption has often been found to be impractical due to
differences in basic hull shapes and the distribution of key dimensions [6]. Studies on the
chine shape of small ships primarily aim to improve resistance performance in high-speed
hulls [7]. Although some research has been conducted on stability estimation for small ships
and the application of stability standards for larger vessels (24 m in length or larger) [8],
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systematic studies on the change in stability performance due to chine distribution have
been relatively neglected.

Research on artificial intelligence (AI) in shipbuilding and the maritime industry has
mostly focused on improving production efficiency through image processing, hull devel-
opment, and the estimation of preliminary design data. Some studies on large ships include
the estimation of optimal stern shapes using a convolutional neural network (CNN) [9], the
development of learning systems for the classification and bending information of shell
plates [10], and preliminary light weight estimates using deep neural networks (DNN) [11].
Previous studies using AI techniques related to small ships included the use of DNN for
estimating key dimensions of small ships [12] and the development of real-time distress
recognition systems using real-time video from small ships [13]. However, no studies have
investigated the hull form features and stability related to small ships.

2. Ship Stability and Hydrostatic Curve
2.1. Ship Stability Calculation

The stability of a ship refers to the force that enables the ship to return to its original
equilibrium state when inclined by an external force. Stability depends on factors such as
the ship’s center of gravity, displacement, and area moment of inertia with respect to the
water plane shape, serving as a minimum criterion for assessing the ship’s seaworthiness.

Initial stability corresponds to the restoring moment at a small transverse inclination
angle (φ), as depicted in Figure 3.

Stability (restoring moment) = W × GZ= W × GM × sinφ

where GM = KM − KG = KB − BM − KG = KB + It
∇ − KG.
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Here, W is the displacement, ∇ is the displaced volume, M is the position of transverse
metacenter, B is the center of buoyancy, G is the center of gravity, and It is the transverse
moment of inertia.

Stability is calculated using the ship’s center of gravity (G) obtained through incline
tests and the hydrostatic curve. For chine-type vessels, the ship’s water plane shape and
the transverse moment of inertia (It) are determined by the arrangement of the chines. This
affects the position of the metacenter in initial stability calculations. Because these values
can significantly change depending on the chine shape, it can be assumed that the stability
characteristics of small ships are determined by the shape and arrangement of the chines.
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2.2. Hydrostatic Curve

The hydrostatic curve calculates changes in displacement with respect to changes in the
draft of the ship. It represents the distribution of corresponding hydrostatic characteristics
of the ship, either graphically or in tabular form. These characteristics include various
coefficients such as draft-specific displacement, center of buoyancy (LCB, KB), water plane
area (Aw), and wetted surface area, as well as the block coefficient (CB). These data are
essential for calculating ship stability. Lines indicating the accurate hull shape schematics
below the waterline are crucial for creating the hydrostatic curve. Many small ships
are often exempt from having these design documents (Lines), making direct stability
calculations challenging.

3. Deep Learning Data Configuration

The training data consist of 430 ships for which hydrostatic data could be calculated,
limited to ships propelled by conventional propulsion systems such as internal combustion
engines and propellers. The hydrostatic data calculations include only the main hull and
the box keel, excluding additional structures such as the side appendage and stern wedge.

3.1. Dimensionless Learning Data

The input data for deep learning, referred to as feature data, consist of major hull form
features. These include principal dimension ratios, upper deck data, and details on the
chine and box keel, all of which can be obtained from a general arrangement drawing.

To enhance the effectiveness of deep learning training and facilitate intuitive compar-
isons and parameter utilization, we have converted the training data to be dimensionless.
The offset coordinates in length, width, and depth dimensions are normalized to dimen-
sionless values between 0 and 1, based on the aft end, centerline, and baseline of the ship,
respectively. Individual elements of hydrostatic data, such as area, volume, and moment of
inertia, were made dimensionless by converting them into ratios corresponding to specific
ship features (refer to Table 1).

Table 1. Range of Dimensionless Data.

Feature Data (Unit) Dimensionless Scaled by Remarks

Offset
Data
(m)

Length (x) LT (Upper Deck Length) At aft end, value is 0

Breadth (y) Bm (Molded Breadth) At centerline, value is 0

Depth (z) Dm (Molded Depth) At baseline, value is 0

Volume (m3) LT × Bm × Dm (Cubic Number) -

KB (m) Dm (Molded Depth) At baseline, value is 0

It (m4) LT × Bm
3/12 (Rectangle I) -

As shown in Figure 4, the training data include a variety of hull form characteristics
that can be plotted on the same [0, 1] plane. This allows for easy comparison between differ-
ent datasets and an intuitive understanding of the correlations among them by overlaying
other dimensionless data (hydrostatic curve).
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3.2. Deep Learning Range

To investigate the operational conditions of small ships, we examined draft and dis-
placement across various loading conditions, including light ship and full load conditions
(refer to Table 2).

