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Advances in our understanding of phenomena in the ocean would not be possible
without innovation. Identifying new phenomena, assessing environmental risks, monitor-
ing and forecasting the ocean state, and delivering observational data to modelers are all
challenges requiring technological solutions.

This Special Issue of JMSE, entitled “Technological Oceanography”, aims to present
an oceanographic perspective on modern technology, allowing for a better understanding
of the ocean in all its diversity and taking into account both societal and scientific needs.
This Issue has collected original papers based on applications of novel approaches in the
development of new sensors, observational programs, sampling strategies, new ocean
modeling techniques and data processing. It is impossible to describe the current state
of such a complex and constantly evolving science as technological oceanography in one
volume. Thus, the articles presented in this volume are just some examples of modern
trends in the development of new technologies in some areas of oceanography.

One of the important aspects of oceanography concerns the long-term measurement
of depth profiles of hydrological, biological, chemical, and optical parameters at fixed
locations. These in situ measurements are performed with automated tethered profilers,
known as Yo-Yo, connected by a flexible cable with bottom anchors or other underwater
supports [1]. Autonomous tethered profiling systems that operate in shallow waters often
use winches [2]. Alexander G. Ostrovskii et al. (Contribution 1) discusses automated
tethered profilers for hydrophysical and bio-optical measurements, advancements which
allow researchers to monitor water column parameters from a fixed observational point
with high spatial and temporal resolution. These breakthroughs permit the transmission
of telematic data in real time, including the results of studies of biogeochemical cycles of
carbon transformation throughout the euphotic zone of the sea. The original results of
in situ measurements were obtained for the inner continental shelf part of the site using
this new tethered profiler. Another innovation is related to marine plankton sampling.
Different types and systems have been developed in recent decades to discriminate plank-
ton samples at different strata in water columns [3,4]. Arturo Castellón and Maria Pilar
Olivar (Contribution 2) presented a cod-end multisampler design, VERDA. This uses a
carrousel-like system, similar to some sediment traps, that works like a revolver with six
or eight compartments whose turning mechanism is triggered when the net arrives to a
programmed depth level. This device allows research to discriminate plankton samples at
different strata in the water column and is useful for all types of ships due to the relatively
easy deployment operations.

It is well known that the coastline is susceptible to anthropogenic impact and cli-
mate change, particularly the rising sea level and more frequent extreme meteorological
events [5]. However, the coastal waters are temporally and spatially undersampled [6] due
to the difficulty of establishing oceanographic platforms capable of performing continuous
sampling away from the coastline. Another concern is the limited accuracy and spatiotem-
poral resolution of satellites in the shelf waters. Inmaculada Ortigosa et al. (Contribution 3)
described scientific adaptation of a vessel and initial measurements from a “patí a vela”,
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which is a very popular unipersonal catamaran in Barcelona. This versatile sailing vessel
has been adapted to contain several low-cost sensors and instruments to measure water
properties. Citizen sampling from fully sustainable sailing boats may turn into an effective
strategy to monitor the urban coastal waters.

The effectiveness of laboratory experiments continues to improve, allowing researchers
to study the physical mechanisms that produce ocean phenomena in detail [7–9]. Andrey G.
Zatsepin et al. (Contribution 4) presented the results of a laboratory experiment conducted
to quantitatively investigate turbulent exchange between two quasi-homogeneous layers
of equal thickness and different density (salinity), as well as the fine structure of the
density transition zone (interface) between the layers. It was shown that maximum mixing
efficiency was achieved at a critical Richardson number, when the density interface was in
a transitional state between the sharpening and diffusive modes.

One of the important tasks of physical oceanography is the assessment of vertical
turbulent exchange in the stratified waters of seas and oceans. In particular, the vertical
flux of nutrients from deep waters into the photic layer, where most biological production
takes place, depends on the intensity of turbulent exchange [10–12]. Oleg I. Podymov
et al. (Contribution 5) presented the analysis of the long-term regular time series of current
velocity and conductivity, temperature, and depth (CTD) profiles, measured using the
moored autonomous profiler Aqualog over the upper part of the continental slope at a
fixed geographical location in the Northeastern Black Sea. This study focused on the fine
structure of the density profiles to show that the fine-structured Cox number (C) is a power
function of the Richardson number (Ri). The original analysis of the obtained data suggests
that the estimations of the vertical turbulent mass exchange could be performed using CTD
data only.

Since 2009, a new generation of satellites launched by ESA and NASA have provided
radiometric measurements, allowing the retrieval of sea surface salinity [13]. In situ data
are crucial for validating and enhancing the quality of satellite products obtained in far
oceanic regions, where few such measurements have been taken [14,15]. Marta Umbert
et al. (Contribution 6) showed the results of temperature and salinity measurements in the
first 60 cm of a water column in the data-scarce areas of the World Ocean. Measurements
were obtained during the Vendée Globe, which is the world’s most famous solo, non-stop,
unassisted sailing race with the CTD MicroCat, installed on the One Ocean One Planet
boat. The measurements were performed every 30 s during navigation and this allowed
us to obtain data in the sub-Antarctic zone, between the tropical and polar fronts, and it
passed through areas of oceanographic interest such as Southern Patagonia (affected by
glacier melting), the Brazil–Malvinas confluence, the Southern Pacific Ocean, and the entire
Southern Indian Ocean.

