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Abstract: Reducing energy consumption and carbon emissions from ships is a major concern. The
development of hybrid technologies offers a new direction for the rational distribution of energy.
Therefore, this paper establishes a torque model for internal combustion engines and motors based
on first principles and fitting the data collected from the test platform; in turn, it develops a model
for fuel consumption and carbon emissions. Furthermore, the effect of irregular waves using an
extended Kalman filter is estimated as well as feedback to the controller as a disturbance variable.
Then, a parallel hybrid ship energy management strategy based on a new real-time nonlinear model
of predictive control is designed to achieve energy conservation and emission decrease. A hybrid
algorithm of chaotic optimization combined with grey wolf optimization is utilized to solve the
nonlinear optimization problem in the nonlinear model predictive control strategy and a local refined
search is performed using sequential quadratic programming. Through the comparison of fuel
consumption, carbon emissions, real-time performance, and the engine load path, the superiority of
the nonlinear model predictive control energy management strategy based on the chaotic grey wolf
optimization algorithm is verified.

Keywords: sequential quadratic programming; nonlinear model predictive control; energy
management; grey wolf optimization; extended Kalman filter

1. Introduction

According to the data from the International Maritime Organization (IMO), global
CO2 emissions from the shipping industry exceeded one billion tons in 2022, accounting
for about 2% to 3% of total global emissions. As a result, the IMO has put forward higher
requirements for energy saving and emission reduction in ships [1]. The emergence of
hybrid ships offers a novel option for ship operators. As a result of the design of multiple
power sources, hybrid power ships can maximize the dynamic performance of the ship
through energy optimization and achieve the purpose of energy saving and emissions
reduction. However, the multiple power sources and complex systems of hybrid ships
create difficulties in ship energy management, where various constraints and additional
degrees of freedom must be satisfied. Furthermore, the existence of various types of
subsystems leads to the need for optimal control at different scales. It is a challenge to
rationalize the ship’s energy management in this state. Moreover, ship hybrid power
systems are increasingly emphasized and supported by the manufacturing of the shipping
industry and national policies [2]. Therefore, the research and implementation of ship
energy optimization technology are imminent.

There are several approaches to hybrid ship energy management strategies available
today, such as dynamic programming (DP), Pontryagin’s minimum principle (PMP), the
equivalent consumption minimization strategy (ECMS), and model predictive control
(MPC) [3]. Certainly, current research on energy management strategies also includes
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learning-based approaches. For example, various machine learning-based energy pre-
diction methods are objectively analyzed in references [4,5] and the results achieved are
analyzed. However, machine learning algorithms require extensive training and further
verification is needed to determine whether their real-time performance can be guaranteed.
However, MPC is a more effective method for research on energy management strategies
because of its ability to simultaneously handle state and control multiple variables with
apparent real-time and optimization effects. MPC can optimize the performance index
by performing a series of control actions on the system in a predicted time horizon. For
example, MPC strategies are used in the references [6,7] for energy management. At the
same time, MPC is also used in combination with other methods for corresponding opti-
mization. For example, a method combining the equivalent consumption minimization
strategy (ECMS) with MPC was designed in the reference [8]. The ship’s fuel consumption
minimization and optimal power distribution are achieved. In reference [9], an adaptive
MPC strategy is designed by combining recursive least squares (RLS) with MPC, which
reduces the power loss of the ship by about 15% through online identification of RLS.

However, hybrid ships are typically a nonlinear system [10] which means that the clas-
sical MPC algorithms are not very good at achieving their objectives. Therefore, nonlinear
model predictive control (NMPC) was proposed. It is similar to MPC in that they are both
model-based and constraint-based optimization approaches and both achieve optimization
by calculating control actions over a future time horizon. But it differs in that the NMPC
prediction model and constraints can be nonlinear and contain time-varying parameters;
relevant objective functions can be non-quadratic. For example, reference [11] proposed an
NMPC-based energy management strategy for ships and exhibits its excellence.