Table 2. Draft and Displaced Volume Statistics.

Items
Statistics

Draft Volume

Min. Max. Min. Max.

Mean 0.4896 0.6538 0.2899 0.4294

Standard Deviation 0.0804 0.0898 0.0577 0.0872

Min. Value 0.2405 0.3778 0.1517 0.2418

25th Percentile 0.4369 0.5898 0.2515 0.3692

50th Percentile 0.4915 0.6521 0.2870 0.4207

75th Percentile 0.5442 0.7116 0.3273 0.4796

Max. Value 0.7950 0.9250 0.4588 0.7835

The actual operational draft range for small ships can be assumed to span from light
ship to full load conditions. As shown in Figure 5, by applying a method that identifies
statistical outliers through the quartiles of the distribution of minimum and maximum
drafts, we calculated the draft range to be 0.28–0.89 Dm. Within this range, we confirmed
that the average minimum and maximum loaded displacement volumes operate within the
range of 0.29–0.43 cubic number. To reflect the actual operating conditions of small ships
and enhance the accuracy of deep learning training, we set the scope of the study to the
0.28–0.89 Dm range.

3.3. Deep Learning Feature Data

The input data used for training consist of 12 key hull form features and offsets, which
can be verified from three major dimensions and general arrangements, as well as key hull
form items such as sheer (refer to Table 3).
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Table 3. Composition of Input Data.

Items
Particulars and Offsets Description No.

Principal Dimension Ratio L/B, B/D, L/D 3

Principal Particulars Aft and Fore Sheer Height 2

Upper Deck Offsets Aft End, Midship, Max. Breadth End Offsets 3

Chine Offsets Aft End, Midship, Max. Breadth End, Fore End Offsets 4

Box Keel Offsets Max. Height and Offsets, Aft and Fore End Offsets 3

The sheer at the bow and stern was measured to be 35% and 28% of the ship’s depth
(Dm), respectively. We observed that the sheer at the stern is set higher than at the bow to
ensure adequate propeller clearance.

As shown in Figure 6, the distribution of chine height averages 39%, 21%, and 66% of
the ship’s depth at the stern, center, and bow, respectively. The average maximum width of
the chine is approximately 98% of the ship’s breadth (Bm), and it was found to extend from
the stern up to 72% of the ship’s length. Small ships tend to have a relatively low chine
height and maximize displacement by having a chine width close to the ship’s breadth.

Most small ships are equipped with a box keel, and we observed that the shape of the
hydrostatic data near the baseline changes depending on the placement of the box keel. The
average length of the box keel installation is approximately 68% of the ship’s total length
(Lt), and its average volume is 3.57% of the cubic number. It was found to be installed
within a range of 25% to 92% of the ship’s length from the stern.

As shown in Figure 7, the distribution of key dimension ratios for small ships varies
widely. In particular, the L/D ratio related to depth ranges from 8.36 to 26.88, while the
B/D ratio, which is closely related to initial stability, has an average of 3.89 and a range of
2.30 to 8.05.
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3.4. Deep Learning Target Data

The shape and distribution of hydrostatic data exhibit specific patterns depending on
the shape and placement of the chine. By converting the form parameters that define the
geometric characteristics of hydrostatic data into a mathematical model, the correlation
between chine shape and form parameters can be inferred. Therefore, in this study, we
converted hydrostatic data composed of continuous numerical data into a mathematical
model using form parameters and set it as the target output for deep learning.

3.4.1. Mathematical Modeling Using Form Parameters

The form parameter method involves converting various types of shape data into a
mathematical model by appropriately combining geometric dimensions, known as form pa-
rameters, representing the characteristics of the shape. Form parameters defining geometric
characteristics consist of points (location), derivatives (slope, curvature), and integrals (area,
centroid) [14].

Hydrostatic data for the 430 vessels used in the training data were calculated us-
ing a stability calculation program (K-SHIP) and were output as continuous numerical
distribution-type data corresponding to draft changes.

We mathematically modeled the changes in hydrostatic data related to the underwater
hull volume, location of the center of buoyancy (KB), and transverse moment of inertia
according to the draft required for initial stability calculations.

In this study, we calculated form parameters by setting the hydrostatic data as a
combination of second- and third-degree polynomial functions or linear functions. We then
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compared the errors between these mathematical models and the actual values to verify
the model’s suitability.

