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Abstract: This work presents a new model for surf and swash zone morphology evolution induced
by nonlinear waves. Wave transformation in the surf and swash zones is computed by a nonlinear
wave model based on the higher order Boussinesq equations for breaking and non-breaking waves.
Regarding sediment transport, the model builds on previous research by the authors and incorporates
the latest update of a well-founded sediment transport formula. The wave and morphology evolution
model is validated against two sets of experiments on beach profile change and is afterwards
used to test the performance of a widely-adopted erosion/accretion criterion. The innovation of
this work is the validation of a new Boussinesq-type morphology model under both erosive and
accretive conditions at the foreshore (accretion is rarely examined in similar studies), which the model
reproduces very well without modification of the empirical coefficients of the sediment transport
formula used; furthermore, the model confirms the empirical erosion/accretion criterion even for
conditions beyond the ones it was developed for and without imposing any model constraints.
The presented set of applications highlights model capabilities in simulating swash morphodynamics,
as well as its suitability for coastal erosion mitigation and beach restoration design

Keywords: numerical model; boussinesq equations; coastal morphology; erosion; accretion; swash zone

1. Introduction

Coastal erosion is nowadays among the most intensively investigated topics in coastal
research. This is justified by the expected impact of climate change on the intensity of
the drivers behind it (both natural- and human- induced; [1–6]), as well as on its direct
association to the inundation of low-lying areas [7–10]. Since building coastal resilience
against erosion and flooding is based on the effective design of coastal protection and adap-
tation measures [11,12], numerical models have become indispensable tools for scientists,
engineers and policymakers. As such, their accuracy and reliability are continuously tested
in both research and engineering applications [13–18].

The study of coastal morphology evolution is particularly demanding. Its accurate
representation by numerical models depends on the scales in space and time over which
the interplay between various codependent processes is to be taken into consideration.
General discussion and valuable insights on the topic can be found in [19–26]. Regardless,
though, the fundamentals of coastal morphodynamics lie in a beach profile’s response to
wave action.

The swash, i.e., the part of the beach where the sediment bed is submerged and
alternatively exposed, due to uprush and backwash, plays a key role in coastal morphology
evolution through both cross-shore and longshore processes. Regarding longshore transport
and its modelling in the swash, useful insights can be found in [15,27–31]. Focusing on
cross-shore processes, it is documented that waves acting upon a beach profile which is not
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in equilibrium will redistribute sediment across it as the beach adjusts towards equilibrium
shape. Cross-shore transport will be predominantly directed either onshore or offshore, the
former leading to accretion at the foreshore (berm formation) and the latter to erosion at
the foreshore with the eroded sediment forming a notable bar near the breaker line (hence
the typical distinction between accretive and erosive profiles).

The above processes in the swash can be broken down and modelled through un-
derstanding the interplay between swash flow velocities, bed shear stress, bore collapse-
induced turbulence, wave-swash interactions, infragravity waves, in-/ex-filtration and
pressure gradients (horizontal and vertical). Chen at al. [32] present a thorough review on
the dynamics of sand transport in the swash and on the use of practical models to simulate
it. Reference is also made to works that delve into the intricacies of swash zone dynamics,
like the experimental work of [33,34], the modelling works of [35–37] and the combined
experimental—numerical works of [38,39]. Modelling attempts in relevant literature are
typically based on the reproduction of sets of seminal experiments, like the ones collected
and presented by [40]. It is noteworthy, though, that profiles with prominent accretive
patterns at the foreshore are scarcely studied compared to erosive ones.

This work presents a new advanced phase-resolving nonlinear wave, sediment trans-
port and bed morphology evolution 2DH model, that builds on previous research by the
authors [13] and incorporates the latest update of a well-founded sediment transport for-
mula [41]. The model is validated against two sets of experiments on beach profile change,
namely the U.S. Army Corps of Engineers (CE) experiments and the Central Research
Institute of Electric Power Industry (CRIEPI) experiments [40], with particular focus on
prominent accretive profiles, and is afterwards used to test the performance of a widely-
adopted erosion/accretion criterion. Section 2 in the following presents the components
and theoretical background of the wave and morphology evolution model. Section 3
presents the characteristics of model applications. Section 4 presents and discusses model
results, and Section 5 presents the conclusions drawn from this work, along with insights
for future research.

2. The Wave and Morphology Evolution Model

The wave and morphology evolution model used in this work is an improved version
of the model presented by [13], with regard to its essential sediment transport module.