Although the high complexity problem of hybrid ship systems can be solved by NMPC,
it also suffers from low solution accuracy and low efficiency. Hence, it is important to
consider how to maintain high solution accuracy and efficiency while using the NMPC for
the energy management of ships. There are many methods available for solving NMPC
problems. For example, the most classical sequential quadratic programming (SQP) is
used to deal with the constrained optimization problems through the highly simulated
Newton method. It approximates the Hessian matrix of the Lagrangian function using the
quasi-Newton method during each major iteration, which in turn generates the quadratic
programming (QP) subproblem, decomposing it in the search direction of the search process
prior [12]. A combination of a simulated annealing algorithm and a fast feed-forward
controller (QFFC) is proposed in reference [13] to solve NMPC at a given initial value
relying on Monte Carlo methods. But the speed of solving NMPC optimization problems is
not improved by this approach. The improvement in NMPC solution efficiency lies in how
to achieve lower computational complexity during its iterative update. In reference [14],
the optimization problem is defined as two-layer programming and decoupled from the
dynamic nonlinear programming problem by using the optimality PMP condition to reduce
dimensions and update states through MPC. The methods in the references [15,16] are
similar in that they are based on ADMM solving and ALR solving, respectively, with
the former requiring less computation time and the latter requiring fewer iterations and
information exchange, both of which increase computational efficiency.

Heuristic algorithms were used by some scholars to improve MPC to enhance solv-
ing performance. In reference [17], a cooperative bat algorithm (CBA) is designed to be
applied to the coordinated balancing NMPC problem of a network system, which showed
powerful performance in comparison with the original BA algorithm and particle swarm
optimization (PSO). Furthermore, reference [18] proposes a joint genetic algorithm and
ant colony optimization (GA-ACO) for MPC, where dynamic trajectory tracking control
is implemented by solving a standard MPC problem with constraints and combining it
with dynamic sliding mode control (SMC). Therefore, new attempts and improvements to
the NMPC solution to improve the stability of the NMPC energy management strategy in
optimization and to alleviate the high demands on online computation is a crucial issue to
be addressed.
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The current use of NMPC to solve the ship energy optimal problem faces problems
such as poor real-time control performance and distribution optimality [19]. As the classical
SQP method relies heavily on selecting the initial value, when the initial value is not
appropriately chosen, it will lead to longer optimization time, fall into local optimal
solutions, or even fail to find feasible solutions. Thus, many researchers are making some
improvements to the SQP problem. For example, an improved SQP is used in reference [20]
to solve the MPC energy optimization problem; indeed, the computational efficiency and
optimality of the SQP during the iterative process are improved. Improvements for SQP
are also combined with Heuristic algorithms. In reference [21], the genetic algorithm is
combined with the SQP algorithm to achieve a faster optimization speed than the single
GA. The reference [22] similarly designed the GA joint SQP algorithm and verified the
correctness of the method by solving three nonlinear dual singularity problems.

Heuristic algorithms are widely used to optimize industrial sites [23]. Given that
Heuristic algorithms tend to converge faster than other algorithms, the computational effort
can be reduced. Still, they also possess a certain degree of stability, which in turn guarantees
the existence of optimal solutions. The grey wolf optimizer (GWO) has the characteristics
of fast optimization, high accuracy, and strong robustness compared with the genetic
algorithm and particle swarm algorithm. Some classical engineering class optimization
problems can be solved by GWO [24]. In reference [25], an energy management method
was designed using GWO to apply a hybrid energy source of supercapacitors and fuel cells.
However, GWO also suffers from the problem of easily falling into local optimal solutions
with slow convergence [26]. But chaos is characterized by randomness, convenience,
and regularity [27]. Therefore, a chaotic algorithm is introduced into the population
initialization and global search to improve the search efficiency of the algorithm and to
make use of as much information in the solution space as possible. An L1 penalty term
was added to prevent the global search from going beyond the boundaries in this study.