3.4.2. Volume and KB Data Mathematical Modeling

The distribution of volume data can be approximated as a curve using a polynomial
function of at least a second degree with respect to draft (x), as shown in Figure 8. We
performed B-spline curve fitting (order = 3) on the volume data and observed that a section
where the slope of the fitting curve becomes constant tends to begin around 0.5 Dm.
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This characteristic is presumed to occur based on the location of the previously dis-
cussed chine height distribution. Generally, characteristics of the volume curve change
based on this factor. Therefore, to improve the accuracy of the mathematical model transfor-
mation and learning efficiency, we set x = 0.5 as the segment split point for mathematical
modeling. We modeled the volume data as a combination of two polynomial curves based
on form parameters.

Volume Data ≈ f(x)
{

ff(x) 0.0 ≤ x ≤ 0.5
fa(x) 0.5 < x ≤ 1.0

From the B-spline fitting curve, we calculated the position and derivative form param-
eters (f(x), f′(x)) at both endpoints and the split point. We mathematically modeled the
volume data as split curves of third- and second-degree polynomial functions in the fore
and aft sections, applying C1 continuity (differentiability) conditions at the split point.

Fore curve : ff(x) ⇔ [f(0.0) , f′(0.0) , f(0.5) ] and polynomial degree = 3
Aft curve : fa(x) ⇔ [f(0.5) , f′(0.5) , f(1.0)] and polynomial degree = 2
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We reconstructed KB data in a similar manner using a mathematical polynomial func-
tion based on form parameters and evaluated the accuracy by calculating mean absolute
error (MAE), mean absolute percentage error (MAPE), and R-squared score (R2).

3.4.3. It Data Mathematical Modeling

It data represent the transverse moment of inertia (m4) with respect to the ship length-
wise central axis of the water plane and significantly impact the height of the transverse
metacenter, which determines the initial stability of the vessel.

As a result, the shape of the water plane varies according to the arrangement of the
chine line, and It is determined according to the shape of the water plane, which in turn
affects the computation of the initial stability.

Small ships predominantly feature a relatively low chine height and wide chine width
close to the breadth of the vessel. These ships demonstrate rapid changes in the water plane
shape depending on draft changes from the baseline to the chine height. Changes in It data
according to variations in chine height of the datasets used for learning were categorized
into four major stages of change.

As shown in Figure 9, the stages of change in It data include a nonlinear section (Part
1⃝), which occurs due to drastic changes in water plane shape from the baseline to the

height around the central chine height caused by hull curvature. This is followed by a
linear section (Part 2⃝) extending to the maximum chine breadth height, a nonlinear section
(Part 3⃝) up to the stern chine height, and a linear section (Part 4⃝) influenced by the final
bow chine height.
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In this study, considering the operational draft range of small ships, the initial non-
linear section (Part 1⃝) was excluded. We simplified the mathematical modeling of the
remaining sections of It data using a combination of three straight-line segments (fore,
mid, and end line segments) with linear approximation techniques. We found that the
slope and position of these line segments vary depending on the chine distribution. To
simplify the mathematical model’s structure while considering the geometric distribution
features of these line segments, we used their intersection points (Pix, Piy), weight (WS,
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WE), and intersection distance with the central segment (DS, DE) as form parameters in our
learning data.

3.4.4. Mathematical Model Test Results

To verify the effectiveness of the mathematical model, error calculations were per-
formed using MAPE and MAE, which are commonly used as performance metrics in
regression models.

MAPE, MAE, and R2 are representative performance metrics for evaluating the accu-
racy of the predicted model. For n data points, when comparing the model’s predicted
values (yi) to the actual values (f(xi)), MAE represents the average of all absolute errors,
while MAPE shows the average percentage of absolute errors relative to the actual values.
R2 indicates how well the independent variable in the model can represent the dependent
variable. These metrics are defined as follows.

MAE =
1
n

n

∑
i=1

|yi − f(xi)|

MAPE =
100
n

n

∑
i=1

|
yi − f(xi)

yi
| (yi ̸= 0)

R2 =
n

∑
i=1

(
f(xi) − y

yi − y
)2 = 1 −

n

∑
i=1

(
yi − f(xi)

yi − y
)2

The MAPE (%) of the mathematical model ranged between 1.00 and 1.12%. Although
some datasets showed a maximum MAPE error ranging from 3.94% to 17.96%, this likely
occurs due to the nature of MAPE calculations, where the MAPE value tends to diverge
toward infinity as the actual value (yi) approaches zero.