The advanced phase-resolving wave model is based on the higher-order Boussinesq-
type Equations for breaking and nonbreaking waves, expressed as:

ζt +∇·(hU) = 0 (1)
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where ζ is the wave surface elevation, d is the water depth and h is the total water depth
(h = d + ζ); the subscript “t” denotes differentiation with respect to time; U is the horizontal
velocity vector U = (U,V); τb = (τbx, τby) is the bed friction term calculated according
to [42,43]; δ is the roller thickness, determined geometrically according to [44]; E is the
eddy viscosity term, calculated according to [45]; and uo is the bottom velocity vector uo
= (uo, vo), with uo and vo being the instantaneous bottom velocities along the x- and y-
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directions respectively. Following [43], wave breaking is initiated using breaking angle
φb = 30◦, which then gradually changes to its terminal value φb =10◦.

The model is capable of simulating the phenomena of shoaling, refraction, breaking,
diffraction, reflection and wave-structure interaction, as well as nonlinear wave-wave
interaction. Regarding model capabilities in simulating the non-linear evolution of unidi-
rectional or multidirectional wave fields in the nearshore, one can refer to [46] (see also [47]
on the issue). Regarding wave-structure interaction and energy transmission, one can
refer to [48]. The model is analysed in detail in [13] and description is not repeated here.
The model’s implementation to diverse coastal engineering applications can be found
in [16,43,49].

Regarding the sediment transport module, this work builds on the improvements
introduced by [13] and adopts the latest update of the transport formula of [50,51] proposed
by [41]. Bed load and sheet flow transport is accordingly simulated using [41]:
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√
fw

tan Φm
d50ûK1/2
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In Equations (5)–(9): aw and b are empirical coefficients (set to 6 and 4.5, respectively); fw
is the wave friction factor; Φm is the friction angle for a moving grain (set to 30 deg); d50 is the
median grain size; dx is the local bottom slope; de is the depth (for equilibrium conditions);
θcw,m and θcw are the mean and maximum Shields parameters due to wave-current interaction,
respectively; and θcr is the critical Shields parameter for incipient motion of the sediment. It is
noted that c and t are indices that refer to the wave crest and wave through, respectively, with
peak velocities u to be perceived accordingly and û calculated following the approach of [52].
Both the phase-lag and acceleration effects are introduced in the calculation of θcw,net that is
used for the derivation of Equation (5), as in [50,51].

Suspended load and bed morphology evolution are simulated as in [13], based on the
combined formulation of [50,51,53,54] and the equation of [55], respectively. Regarding
the connection to the nonlinear wave model, specifically, it is noted that breaking wave-
induced turbulence and the generated undertow (as a return flow due to surface roller
effects of broken waves) lead to offshore-directed suspended load. On the other hand,
under non-breaking waves or under relatively weak breaking/undertow conditions the
time-averaged bed load and sheet flow transport (Equation (5)) is usually directed onshore,
due to near-bottom velocity asymmetry together with the acceleration effects. The differ-
ence of the two quantities (i.e., the total load), along with runup/backwash flow effects,
determine the direction of the total sediment transport rate and consequently dictate the
erosion/accretion process.

The methodology adopted for the series of model applications can be encoded into the
steps also described in [13], and is repeated in the following for reasons of completeness.
First, the initial bathymetry is inserted into the wave model in order to estimate the wave
and current fields. These fields are afterwards used by the sediment transport module to
calculate the sediment transport rates. Finally, bathymetry is updated by the sediment
transport module solving the equation of the conservation of sediment transport [55]
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for the transport rates calculated in the previous step. The procedure is repeated for a
user-specified time period or until a state of morphologic equilibrium is reached.

3. Model Applications
3.1. Validation for Experimental Data

Two sets of experiments are used in this work for the validation of the wave and
morphology evolution model: The US Army Corps of Engineers experiments and the
Central Research Institute of Electric Power Industry experiments [40], referred to as CE
and CRIEPI experiments in the following, respectively.

The CE experiments were conducted in 1956/1957 and 1962 in the 221.0 m long,
5.2 m wide and 7.0 m deep Large Wave Tank of the US Army Corps of Engineers Beach
Erosion Board (henceforth referred to as LWT). The LWT was at the time of the experiments
located at Dalecarlia (Washington DC, US; see [56] for facility details). The full dataset
comprises two series of movable-bed model experiments on beach profile change, mainly
distinguished by the grain size of the bed material used. Tests of monochromatic waves of
varying steepness were run for the different grain sizes in order to produce either accreting
or eroding profiles. Nineteen (19) cases are documented in [40,56]: all but two started from
a plane slope of 1:15; water depths (at the flat section of the flume) ranged from 3.5 m
to 4.6 m; grain sizes with median diameters of 0.22 mm and 0.40 mm were used; wave
heights ranged between 0.55 m and 1.68 m; wave periods ranged between 3.75 s and 16.0 s.
Tests were continued until the establishment of stable beach profiles in all runs (i.e., until
no significant profile changes were detected). This work focuses on tests that resulted in
prominent erosive and—most importantly—accretive profiles at the foreshore; these are
Tests no. 300 and 301 from the CE experiments. The specific tests conditions are presented
in Table 1, in which d50 is the median grain size, H is the wave height, T is the wave period,
d is the water depth and Dur is Test duration.