In summary, a novel parallel hybrid ship energy management strategy based on NMPC
via a chaotic grey wolf optimization algorithm is proposed in this paper. Meanwhile, this
study is also an extension of reference [11]. In reference [11], a trade-off parameterized
energy management strategy based on NMPC is proposed and it also faces the condition
of imaginary solutions when the initial values are not properly chosen. Therefore, this
study innovatively combines classical optimization algorithms with heuristic algorithms
to avoid this problem and applies it to ship energy management. In this work, firstly,
an NMPC controller is designed based on the parallel hybrid ship dynamics model. The
influence of irregular waves was also investigated using extended Kalman filtering. Then,
a hybrid algorithm combining chaotic optimization and grey wolf optimization is used to
find the optimal solution to the optimization problems, while the classical SQP algorithm
is used for a local exact search in order to guarantee the accuracy of the solution. Finally,
by comparing the solving algorithms commonly used in the nonlinear model predictive
control, the performance of the designed algorithm is verified and the effectiveness of the
proposed new nonlinear model predictive control energy management strategy is shown.

2. Hybrid Power System Description and Modeling

The actual hybrid power ship considered in this work is shown in Figure 1 and the
powertrain of this hybrid power ship is shown in Figure 2, which features a typical parallel
structure. The main parameters of the ship are listed in Table 1. The powertrain architecture
of the hybrid power ship involves multiple subsystems and various factors of the ship’s
operation. So, the multi-input and multi-output (MIMO) model of a parallel hybrid power
system is developed, which consists of the following power supply side components:
(1) propulsion plant (mechanical shafts and the propeller); (2) internal combustion engine
(ICE); (3) motor; and (4) battery. And the propeller provides a thrust at the power demand
side. The ship’s operation at the power demand side involves overcoming various types of
resistance while maintaining speed.
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Figure 2. Powertrain architecture of a parallel hybrid power ship.

Table 1. Main parameters.

Description Symbol Value

Ship length Lship 13.08 m
Ship breadth Bship 5.28 m
Draught aft Hship 1.85 m

Mass m 55 t
Added-mass ms 2.75 t

Thrust deduction coefficient td 0.145
Effective wake coefficient fd 0.157

Wetted area S 341.5 m2

Gearbox reduction ratio ηr 3.82:1
Diameter of propeller D 1.05 m

Air resistance coefficient Cair 0.83
Water resistance coefficients CF + CR 0.0045

Water density ρ 1025 kg ·m−3

2.1. Ship Propulsion Plant Model

The modeling of a ship propulsion plant needs to take into account the power supply
and load demand shown in Figure 2. And the model of the ship propulsion plant is derived
from the reference [11].

2.1.1. Propeller Model

Based on the definition of four-quadrant open water characteristics [29], a propeller
radius of 70% and a hydrodynamic pitch angle are used:

β = arctan
(

Vp

0.7πDnP

)
(1)
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where nP is the linear speed of the propeller. Vp is the propeller inflow velocity subjected
to the ship speed V and the wave turbulence velocity vd. So, Vt is defined as:

Vt = (1− δd)V + vd (2)

where δd is the wake fraction.
Therefore, the torque QP and thrust TP of the propeller are calculated as follows:

QP = π
8 ρCQ

(√
V2

t + (0.7πnPD)2
)

D3

TP = π
8 ρCP

(√
V2

t + (0.7πnPD)2
)

D2
(3)

where CQ and CP are the torque coefficient and thrust coefficient, respectively.

2.1.2. Irregular Wave Model

Modeling methods for irregular waves from reference [11]. According to the principle
of superposition, irregular waves can be formed by the superposition of regular waves.
Firstly, the wave height ζ(t) is defined as:

ζ(t) =
∞

∑
i=1

A(ωi)cos(ωit + vi) (4)

where i denotes the i-th wave and A(ωi), ωi and vi are the magnitude, the frequency,
and the phase of the regular wave, respectively. The total number of waves is as follows:
κi =

2π
L (L is the length of each wave).

Then, suppose the wave encounter angle is Ψ. Thus, the excitation wave frequency
ωυi is defined as:

ωυi = ωi − κiVcos(Ψ) (5)

So, the wave turbulence velocity vd is given as:

vd(t) = −
∞

∑
i=1

ζ(t)e−σκi ωυi sin(ωυi t + vi)cos(Ψ) (6)

where σ is the depth of immersion for the propeller hub.

2.1.3. Ship Hydrodynamics

The surge motion of a ship is defined as follows:

(m + ms)
.