MAE was calculated for both the real hydrostatic data (MAER) and the dimensionless
hydrostatic data (MAEN). The overall average MAER for the actual volume data was
calculated to be 0.116 m3. The error ranged from a minimum of 0.009 m3 to a maximum of
0.427 m3. The overall average MAEN for dimensionless data was calculated to be 0.22% of
the cubic number. For the actual KB data values, the MAER ranged from a minimum of
0.001 m to a maximum of 0.007 m, with an overall average calculated to be 0.002 m. The
overall average of MAEN for dimensionless data was calculated to be 0.24% of the ship’s
depth (Dm). For the actual It data values, the overall average MAER was calculated to be
0.324 m4. The error ranged from a minimum of 0.023 m4 to a maximum of 4.837 m4 (refer
to Table 4).

Table 4. Distribution of Errors in Mathematical Modeling.

Hydro. Data
Error

Statistics

Volume Curve KB Curve It Curve

MAPE
(%)

MAEN

(-)
MAER

(m3)
R2

(-)
MAPE

(%)
MAEN

(-)
MAER

(m)
R2

(-)
MAPE

(%)
MAEN

(-)
MAER

(m4)
R2

(-)

Mean 1.00 0.0022 0.1164 0.9961 1.12 0.0024 0.0023 0.9967 1.01 0.0048 0.3235 0.9875

Standard
Deviation 0.69 0.0011 0.0771 0.0040 0.63 0.0011 0.0011 0.0034 1.71 0.0044 0.4281 0.0268

Min. Value 0.08 0.0002 0.0091 0.9774 0.19 0.0006 0.0006 0.9765 0.07 0.0005 0.0230 0.5754

25th Percentile 0.51 0.0013 0.0600 0.9946 0.72 0.0016 0.0015 0.9960 0.33 0.0022 0.1036 0.9871

50th Percentile 0.88 0.0022 0.1043 0.9974 1.00 0.0022 0.0021 0.9978 0.54 0.0035 0.1949 0.9943

75th Percentile 1.37 0.0030 0.1503 0.9989 1.36 0.0030 0.0028 0.9988 0.93 0.0054 0.3677 0.9978

Max. Value 3.94 0.0058 0.4269 1.0000 4.97 0.0069 0.0066 0.9998 17.96 0.0450 4.8369 0.9999

Remark: Verification range: 0.28d to 0.89d, frequency: 430 vessels



J. Mar. Sci. Eng. 2024, 12, 180 11 of 22

The frequency distribution of MAPE (%) for the mathematical transformation model is
illustrated in Figure 10. Some datasets had MAPE values classified as statistical outliers, and
these were reviewed considering statistical heuristics. The upper limits for 2σ (95%) were a
maximum error rate of 2.28%, 2.24%, and 2.82% for volume, KB, and It data, respectively.
For 3σ (99.7%), the upper limits were calculated to be a maximum of 3.83%, 3.89%, and
14.83%. Within the 2σ and 3σ ranges, the overall average error rates were a maximum of
2.45% and 7.52%, respectively. The model aligned with at least 97.55% and 92.48% of the
total training data within the ranges of 95% and 99.7%, respectively. The overall average
MAPE of the mathematical model was 1.04%, and it was calculated that the model showed
an average alignment of about 99% with the raw data.
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The overall average R2 for the actual values in the mathematical model was 0.9934.
The average R2 for It data was the lowest, calculated to be 0.9875, while for volume and KB,
it was calculated to be 0.9961 and 0.9967, respectively. The coefficient of determination R2,
which quantifies the degree of causal relationship between variables in the regression model,
is a measure that evaluates how well the independent variable represents the dependent
variables and falls within the range [0, 1]. The closer R2 is to 1, the higher the correlation
of the independent variable with the dependent variables in the regression model. The
mathematical model using the form parameter was found to have a significant correlation.

Therefore, we comprehensively examined the error rate of the mathematical transfor-
mation model using various evaluation metrics. We found that the accuracy of the model
using the form parameter was satisfactory and used it as training data for deep learning.

3.5. Data Normalization

Data scaling was performed to minimize the distortion effects caused by varying
numerical ranges in the training data and to enhance the efficiency and effectiveness of
the learning process. Normalization1 was carried out as described below to ensure that
the learning model was not dependent on specific data and to maintain a consistent range
for the weights and biases in the activation functions. Positive learning outcomes were
confirmed in the deep learning model constructed for this study.
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4. Composition of Deep Learning Model and Test Results
4.1. Composition of Deep Learning Model

To create and train the deep learning model, we used the Keras Model, a high-level API
from the open-source library TensorFlow. For data preprocessing, numerical operations,
and evaluation of learning, we utilized Python-based modules such as Pandas, NumPy,
and Scikit-learn.

