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Abstract: Synchronous generators with three phases are crucial components of modern integrated
power systems in ships. These generators provide power for the entire operation of the vessel.
Therefore, it is of paramount importance to diagnose short-circuit faults at the generator terminal
in the ship’s power system to ensure the safe and stable operation of modern ships. In this study, a
generator terminal short-circuit fault diagnosis method is proposed based on a hybrid model that
combines the Multi-Level Wavelet Decomposition Network, Deep-Gated Recurrent Neural Network,
and Fully Convolutional Network. Firstly, the Multi-Level Wavelet Decomposition Network is used
to decompose and denoise the collected electrical signals, thus dividing them into sub-signals and
extracting their time-domain and frequency-domain features. Secondly, synthetic oversampling
based on Gaussian random variables is employed to address the problem of imbalance between
normal data and fault data, resulting in a balanced dataset. Finally, the dataset is fed into the hybrid
model of the Deep-Gated Recurrent Neural Network and Fully Convolutional Network for feature
extraction and classification of faults, ultimately outputting the fault diagnosis results. To validate the
performance of the proposed method, simulations and comparative analysis with other algorithms
are conducted on the fault diagnosis method. The proposed algorithm’s accuracy reaches 96.82%,
precision reaches 97.35%, and the area under curve reaches 0.85, indicating accurate feature extraction
and classification for identifying short-circuit faults at the generator terminals.

Keywords: ship integrated power system; fault diagnosis; multi-level wavelet decomposition net-
work; improved SMOTE algorithm; deep-gated RNN-FCN

1. Introduction

Fully electrically propelled ships are becoming increasingly popular due to their eco-
nomic efficiency and high reliability, making them the primary focus for the development of
advanced ships. However, these ships can have high power demands of up to 100 MW [1].
The integrated power propulsion system of a ship can not only meet this critical techno-
logical requirement but can also provide power to various onboard loads, making it a
crucial trend for the development of ship power systems. Currently, the power systems of
fully electrically propelled ships are primarily classified into three types: medium-voltage
AC, medium-voltage DC, and high-frequency AC, with medium-voltage AC and high-
frequency AC power systems being the most widely used. However, these systems have
some inherent drawbacks, such as difficulties in grid connection and poor performance in
motor speed control [2]. Therefore, researchers are focusing on MVDC power systems as a
way to overcome these challenges.

Modern ship’s integrated power systems require high-capacity three-phase syn-
chronous generator sets, which typically include permanent magnet synchronous gen-
erators, induction synchronous generators, slip-ring synchronous generators, and air-gap
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synchronous generators [3]. These generators provide stable three-phase voltage and fre-
quency output for ships, and there are usually multiple generators connected to different
electrical equipment and systems. During operation, shipboard synchronous generators
store a significant amount of electromagnetic energy internally and continue to rotate
even in the event of an external short-circuit fault due to the physical characteristics of the
generator. As a result, the conversion time of electromagnetic energy is relatively long [4].
Short-circuit faults are the most common failures in modern integrated electric propulsion
systems for ships and can have a significant impact, causing abnormal increases in current,
voltage fluctuations, and even fire hazards [5]. To ensure the safety and reliable operation
of the ship, accurate diagnosis of short-circuit faults at the output terminal of synchronous
generators, including timely diagnosis, detection, and repair, is necessary.

In the field of short-circuit fault diagnosis in ship’s integrated power propulsion sys-
tems, the commonly used research methods can be classified into three categories: analytical
model-based methods [6], data-driven methods [7], and qualitative model-based meth-
ods [8]. The specific classification is shown in Table 1 [9]. The methods described above
are widely used in the field of fault diagnosis in the ship’s integrated power propulsion
systems; however, each of them has its limitations. Analytical model-based fault diagnosis
methods aim to diagnose faults in real time based on the essential characteristics of the
object system. However, they require highly accurate mathematical models, which can
be challenging to develop precisely due to the harsh operating environment and complex
and varying operating conditions of shipboard power systems [10]. Data-driven methods
require different processing approaches for different faults or signals, which limits their
generality [11]. In contrast, qualitative model-based methods face difficulties when diag-
nosing complex systems, such as the ship’s power propulsion systems. The number of
fault branches rapidly increases once a fault occurs, making the diagnosis process increas-
ingly complicated and resulting in lower accuracy and poor real-time performance of the
diagnosis results [12].