V = kPTP(1− td) + RT + Fw (7)

where kP is the number of propellers and m and ms are the ship’s mass and the added mass
on the ship, respectively. td is the thrust deduction coefficient and RT is the total resistance,
which contains the various resistances shown in Figure 1. Fw is the resistance of waves.

2.2. Modeling of Rotational Dynamics and Internal Combustion Engine

The rotational dynamics of a power plant are derived from Equation (8)

.
ωe =

1
Js
(TICE + TM − Dload) (8)

where Js is the moment of inertia at the power supply side, TICE is the brake torque of the
internal combustion engine, TM is the output torque of motor, and Dload is the disturbance
torque load that is applied to the power supply side.
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According to reference [30], the brake torque TICE of the ICE and the engine fuel
consumption (

.
m f ) can be modeled depending on the torque distribution ratio rice of the

ICE and engine speed Ne.
Therefore, TICE can be expressed as follows:

TICE = ai
[
N2

e Ne rice 1
]T (9)

where ai and i are the coefficients of the approximate polynomial and the i-th coefficient, respectively.
The engine fuel consumption

.
m f is expressed as follow:

.
m f = bjρ f

[
N2

e r2
ice Nerice Ne rice 1

]T (10)

where bj and j are the coefficients of the approximate polynomial and the j-th coefficient,
respectively. ρ f is the density of diesel fuel.

The brake specific fuel consumption (BSFC) map [31] is displayed in Figure 3.
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Figure 3 illustrates a BSFC map of the engine which reflects the combustion efficiency
of the engine at the current moment (i.e., the mass of fuel required for every 1 kWh of effec-
tive work output). Therefore, it is necessary to optimize the energy distribution to operate
the torque at the optimal efficiency point and achieve energy saving and emission reduction.

To model the relationship between fuel consumption and carbon emissions, carbon
emissions need to be modeled after the modeling of fuel consumption has been completed.
Modeling complex systems based on the Sigmoid function is a perfect way to do this and
it is widely used in various fields. Thus, the carbon emission model will use the Sigmoid
function in this paper. The carbon emissions map is shown in Figure 4.

As can be seen from [32], it has two distinct mutation points. One of them is when
Ne = 800 rpm and the other is when Ne = 1580 rpm and rice = 80%. At these two points,
carbon emissions have a sizeable abrupt change.

Therefore, the carbon emissions
.
ec can be defined as:

.
ec = β1

(
α1 +

α2

1 + e−α3(Ne−800)

)
rα4

iceNe − β2
1

1 + e−α5(rice−80)
1

1 + e−α6(Ne−1580)
rα7

iceNe (11)

where α1, α2, α3, α4, α5, α6, α7, β1, and β2 are fitting coefficients.
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2.3. Motor Output Torque Model

The motor model can be defined by the torque distribution ratio rm, as follows:

TM = rm · cm (12)

where cm is a constant, which is a unit conversion factor.
Then, the output torque of the motor is modeled in conjunction with the angular

velocity ωe of the engine via the Willan Equation [33]{
ωe · TM = e · Pm − P0(Motoring)
ωe · TM = Pm

e − P0 (Generating)
(13)

where e and P0 are the Willan constant coefficients and Pm is the electric power.

2.4. Battery Model

The energy storage device is a ternary polymer lithium battery, the battery’s nominal
capacity is 45 Ah, and the total voltage is 48 V. The four lithium battery modules connected
in parallel were used. The simple equivalent circuit model in reference [11] was considered
as the battery model for this study. The battery is expressed as follows:

dSOC
dt

= − IB
3600QB

(14)

where QB is the battery capacitance (unit: Ah) and IB is defined by Equation (15)

IB =
VOC −

√
VOC − 4PBR
2R

(15)

where PB and R are power and equivalent internal resistance of the battery, respectively;
VOC is the open circuit voltage and it is the equation for the battery SOC as follows:

VOC = k1SOC + k2 (16)

where k1 and k2 are the open circuit voltage coefficients.