As shown in Figure 11, we designated 12 hull form feature offset data and key di-
mension ratios, discernible from the general arrangement of 430 vessels in the training
data, as the input features for deep learning. The form parameter, calculated during the
mathematical modeling process, was set as the target data for the deep learning model.
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Figure 11. Composition of Deep Learning Model.

The split ratio between training and test data was set at 10%, and the data were
randomly selected. To prevent overfitting and improve the model’s accuracy, K-fold cross-
validation was performed on the training data. The learning rate, number of epochs, and
configuration and connectivity of the hidden layers and nodes were determined through
hyperparameter tuning to achieve optimal values. The activation functions used in the
model included sigmoid, ELU (exponential linear unit), and ReLU (rectified linear unit),
which are suitable for regression models.

Separate deep learning models were constructed for volume, KB, and It data. These
models were validated by calculating the error between the mathematical model, which
applied the predicted form parameter from the test data, and the actual values.

4.2. Deep Learning Test Results

Given the challenging nature of quantitatively comparing form parameter data char-
acteristics, we evaluated the deep learning training outcomes based on MAE and the ratio
(%) of MAE to the average of the actual values of form parameters in the test data (refer to
Table 5). Additionally, we indirectly assessed the similarity in data distribution by com-
paring the item-specific ratios (%) of the descriptive statistics (mean, standard deviation,
quartiles, and maximum and minimum values) between the test and predicted data.
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Table 5. Error Distribution of Deep Learning Training Results.

Items Error
Target Data MAE Test Data

Average Error Rate (%)

Volume

f(0) 0.0021 0.0383 5.53

f(s) 0.0090 0.3132 2.88

f(1) 0.0115 0.7509 1.53

f′(0) 0.0245 0.1280 19.16

f′(s) 0.0161 0.8291 1.94

Average 0.0127 0.4119 6.21

KB

f(0) 0.0087 0.2038 4.28

f(s) 0.0041 0.2445 1.69

f(1) 0.0043 0.5412 0.80

f′(0) 0.0502 1.0953 4.58

f′(s) 0.0204 0.6898 2.95

Average 0.0175 0.5549 2.86

It

Pix 0.0263 0.3369 7.80

Piy 0.0148 0.7526 1.97

WS 0.0468 0.3153 14.84

WE 0.0178 0.1480 12.04

DS 0.0505 0.2279 22.18

DE 0.0435 0.1825 23.82

Average 0.0333 0.3272 13.77

As shown in Figure 12, form parameters of volume and KB data, which show relatively
consistent patterns in response to chine changes, tended to cluster closely around the equal
line (y = x). These also demonstrated relatively low MAE percentages. However, It data,
which are highly sensitive to changes in chine shape, exhibited less clustering density
around the equal line and higher MAE percentages.
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The overall average MAE of the predicted data was 0.0280. Compared to the average
standard deviation (0.0818) of the test data, this represents approximately 34%, and the
overall MAE percentage was calculated to be 7.61%.

The volume and KB curves, which exhibit consistent patterns according to draft and are
mathematically modeled using a combination of polynomial functions, showed relatively
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satisfactory training results. In contrast, It data, modeled as a mathematical combination of
multiple line segments for linear approximation, displayed inferior training results.

To examine the statistical distribution similarity between the test and predicted data,
we performed mutual comparison calculations on the descriptive statistics of each dataset,
as shown in Tables 6–8.

Table 6. Comparison of Input and Output Statistical Measures for Volume Curve Form Parameter.

Target Data
Statistics

f(0) f(s) f(1) f
′
(0) f

′
(s)

Test Predict Test Predict Test Predict Test Predict Test Predict

Mean 0.0383 0.0385 0.3132 0.3101 0.7509 0.7489 0.1280 0.1269 0.8291 0.8341

Standard
Deviation 0.0156 0.0158 0.0453 0.0443 0.0535 0.0504 0.0614 0.0517 0.0499 0.0464

Min. Value 0.0094 0.0096 0.2040 0.2093 0.6296 0.6396 0.0565 0.0456 0.6608 0.6689

25th Percentile 0.0304 0.0302 0.2837 0.2766 0.7202 0.7162 0.0837 0.0937 0.8068 0.8131

50th Percentile 0.0378 0.0371 0.3168 0.3156 0.7427 0.7545 0.1174 0.1190 0.8317 0.8428

75th Percentile 0.0458 0.0475 0.3411 0.3374 0.7882 0.7812 0.1555 0.1429 0.8570 0.8625

Max. Value 0.0873 0.0850 0.3962 0.3991 0.8372 0.8552 0.3375 0.2858 0.9185 0.9025

Table 7. Comparison of Input and Output Statistical Measures for KB Curve Form Parameter.