Table 1. Test conditions for the CE and CRIEPI experiments reproduced in this work (eros. = erosive
test; accr. = accretive test).

Dataset Test no. Slope d50 [mm] H [m] T [s] d [m] Dur [h:m]

CE
experiments

300 (eros.) 1:15 0.22 1.68 11.33 4.27 50:00
301 (accr.) 1:15 0.40 1.68 11.33 4.27 50:00

CRIEPI
experiments

3-1 (eros.) 1:20 0.27 1.07 9.10 4.50 71:00
1-3 (accr.) 1:20 0.47 1.05 9.00 4.50 69:30

The CRIEPI experiments were conducted between 1979 and 1983 in the 205.0 m long,
3.4 m wide and 6.0 m deep Large Wave Flume of the Central Research Institute of Electric
Power Industry in Japan (see [57,58] for facility details). Similar to the CE experiments, tests
of monochromatic waves of varying steepness were run for different grain sizes in order
to produce either accreting or eroding profiles. Twenty four (24) cases are documented
in [40,57,58]: initial plane slope varied between 1:50 and 1:10, although for some tests the
profile from the previous test was used as initial profile; water depths (at the flat section of
the flume) ranged from 3.5 m to 4.5 m; grain sizes with median diameters of 0.27 mm and
0.47 mm were used; wave heights ranged between 0.30 m and 1.80 m; wave periods ranged
between 3.0 s and 12.0 s. As mentioned in the previous, this work focuses on tests that
resulted in prominent erosive and—most importantly—accretive profiles at the foreshore;
these are Tests no. 3-1 and 1-3 from the CRIEPI experiments, whose conditions are also
presented in Table 1.

3.2. Investigation of an Erosion/Accretion Criterion

Criteria for distinguishing profile response under wave action have always been of
interest in relevant research, as their utility extends from practical reasons (e.g., quickly
estimating the expected profile response for large datasets) to enriching our understanding
of the interplay between wave conditions and profile characteristics (profile shape and
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sediment properties) that leads to sediment redistribution patterns in the surf zone and in
the swash.

In the process of developing and presenting the profile evolution model SBEACH,
Larson and Kraus [59] present previous research on criteria for identifying profile response
(e.g., [60–65]) and eventually propose the criterion expressed as:

Ho

Lo

< M
(

Ho
wT

)3
→ eros.

> M
(

Ho
wT

)3
→ accr.

(10)

where Ho, Lo is the deep water wave height and wavelength, respectively, w is the sediment
fall speed and M is an empirical parameter set to 0.0007 for regular waves in the lab or mean
wave height in the field. The criterion implies predominant sediment transport offshore that
leads to erosion at the foreshore for Ho/Lo < 0.0007(Ho/wT)3, and predominant sediment
transport onshore that leads to accretion at the foreshore for Ho/Lo > 0.0007(Ho/wT)3.
The respective profiles are typically referred to as “erosive/bar” or “accretive/berm”
profiles, since erosion at the foreshore leads to the formation of a prominent bar near
the breaker line and accretion at the foreshore leads to berm buildup. These two types
of profiles are also referred to as winter-summer, storm-normal or dissipative-reflective
profiles in literature. The criterion of [59], formally presented in [66,67], has been established
as the most widely used since, although variations of its formulation have also been
proposed and discussed in future research by [68–75], based on the same or different
experimental datasets.

This work focuses on expanding the set of conditions tested during the CE and
CRIEPI experiments (see Section 3.1 and [40,56–58]), using the wave and morphology
evolution model presented Section 2 and validated in Section 3.1. This is done in order to
investigate the performance of the Larson and Kraus criterion in predicting erosive/bar
and accretive/berm profiles. A total of 22 New Tests were run, with the set of combinations
of wave conditions and profile characteristics used in each one presented in Table 2 (slope
for all runs was set equal to 1:20; New Tests are henceforth denoted as NT).

Table 2. Test conditions for the investigation of the erosion/accretion criterion of Larson and Kraus
[59] (NT = New Test; slope for all runs equal to 1:20).