2.5. Propeller Load Torque Estimation

The impact of irregular waves on propeller load torque is confirmed using extended
Kalman filtering. In accordance with the propeller strip theory, the propeller power demand
PP is proportional to the cubic engine shaft speed (PP = τN3

e ).
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By rewriting Equation (8) and defining the following observation equation based on
unknown perturbation d, the following is obtained:

.
ωe =

1
Js

(
TICE + TM −

dω2
e

η3
gb

)
(17)

The extended Kalman filter state transition and measurement functions are as follows:

x[k] = f (x[k− 1], u[k− 1]) + w[k− 1]

y[k] = h(x[k], u[k]) + v[k]
(18)

where f is a nonlinear state transition function that describes how states x =

[
ωe
d

]
evolve

from one time step to the next. h is a measurement function relating x to the measurement
y = ωe at time step k. w and v are the process noise and measurement noise, respectively.

u =

[
TICE
TM

]
is the set value of the control input.

By estimating the disturbance d, obtain d̂. Thus, the strip theory coefficient τ̂ can
be obtained based on τ̂ =

( 2π
60
)2 d̂

η3
gb

. The coefficient observed result is shown in Figure 5.

In addition, the coefficient τ̂ will be used to calculate the propeller load torque, where
Dload = D̂load = 60

2π τ̂N2
e . As can be seen Figure 5, while the strip theory coefficient fluctuates

in a small range, its mean value remains almost constant and very stable. Therefore, it
can be used in the proposed strategy to calculate and predict the future propeller load
torque online.
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3. Proposed NMPC Strategy via Chaotic Grey Wolf Optimization
3.1. Chaotic Grey Wolf Optimization (CGWO)

In this work, a chaos algorithm is introduced into GWO to overcome the trade-off
between exploration and development, which is highly dependent on the global search
ability of GWO. The principles of the GWO algorithm are briefly described below.

The principles of GWO are shown in Figure 6. According to Figure 6, it can be under-
stood that grey wolves are divided into four classes. In the GWO algorithm, optimization
(i.e., hunting) is guided by α, β, and δ. Only ω wolves follow these three wolves. Mean-
while, aa, ab, and ac are the three components of

→
a in Equation (21). Ca, Cb, and Cc denote
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the components of
→
C in Equation (21). Dα, Dβ, and Dδ are distance vectors. Therefore, the

position update of grey wolf can be expressed as follows:

→
Xa =

→
Xα −

→
Aa ·

∣∣∣∣→Ca ·
→
Xα −

→
X
∣∣∣∣

→
Xb =

→
Xβ −

→
Ab ·

∣∣∣∣→Cb ·
→
Xβ −

→
X
∣∣∣∣

→
Xc =

→
Xδ −

→
Ac ·

∣∣∣∣→Cc ·
→
Xδ −

→
X
∣∣∣∣

(19)

→
X(i + 1) =

→
Xa +

→
Xb +

→
Xc

3
(20)

where i is the current iteration number and
→
Xα,

→
Xβ and

→
Xδ are the position of α, β, and δ

wolves, respectively.
→
Xa,

→
Xb, and

→
Xc are three position vectors.

→
Aa,

→
Ab,

→
Ac,

→
Ca,

→
Cb and

→
Cc are coefficients vectors and they can be calculated as follows:

→
A = 2

→
a ·→r 1 −

→
a

→
C = 2

→
r 2

(21)

where
→
a is an encircling coefficient vector which will be linearized from 2 to 0 during the

iteration of the algorithm.
→
r 1 and

→
r 2 are random vectors in [0, 1].
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Figure 6. Principles of GWO.

Compared to the classical GWO algorithm, the CGWO algorithm uses a hybrid ap-
proach that combines chaotic mapping initialization and a chaotic search in order to enhance
the global search capability of GWO and to increase convergence speed. According to
Equation (19), the optimal solution is the average of the positions of the three leading
wolves, which disregards the individual optimal solution of each wolf in this pack. There-
fore, to improve the search capability, the optimal location solution for each wolf is incorpo-
rated into the search mechanism, as shown below:
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→
Xλk (i + 1) =

→
Xλk (i)−

→
A
∣∣∣∣→C ·→Xλk (i)−

→
X(i)

∣∣∣∣ (22)

where λk is the individual optimal solution of k-th wolf. Therefore, Equation (20) can be
updated as

→
X(i + 1) =

1
3 ∑

j=α,β,δ,λk

1−
f
(→

X j(i + 1)
)