Fine-resolution ocean modelling is becoming a ubiquitous practice to resolve impor-
tant mesoscale and submesoscale features such as eddies, fronts, boundary currents, and
localized upwellings, which play important roles in ocean dynamics (e.g., [16,17]). These
localized models can be run by relatively small groups due to the availability of excellent
ocean models such as ROMS or NEMO to the wider oceanographic community [18,19].
Georgy I. Shapiro and Jose M. Gonzalez-Ondina (Contribution 7) developed a simple and
computationally efficient method for creating a high-resolution regional (child) model
nested within a coarse-resolution, high-quality data assimilation (parent) model. This
method, named Nesting with Downscaling and data Assimilation (NDA), reduces the bias
and root-mean-square errors (RMSE) of the child model and does not allow the child model
to deviate from reality. The NDA method utilizes data assimilation process in the coarse
model as a way to spread information from observation over the whole domain, avoiding
the use of simplified and less accurate methods such as spreading via parabolic equation.
The NDA method reduces the RMSE, typically by a factor of two to five, but by occasionally
more. The method is particularly efficient in areas with sparse observational data.

Due to intrinsic inaccuracies in the model equations and numerical schemes, and due
to limitations in the quality of input data streams, even the best ocean models gradually
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deviate from reality and can only be considered estimates of the true ocean state [20]. The
introduction of data assimilation (DA) techniques allows researchers to reduce the deviation
of models from the true state, vastly improving the accuracy of ocean forecasting [21]. José
M. González-Ondina et al. (Contribution 8) developed a new mathematical method for
computing the background and observation error covariance functions and matrices. As
data assimilation methods are invaluable tools for operational ocean models, the covariance
matrices of background errors (differences between the numerical model and the true
values) and the observation errors (differences between true and measured values) are
required for correcting ocean model outputs by assimilating observational data using a
variational approach. The authors demonstrate that in many cases the new method allows
the use of the separable convolution mathematical algorithm to increase the computational
speed significantly up to a given order of magnitude.

In recent years, underwater acoustic technology has been widely used to detect
underwater targets, describe underwater overviews [22], measure hydrological information,
and perform other tasks. Due to the influence of the water surface, water body, water
bottom, and other features, sound wave propagation in the ocean presents a complicated
distribution state [23]. Xian Ma et al. (Contribution 9) developed a direct solution method
for the two-dimensional Helmholtz equation of ocean acoustic propagation without using
simplified models. In their study, the authors applied two spectral methods, Chebyshev–
Galerkin and Chebyshev–collocation approaches, to correctly solve the two-dimensional
Helmholtz model equation. Due to a lack of model constraints, the Chebyshev–collocation
method has a wide range of applications and provides results with high accuracy, which is
of great significance in the calculation of realistic ocean sound fields.

Ocean acoustic waves propagate over long distances because their energy attenuates to
a smaller degree in water than that of electromagnetic waves; consequently, acoustic waves
have been widely used in target detection, environmental monitoring, and underwater
communication [24]. Wei Liu et al. (Contribution 10) established a vector wavenumber
integration (VWI) model to provide benchmark solutions for ocean current study. The
depth-separated wave equation was solved using finite difference (FD) methods with
second- and fourth-order accuracy, and the sound source singularity in this equation was
treated using the matched interface and boundary method. Time-averaged sound intensity
(TASI) was calculated using the pressure and particle velocity, and the TASI streamlines
were traced to visualize the time-independent energy flow in the acoustic field and better
understand the distribution of acoustic transmission loss.

In recent years, dictionary learning [25] has been widely used in the field of sound
velocity profile data processing as a feature extraction method. Kaizhuang Yan et al.
(Contribution 11) used the dictionary learning method to achieve sparse coding of the
high-resolution sound speed profile and used a compressed sparse row method to compress
and store the sparse characteristics of the data matrix. Their research revealed how this
method significantly reduces the storage capacity of high-resolution sound speed profile
data and ensures the accuracy of the data, providing technical support for efficient and
convenient access to high-resolution sound speed profiles.

As Guest Editors for this Special Issue, we would like to sincerely thank the authors
who have submitted their work to this.

Working with such a bright group of scholars has been an honour and a joy, and
we sincerely appreciate their time, energy, and effort. The articles include distinct view-
points and ideas on the subject matter, encompassing an extensive array of techniques and
strategies concerning technological oceanography.

The calibre of the entries as well as the diligence and focus on detail exhibited by every
author have impressed us. Because of their contributions, this Special Issue is a special
compilation, one that we believe will be of great interest and value to readers in the field.
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