Test No. d50 [mm] H [m] T [s] Test No. d50 [mm] H [m] T [s]

NT01 0.20 1.00 12.0 NT12 0.40 1.50 8.0
NT02 0.20 0.50 3.0 NT13 0.40 1.00 6.0
NT03 0.25 1.00 4.5 NT14 0.40 1.00 8.0
NT04 0.30 1.00 8.0 NT15 0.42 1.00 8.0
NT05 0.30 0.75 3.0 NT16 0.45 0.75 4.5
NT06 0.30 0.75 8.0 NT17 0.45 1.00 14.5
NT07 0.30 1.50 14.0 NT18 0.50 0.75 4.5
NT08 0.35 1.00 5.5 NT19 0.50 0.75 9.5
NT09 0.35 1.25 5.0 NT20 0.50 1.00 7.5
NT10 0.40 1.00 12.0 NT21 0.55 1.00 8.0
NT11 0.40 0.50 8.0 NT22 0.80 1.50 8.0

4. Results and Discussion
4.1. Results for Model Validation

Figure 1 presents results for Test 300 from the CE experiments (see Table 1). Figure 1a
shows the comparison of the measured and computed (by the model) profiles (including model
results for t = Dur/2), Figure 1b shows the difference between measured and computed profiles,
and Figure 1c shows the net sediment transport rate (positive values = onshore transport,
negative values = offshore transport). Figures 2–4 present the respective results for Test 301
from the CE experiments and Tests 3-1, 1-3 from the CRIEPI experiments (also see Table 1).
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For the accretive tests CE 300 and CRIEPI 3-1 the Equilibrium Beach Profiles (EBPs) according
to [76] are also presented in Figures 1a and 3a, respectively; so are the differences between
measured and EBPs/Dean profiles in Figures 1b and 3b. Equilibrium Beach Profiles follow
equation d = Ay2/3, where d is the depth, y is the cross-shore distance measured from the
shoreline and A is a parameter associated to the median grain size according to [77].

Figure 1. Results for Test CE 300 (see Table 1): (a) comparison of measured and computed profiles
(* denotes model results at t = Dur/2) and respective Dean EBP; (b) difference between measured
and computed/Dean profiles; (c) computed net sediment transport rate (positive values = onshore
transport, negative values = offshore transport).

Figure 2. Results for Test CE 301 (see Table 1): (a) comparison of measured and computed profiles (* de-
notes model results at t = Dur/2); (b) difference between measured and computed profiles; (c) computed
net sediment transport rate (positive values = onshore transport, negative values = offshore transport).
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Figure 3. Results for Test CRIEPI 3-1 (see Table 1): (a) comparison of measured and computed profiles
(* denotes model results at t = Dur/2) and respective Dean EBP; (b) difference between measured
and computed/Dean profiles; (c) computed net sediment transport rate (positive values = onshore
transport, negative values = offshore transport).

Figure 4. Results for Test CRIEPI 1-3 (see Table 1): (a) comparison of measured and computed profiles
(* denotes model results at t = Dur/2); (b) difference between measured and computed profiles; (c) computed
net sediment transport rate (positive values = onshore transport, negative values = offshore transport).

Model results compare very well with the experimental data, overall. Regarding
the erosive tests (i.e., Tests CE 300—Figure 1 and CRIEPI 3-1—Figure 3) the model simu-
lates accurately the loss of sediment from the shoreface and the gradual formation of the
longshore bar, as well as the erosion-accretion transitions along the profile, in both cases.
Model results for the computed profiles at half the Tests’ durations (denoted as “Model*”
in Figures 1 and 3) are indicative of the evolution of erosive profiles as simulated by the
presented model. Between Tests, results are comparatively better for Test CRIEPI 3-1; how-
ever, absolute differences between measured and computed profiles are significantly below
0.5 m for both Tests and exceed this value only locally. The mean, variance and standard
deviation of said absolute differences are calculated to be equal to 0.22 m, 0.032 m and
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0.17 m, respectively, for Test CE 300, and equal to 0.14 m, 0.009 m and 0.09 m, respectively,
for Test CRIEPI 3-1.

On the other hand, the EBPs according to [76] (denoted as “Dean” in Figures 1 and 3)
do not simulate profile evolution with comparable accuracy, especially seaward of the
erosion-accretion transitions. Absolute differences between measured and EBPs/Dean
profiles exceed 1 m along large parts of the profiles. The mean, variance and standard
deviation of said absolute differences are calculated to be equal to 0.49 m, 0.52 m and 0.72 m,
respectively, for Test CE 300, and equal to 0.75 m, 0.48 m and 0.69 m, respectively, for Test
CRIEPI 3-1.