∑
k=α,β,δ,λk

f
(→

Xk(i + 1)
)
→X j(i + 1) (23)

where f (·) is the fitness of each wolf. The implementation steps of the algorithm are
as follows:

Step 1. Firstly, there is a limited range in the solution space
[→

Xmin,
→
Xmax

]
. Then,

→
X(i + 1) needs to be mapped to range [0, 1]. And the map equation is followed as:

Γm =

→
X(i + 1)−

→
Xmin

→
Xmax −

→
Xmin

(24)

where Γm is the mapping sequence.
Step 2. The maximum number of iterations of chaotic maps is Cmax and a set of chaotic

variables is ϑ(n), n = 1, 2, 3, · · · ,Cmax. It is calculated by chaotic iterative mapping and the

chaotic solution sequence
→
X
(n)

is obtained by inverse mapping.

→
X
(n)

(i + 1) =
→
Xmin +

(→
Xmax −

→
Xmin

)
ϑ(n) (25)

Step 3. According to the calculated fitness value, the optimal solution
→
X

max
is obtained

from the chaotic solution sequence.

→
X

max
(i + 1) = argmax

{
f
(→

X
m
(i + 1)

)}
(m = 0, 1, 2, · · · ,Cmax) (26)

Step 4. By defining the hunting domain as Ωh, the new position update equation is:

→
X(i + 1) =


→
X
Cmax

(i + 1)
→
X

max
(i + 1)

ε ≥ Ωh
ε < Ωh

(27)

where ε is the random number between [0, 1]. The implementation flow of CGWO is shown
in Figure 7. It shows the algorithms designed in this study in detail and demonstrates how
the chaos algorithm is effectively combined with the GWO.

3.2. Control Architecture and Implementation of NMPC

NMPC solves a non-linear programming problem at each time step. A global search
for the solution is performed by the CGWO algorithm, while the classical SQP algorithm is
used for a further exact search to obtain the optimal control sequence. The first value of
the derived control sequence is then applied to the controlled energy management system
at each sampling moment. The final NMPC architecture and implementation is shown in
Figure 8. The figure demonstrates all relevant aspects of this research and illustrates the
application of the designed algorithms.
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Based on the modeling in Section 2, the dynamics model can therefore be built in a
generic discrete form as follows:

x(k + 1) = f (x(k), u(k)) (28)

where k denotes the k-th moment, x = [Ne, SOC, rice, rm]
T , and u =

[ .
rice,

.
rm
]T .

In this study, the proposed NMPC is expressed as follows:

minJ = γ1
N−1
∑

i=1

(
Ne,i − Ne,re f ,i

)2
+ γ2

N−1
∑

i=1

(
SOCi − SOCre f

)2

+γ3
N−1
∑

i=1

.
r2

ice,i + γ4
N−1
∑

i=1

.
r2

m,i + γ5
N−1
∑

i=1
r2

m,i

+ ϕ1

(
Ne,N − Ne,re f ,N

)2
+ ϕ2

(
SOCi,N − SOCre f ,N

)
+

N
∑

i=1
‖xi‖

s.t.



Ne,min ≤ Ne ≤ Ne,max
SOCmin ≤ SOC ≤ SOCmax
rm,min ≤ rm ≤ rm,max.
rice,min ≤

.
rice ≤

.
rice,max.

rm,min ≤
.
rm ≤

.
rm,max

rice ≥ 0

(29)

wherein i = 1, 2, 3, · · · , N represents control point, Ne,re f is the reference engine speed, and
SOCre f is the reference battery SOC. γ1, γ2, γ3, γ4, γ5, ϕ1 and ϕ2 are the penalty coefficients.

In addition,
(

Ne,i − Ne,re f ,i

)2
denotes the need to minimize the difference between pre-

dicted speed and reference speed to ensure the stability of the control.
(

SOCi − SOCre f

)2

is a penalty measure for deviations in the battery SOC, ensuring that energy demand
changes from overcharging and discharging are avoided throughout the operating cycle.
N
∑

i=1
‖xi‖ is a L1 penalty term and represents all the state variables. It ensures that the GWO

algorithm does not jump out of the constraint condition in the solution and can accelerate
the optimization search.