Target Data
Statistics

f(0) f(s) f(1) f
′
(0) f

′
(s)

Test Predict Test Predict Test Predict Test Predict Test Predict

Mean 0.2038 0.2055 0.2445 0.2449 0.5412 0.5423 1.0953 1.0834 0.6898 0.6972

Standard
Deviation 0.0602 0.0582 0.0348 0.0343 0.0285 0.0281 0.1415 0.1130 0.0868 0.0861

Min. Value 0.0724 0.0965 0.1547 0.1545 0.4668 0.4620 0.7347 0.8453 0.5544 0.5597

25th Percentile 0.1645 0.1726 0.2313 0.2294 0.5208 0.5252 1.0075 1.0115 0.6380 0.6428

50th Percentile 0.1996 0.2047 0.2469 0.2482 0.5434 0.5394 1.0920 1.0762 0.6710 0.6800

75th Percentile 0.2359 0.2392 0.2650 0.2661 0.5536 0.5575 1.1860 1.1503 0.7126 0.7372

Max. Value 0.3722 0.3688 0.3128 0.3244 0.6119 0.6163 1.4043 1.3396 1.0325 1.0412

Table 8. Comparison of Input and Output Statistical Measures for It Curve Form Parameter.

Target Data
Statistics

Pix Piy WS WE DS DE

Test Predict Test Predict Test Predict Test Predict Test Predict Test Predict

Mean 0.3369 0.3531 0.7526 0.7546 0.3153 0.2978 0.1480 0.1501 0.2279 0.2337 0.1825 0.1545

Standard
Deviation 0.0868 0.0775 0.0538 0.0473 0.0806 0.0636 0.0530 0.0536 0.1422 0.1309 0.1219 0.1001

Min. Value 0.1891 0.2328 0.6441 0.6471 0.2123 0.1929 0.0512 0.0595 0.0259 0.0654 0.0439 0.0518

25th Percentile 0.2779 0.2997 0.7140 0.7198 0.2623 0.2642 0.1079 0.1126 0.1049 0.1259 0.0698 0.0725

50th Percentile 0.3182 0.3318 0.7392 0.7562 0.2917 0.2819 0.1444 0.1530 0.2114 0.1898 0.1407 0.1205

75th Percentile 0.4011 0.4218 0.7907 0.7843 0.3567 0.3285 0.1823 0.1857 0.3357 0.3399 0.2531 0.2024

Max. Value 0.5402 0.5287 0.8623 0.8392 0.5793 0.5646 0.2694 0.3022 0.5694 0.5180 0.5144 0.4131

The average percentages of item-specific statistics for form parameters in the test
and predicted data were as follows: volume, 101.73%; KB, 99.53%; and It, 100.88%. The
overall average was calculated to be 100.74%. Kernel density estimation was conducted on
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the form parameters, as shown in Figure 13, to intuitively examine the similarity in data
distribution trends. Based on these findings, we concluded that the test and predicted data
had a significant degree of statistical distribution similarity.
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Therefore, the deep learning model’s training results were considered to be relatively
satisfactory. This conclusion was reached after cross-validating statistical similarities
between the test and predicted data, considering data distribution forms through kernel
density estimation, and calculating evaluation metrics such as MAE and MAE percentages.

4.3. Hydrostatic Data Mathematical Modeling Results

To verify the hydrostatic data mathematically modeled through deep learning, com-
monly used regression model evaluation metrics such as MAPE, MAE, and R2 were utilized.
The average MAPE for each item in the predicted data ranged from 2.54% to 2.91%, with
an overall average of approximately 2.80% (refer to Table 9).

Table 9. Error and Evaluation Metrics for Hydrostatic Curve Deep Learning Results.