Regarding the—more significant in the context of this work—accretive tests (i.e.,
Test CE 301—Figure 2 and CRIEPI 1-3—Figure 4), the model simulates accurately the
accumulation of sediment at the foreshore and the gradual formation of the berm, in
both cases. The significance of the specific feat should be particularly acknowledged,
especially considering the size of the berm, in terms of both shoreline advance at SWL
and accreted volume. Morphology evolution in the subaerial parts of the profiles is
captured satisfactorily, although there appears to be a relative weakness in capturing
erosion-accretion transitions underwater that needs to be further investigated. Model
results for the computed profiles at half the Tests’ durations (denoted as “Model*” in
Figures 2 and 4) are indicative of the evolution of accretive profiles as simulated by the
presented model. Absolute differences between measured and computed profiles are
significantly below 0.4 m for both Tests and approach this value only locally. The mean,
variance and standard deviation of said absolute differences are calculated to be equal to
0.20 m, 0.021 m and 0.14 m, respectively, for Test CE 301, and equal to 0.13 m, 0.013 m and
0.11 m, respectively, for Test CRIEPI 1-3.

It is important to highlight that the wave and morphology evolution model presented
in this work achieved the results of Figures 1–4 without any modification of the empirical
coefficients of the transport formula of Equation (5). The values of these coefficients were
set to aw = 6 and b = 4.5 in all model runs, exactly as proposed by Zhang and Larson [41].

4.2. Results for the Investigation of an Erosion/Accretion Criterion

Table 3 presents results for the test conditions presented in Table 2 (NT = New Test).
It is noted that Erosion (E) and Accretion (A) classifications in Table 3 refer to model results
regarding the equilibrium profile at the end of each simulation. After calculating the
respective Ho/wT and Ho/Lo sets of values, results are also presented in Figure 5, along
with all data for CE and CRIEPI experiments presented in [40].

Table 3. Model results for the test conditions presented in Table 2 (NT = New Test). Erosion (E) and Accretion
(A) classifications refer to model results regarding the equilibrium profile at the end of each simulation.

Test No. Model Result Test No. Model Result

NT01 E NT12 E
NT02 E NT13 E
NT03 E NT14 E
NT04 E NT15 A
NT05 E NT16 A
NT06 E NT17 A
NT07 E NT18 A
NT08 E NT19 A
NT09 E NT20 A
NT10 A NT21 A
NT11 A NT22 A
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Figure 5. Profile response with regard to accretion (accr.) or erosion (eros.) as simulated by the
wave and morphology evolution model of this work for the New Test conditions of Table 2 (see also
Table 3), along with the observations in the CE and CRIEPI experiments [40]. The solid line represents
the limit of the Larson and Kraus criterion [59], i.e., Ho/Lo = 0.0007(Ho/wT)3.

Figure 5 shows that the wave and morphology evolution model’s results and the
Larson and Kraus criterion agree in predicting erosive/bar and accretive/berm profiles
for a wide range of test conditions, even beyond the CE/CRIEPI experiments regarding
both wave conditions and profile characteristics. It is noted again, as for the validation tests
of Sections 3.1 and 4.1, that all model runs were setup without modifying the empirical
coefficients of the transport formula of Equation (5) from the values sets by Zhang and
Larson [41].

5. Conclusions

The new wave and morphology evolution model presented and used in this work
builds on previous research by the authors and adopts a new formula for the calculation of
sediment transport. Model applications were designed in order to, first, validate the model
against experimental data (with particular focus on prominent accretive profiles which are
rarely examined in relevant research), and then use it to test the performance of one of
the best-known erosion/accretion criteria. The results presented in Section 4 are deemed
to highlight the innovative aspects of this work, namely: (a) the accurate simulation of
accretive conditions at the foreshore (with a particular note on the relative magnitude of
the phenomenon in the selected tests); (b) the fact that the model reproduces experimental
data very well for both accretive and erosive profiles with no modification of the empirical
coefficients in the sediment transport formula proposed by Zhang and Larson [41]; and
(c) the confirmation of the empirical criterion of Larson and Kraus [59] even for conditions
beyond the ones it was developed for, without imposing any model constraints.

This work is deemed to provide useful insights on the modelling of morphology
evolution in the swash for both research and engineering applications. Along with com-
plementary authors’ work on the integrated modelling of coastal wave dynamics, hydro-
dynamics and morphodynamics [13,15,16,20,77], it is furthermore considered as a step
towards research on the combination of advanced numerical models and machine learning
methods in coastal engineering.
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