4. Results and Analysis

In order to reduce the amount of computation, the NMPC controller sample time was
set to 0.5 s. The parameters related to constraint values of the NMPC optimization problem
are listed in Table 2.

All results of this experiment were obtained in the MATLAB environment. The MAT-
LAB optimization toolbox, the open-source chaos algorithm, and the grey wolf optimization
algorithm are combined and applied to implement the energy strategy as described in
detail in Section 3 (the program code is described to realize the energy strategy and will be
uploaded to https://github.com/NOKoooy (accessed on 19 September 2023). MATLAB is
capable of solving various problems optimally and performing trade-off analysis and has
good algorithm incorporation capabilities. It is also capable of performing functions such
as parameter estimation, component selection, and parameter tuning, making is well-suited
for energy management.

The results of the engine speed tracking and a partial enlargement are shown in
Figure 9. It includes the result figures of using the classical sequential quadratic pro-
gramming algorithm, the classical genetic algorithm, and the genetic algorithm combined
with the SQP algorithm. As can be seen from Figure 9, all algorithms accomplish the
goal of tracking the speed reference base but their fluctuation profiles differ. Firstly, the
NMPC + GA algorithm has more fluctuations in track than the NMPC + SQP algorithm, the

https://github.com/NOKoooy
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NMPC + GA_SQP algorithm, and the designed NMPC + CGWO algorithm. RMSE is
frequently used to measure prediction results in machine learning, so it can be used to
measure the superiority of the tracking results of NMPC-solving algorithms.

Table 2. System simulation parameters.

Description Symbol Value

Sample time Ts 0.5 s
Prediction Horizon Np 5 steps

Control Horizon Nc 5 steps
Penalty coefficient γ1, γ2, γ3, γ4,

γ5, ϕ1, ϕ2

1, 150, 5, 0.5
0.5, 15, 1000

Battery Maximum SOC SOCmax 80%
Battery Minimum SOC SOCmin 20%

Maximum Ne Ne,max 1700 rpm
Minimum Ne Ne,min 500 rpm

Maximum Motor Command rm,max 90%
Minimum Motor Command rm,min −90%

Maximum Motor Command Rate
.
rm,max 50%

Minimum Motor Command Rate
.
rm,min −50%

Maximum ICE Command Rate
.
rice,max 20%

Minimum ICE Command Rate
.
rice,min −10%

Water density ρ 1025 kg ·m−3
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Figure 9. Engine speed tracking of each NMPC solving algorithm.

The RMSE values of the tracking results of the four algorithms are calculated and
shown in Table 3. Combined with Figure 9 and Table 3, we can know the results of the
proposed NMPC + CGWO compared with other algorithms. In contrast, it can better
achieve the prediction and tracking of the engine reference speed. It can be seen that the
solution effect of the GA algorithm is the most fluctuating condition and that the difference
between the predicted and reference values of the model is the largest.
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Table 3. RMSE of Solving algorithm.

Solving Algorithm RMSE

NMPC + SQP 13.1597
NMPC + GA 21.9220

NMPC + GA_SQP 11.9940
NMPC + CGWO 4.5480

The simulated torque distribution and SOC variation of an internal combustion engine
under the four algorithms are shown in Figure 10. The upper picture shows the simulated
torque distribution (U) and the lower picture shows the SOC variation (L). As can be seen
from the torque distribution diagram of the internal combustion engine in Figure 10, the
torque provided by the proposed algorithm and GA is higher than that of the other two
algorithms under the same working conditions. The strategy designed by the institute
provides higher torque than GA before 500 s. It shows the advantages of the designed
algorithm. While the torque changes, so does the battery SOC. The battery SOC variation
figure shows that the GA algorithm solves for the optimized battery SOC fluctuation range
of 49.4–52.9% and that of the classical SQP algorithm is 47.9–52.7%. The GA-SQP algorithm
solves for the battery SOC fluctuation range of 44.8–50.6% and the fluctuation range of
battery SOC based on chaotic grey wolf NMPC strategy is 46.8–53.3%. The less fluctuation
in battery SOC is owing to the entire ship operating conditions being not fully considered.
The SOC needs to be stabilized to near the reference value each time step, which limits the
variation of battery SOC.
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The ultimate goal of designing energy management strategies is lower fuel consump-
tion and reduced emissions. Therefore, comparing fuel consumption and carbon emissions
must be performed using the developed NMPC optimization solution algorithm. Fuel
consumption curves (U) and carbon emission curves (L) for all methods are shown in
Figure 11.
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According to Figure 11, the fuel consumption curve and carbon emission curve of
NMPC + CGWO are below the corresponding fuel consumption and carbon emissions of
other methods. Two nodes are labeled in Figure 11 and, based on the engine speed tracking
operating conditions shown in Figure 9, it is known that the first peak in fuel consumption
is reached around 60 s to 230 s for all four methods. After 300 s, it enters a phase similar to
a plateau period according to the set-up operating conditions.