Items
Error

Ship No

Volume Curve KB Curve It Curve KMT Curve

MAPE
(%) MAE R2 MAPE

(%) MAE R2 MAPE
(%) MAE R2 MAPE

(%) MAE R2

S947 0.30 0.0010 0.9999 1.47 0.0036 0.9979 0.50 0.0035 0.9944 0.45 0.0140 0.9984

A714 0.69 0.0023 0.9997 0.85 0.0015 0.9997 0.52 0.0041 0.9893 0.66 0.0201 0.9975

A913 1.00 0.0027 0.9995 3.21 0.0053 0.9977 1.32 0.0088 0.9846 1.01 0.0293 0.9909

S513 3.49 0.0119 0.9930 4.03 0.0086 0.9917 3.81 0.0257 0.7961 1.05 0.0278 0.9917

S720 1.22 0.0055 0.9985 2.01 0.0017 0.9997 0.27 0.0020 0.9942 1.08 0.0263 0.9975

S067 0.71 0.0027 0.9996 0.52 0.0009 0.9999 1.23 0.0092 0.9895 1.21 0.0443 0.9885

S624 1.54 0.0067 0.9979 1.92 0.0056 0.9969 0.71 0.0056 0.9692 1.29 0.0317 0.9972

S818 2.13 0.0072 0.9969 0.55 0.0017 0.9997 1.44 0.0100 0.9926 1.34 0.0333 0.9878

S763 1.44 0.0040 0.9992 1.44 0.0048 0.9977 0.57 0.0038 0.9990 1.35 0.0393 0.9867

S959 0.95 0.0034 0.9995 0.66 0.0019 0.9996 1.66 0.0113 0.9721 1.56 0.0509 0.9760

S804 1.43 0.0050 0.9989 0.72 0.0026 0.9989 0.23 0.0017 0.9903 1.56 0.0397 0.9923

S729 0.71 0.0022 0.9997 2.96 0.0050 0.9980 1.12 0.0073 0.9887 1.64 0.0441 0.9873

A923 1.56 0.0031 0.9992 2.57 0.0051 0.9981 0.68 0.0031 0.9988 1.92 0.0514 0.9661
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Table 9. Cont.