However, both the optimized fuel consumption curve and the carbon emission curve
are accompanied by large fluctuations. This is because the engine speed itself is made up of
many small gradient changes. In Section 2,

.
m f and

.
ec are differential forms. Therefore, when

calculating fuel consumption and carbon emissions, it is necessary to calculate the integral
based on the optimized operating conditions, this leads to large fluctuations. Although
there are fluctuations, it still demonstrates the superiority of the algorithm designed in
this study.

In order to compare the performance of the four algorithms more intuitively and
accurately, the total fuel consumption, total carbon emissions, and total computation
time of the four algorithms during the optimization time period are presented in Table 4,
where the comparison of computation time demonstrates the real-time performance of
the algorithms.

Table 4. Total fuel consumption, total carbon emissions, and total computation time.

Algorithm Total Fuel Consumption (kg) Total Carbon Emissions (g) Total Computation Time (s)

NMPC + GA 9.8779 39.1280 344.7736
NMPC + SQP 12.5982 75.6191 26.7451

NMPC + GA_SQP 11.9610 67.7434 104.3345
NMPC + CGWO 9.3184 33.0421 38.25141

As shown in Table 4, the proposed strategy corresponds to the lowest total fuel
consumption and carbon emissions, indicating that its solution is the best. Although it is
accompanied by large fluctuations, as shown in Figure 11, it does not impact the NMPC
energy management strategy much. Among the other three algorithms, the one with the
best fuel consumption and carbon emissions performance is the GA algorithm. In addition,
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the total computing time of the proposed NMPC strategy ranks second among the four
algorithms, only higher than that of the SQP algorithm. But the fuel consumption and
carbon emissions of the SQP solving algorithm are higher than those of the proposed
solving algorithm. To further illustrate the effectiveness of the strategy, the engine load
paths under various algorithms are shown in Figure 12.
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According to Figure 12, it is known that the engines under the two solution algorithms,
SQP and GA-SQP, did not approach the operating point with a lower effective fuel con-
sumption rate as in the case of GA and the proposed algorithm. The proposed strategy is
more effective than GA. It also corroborates the argument that the proposed strategy in
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5. Conclusions

This study is based on previous research [11] and designs a nonlinear model predictive
control energy management strategy using a hybrid optimization algorithm that combines a
chaos algorithm with GWO. The hybrid optimization algorithm is utilized for global search,
while the classical SQP is employed for local exact search. Furthermore, an L1 penalty
factor is introduced to prevent the global search from crossing the boundaries. This strategy
ensures optimality to the maximum extent in order to achieve a reasonable distribution of
energy. In addition, irregular waves are modeled and extended Kalman filtering is used to
estimate ship propeller load torque as part of a nonlinear prediction model.

In addition, the results show that the proposed NMPC based on the chaotic grey
wolf optimization algorithm yields better performance compared to other algorithms.
Compared to using the classical SQP strategy, the proposed algorithm in this study reduces
fuel consumption by approximately 26% and carbon emissions by approximately 56%
over the optimized time period. Despite a slight increase in the total optimization time, it
exhibits better performance in the prediction and tracking of engine speed (with a RMSE
value of 4.5840), indicating good immunity to interference. Therefore, the proposed NMPC
strategy can rationalize the energy allocation and provide ideas for realistic applications.
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