Items
Error

Ship No

Volume Curve KB Curve It Curve KMT Curve

MAPE
(%) MAE R2 MAPE

(%) MAE R2 MAPE
(%) MAE R2 MAPE

(%) MAE R2

S999 3.00 0.0091 0.9954 1.80 0.0060 0.9967 3.73 0.0265 0.9630 1.93 0.0540 0.9866

S984 4.73 0.0162 0.9865 1.27 0.0031 0.9992 2.71 0.0178 0.9710 1.99 0.0547 0.9861

S032 1.76 0.0036 0.9993 0.57 0.0013 0.9997 3.68 0.0207 0.9806 2.01 0.0517 0.9668

S023 1.31 0.0032 0.9993 1.87 0.0036 0.9986 1.11 0.0067 0.9946 2.05 0.0634 0.9612

A710 2.86 0.0101 0.9956 1.83 0.0052 0.9975 1.67 0.0114 0.9491 2.11 0.0474 0.9847

S979 2.03 0.0069 0.9976 1.44 0.0039 0.9984 1.38 0.0098 0.9781 2.25 0.0568 0.9854

A804 0.93 0.0030 0.9995 1.11 0.0029 0.9992 2.52 0.0185 0.9267 2.27 0.0833 0.9560

S648 3.16 0.0126 0.9930 1.75 0.0045 0.9981 2.11 0.0157 0.9504 2.32 0.0636 0.9722

S709 1.50 0.0045 0.9990 4.90 0.0127 0.9788 1.59 0.0102 0.9834 2.33 0.0706 0.9789

S956 3.07 0.0113 0.9933 0.52 0.0014 0.9998 2.19 0.0160 0.7036 2.34 0.0973 0.9521

S820 2.89 0.0105 0.9951 2.69 0.0077 0.9942 1.16 0.0086 0.9113 2.49 0.0588 0.9872

A914 3.07 0.0126 0.9925 5.22 0.0078 0.9959 4.38 0.0339 0.9416 2.62 0.1233 0.9427

S667 3.50 0.0107 0.9945 0.79 0.0020 0.9995 6.01 0.0418 0.7213 2.75 0.0516 0.9840

S066 2.78 0.0106 0.9947 3.04 0.0073 0.9960 2.46 0.0198 0.9126 2.82 0.1016 0.9851

A909 1.26 0.0031 0.9993 3.74 0.0088 0.9931 2.45 0.0083 0.9954 2.85 0.0774 0.9506

A915 1.53 0.0033 0.9994 5.35 0.0164 0.9812 2.40 0.0132 0.9928 2.89 0.0798 0.9834

S706 2.42 0.0074 0.9962 1.00 0.0035 0.9987 3.90 0.0205 0.9646 3.06 0.0865 0.8897

S784 0.62 0.0017 0.9998 3.14 0.0069 0.9963 3.54 0.0247 0.8437 3.56 0.0983 0.8942

S980 8.32 0.0353 0.9486 1.47 0.0041 0.9981 4.62 0.0379 0.2933 3.69 0.1111 0.9770

S411 3.72 0.0160 0.9890 14.39 0.0099 0.9867 1.14 0.0090 0.6384 3.88 0.3108 0.9622

S778 3.83 0.0137 0.9915 5.28 0.0091 0.9916 5.83 0.0409 0.5320 4.18 0.1721 0.9053

A202 2.52 0.0086 0.9968 1.18 0.0036 0.9985 7.01 0.0471 0.4598 4.20 0.1008 0.8376

S816 6.10 0.0219 0.9758 1.88 0.0054 0.9969 2.35 0.0169 0.9610 4.22 0.1208 0.9483

S702 2.62 0.0085 0.9967 3.05 0.0067 0.9954 2.12 0.0149 0.9445 4.61 0.1464 0.8863

S064 7.19 0.0294 0.9636 4.99 0.0092 0.9898 3.03 0.0219 0.5322 4.90 0.1364 0.9591

S009 1.83 0.0070 0.9958 3.57 0.0117 0.9871 6.08 0.0433 0.8645 4.94 0.1347 0.9356

S909 4.62 0.0170 0.9884 9.44 0.0124 0.9814 3.47 0.0280 0.8381 5.47 0.2559 0.9326

A606 5.57 0.0099 0.9942 1.24 0.0031 0.9992 5.07 0.0109 0.9928 6.68 0.1227 0.7573

S753 9.03 0.0290 0.9508 1.69 0.0054 0.9969 1.70 0.0106 0.9880 8.55 0.1557 0.5112

A803 8.60 0.0311 0.9507 10.04 0.0118 0.9870 3.55 0.0241 0.8971 9.08 0.3310 0.6866

Average 2.87 0.0099 0.9919 2.86 0.0057 0.9955 2.54 0.0169 0.8903 2.91 0.0900 0.9419

In evaluating the correlation between input and output variables in the regression
model, the R2 values were calculated as follows: 0.9919 for volume data and 0.9955 for KB
data. These were modeled as combinations of polynomial functions. For It data, which were
modeled as a mathematical combination of multiple line segments for linear approximation,
a relatively low R2 value of 0.8903 was observed. This also impacted the R2 value for KMT2

data (0.9419). Nonetheless, the overall average R2 was calculated to be 0.9549, confirming a
significant correlation between input and output data.
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As shown in Figure 14, according to the statistical empirical rule, a review of the 3σ
range showed that a maximum error rate of 13.84% (KB) was observed in 99.7% of the
population. The remaining items exhibited a maximum error rate between 6.89% and 9.01%.
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As shown in Figures 15–18, an analysis of the error distribution (MAPE) of the hy-
drostatic data inferred through deep learning revealed an error of less than 5% in terms
of KMT MAPE on 91% (39 vessels) of the test data. Using the hydrostatic data inferred
through deep learning for initial stability calculations on KMT data, the error rate (based on
MAPE) ranged from a minimum of 0.45% to a maximum of 9.08%. The average error rate
was calculated to be 2.91%, showing an alignment of over 97%. Therefore, the inference
results of the hydrostatic data through deep learning proposed in this study were found to
be relatively satisfactory and reliable.
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Figures 19–22 compare each hydrostatic curve at maximum and minimum MAPE.
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5. Conclusions and Future Work

In this study, we set hull form feature data, which can be extracted from the general
arrangements of small chine-type ships, as input variables. We then inferred the hydrostatic
data needed for initial stability calculations using a multilayer neural network-based deep
learning model. The following results were observed:

1. Hydrostatic data based on form parameters were converted into a mathematical
model, and the overall average MAPE of the mathematical model was 1.04%. The
model showed an average alignment of approximately 99% with the raw data.

2. Hydrostatic data required for initial stability calculations can be inferred by training a
deep learning model using hull form feature data identifiable from general arrangements.

3. The deep learning model implemented in this study yielded an MAPE of 2.91% for
the KMT (transverse metacentric height) curve, and those of Volume, KB, and It curve
were 2.87%, 2.86%, and 2.54%, respectively. The overall average of the hydrostatic
curve MAPE was approximately 2.80%, which was 97% consistent with the raw data,
confirming satisfactory results.

Thus, this study confirmed the feasibility of inferring hydrostatic data needed for
initial stability calculations via deep learning using limited design data (general arrange-
ments) from small ships. By securing more real-world ship data, enabling type-specific
supervised learning focused on chine shape and location, and conducting further research
on hydrostatic data items, we expect the applicability of this foundational data for stability
calculations in domestic coastal areas to increase further.
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Notes
1 Min-Max Scaling: All feature data are transformed to be positioned between [0, 1].
2 KMT: Transverse Metacenter Height (KB + BM).
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