Table 1. Common methods of fault diagnosis.

Failure diagnosis
method

Method based on
analytical model

State estimation method

Parameter estimation method

Equivalent spatial method

Method based on a
data-driven approach

Method based on signal
processing

WT

EMD

MSP

Spectral Analysis

Multivariate statistical
analysis PCA

Method based on shallow
machine learning

ANN

SVM

Method based on deep learning

Method based on
information fusion

Fuzzy fusion
method

Reliability
function theory

method

Rule reasoning

Method based on
qualitative model-based

approach

Fault Tree Analysis

SDG
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With the emergence of AI technology and its subfields, including machine learning
and deep learning, AI-based intelligent fault diagnosis methods have become a prominent
trend in the field [13]. Typically, the main steps involved in these methods are data
preprocessing, fault feature extraction, and fault classification. Unlike other methods,
AI-based approaches do not rely on constructing accurate mathematical models for the
research object, and they provide benefits, such as handling large datasets, efficient learning,
high diagnostic accuracy, and versatility in various domains [14]. Figure 1 illustrates the
general workflow involved in traditional AI-based intelligent fault diagnosis methods.
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Table 2 classifies traditional intelligent fault diagnosis methods [15]. Despite their
utility, traditional approaches have four primary drawbacks. Firstly, they heavily rely on
domain-specific expert experience and prior knowledge, resulting in limited generalization
and suboptimal performance when detecting faults in different objects. Secondly, the
harsh operating conditions of ship power systems generate significant amounts of noise,
preventing traditional algorithms from extracting reliable features for detecting faults in
generators [16]. Thirdly, ship power grid data exhibit the “4V” characteristics, leading to
imbalanced datasets due to the generation of massive amounts of data during operation,
coupled with limited fault data. Finally, power grid data are provided in time series
format, which is not suitable for traditional algorithms to perform feature extraction and
classification. Consequently, AI-based intelligent fault diagnosis methods have become
a topic of significant interest for research in addressing these challenges [17]. Chaochun
Yu et al. [18] have proposed an improved CNN-based network fault diagnosis model for
detecting faults in synchronous generators of ship power systems. This method eliminates
the requirement for feature decomposition and extraction, making it simple to implement
and able to operate at high speeds. Nonetheless, the input dataset for this method comprises
simulated fault images, and preparing a large-scale image dataset entails a laborious and
time-consuming process for collecting and labeling the data.
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Table 2. Intelligent fault diagnosis methods based on artificial intelligence.

Fault diagnosis method
based on artificial

intelligence

Supervised learning

Artificial Neural Network

Support Vector Machine

Random Forests

K-nearest neighbor

Semi-supervised learning
Generative method

A divergence-based approach

Unsupervised learning

Self Organizing Map

Clustering algorithm

Principal Component Analysis

Deep learning

Convolutional Neural Network

Deep Belief Network

Stacked Auto Encoders

Reinforcement learning Q-learning

Transfer learning TrAda Boost

Wenxin Liu et al. [19] tackled the issue of diagnosing stator winding faults in perma-
nent magnet synchronous motors by proposing an improved PSO algorithm to optimize
the difficult parameter selection. However, the dependence on global optimization limits
the PSO algorithm’s ability to model high-dimensional data sequences.

Mengshi Li et al. [20] proposed a data-driven technique for wind turbine fault diag-
nosis based on the attributes of power grid data sequences. This method implemented
an LSTM network, applying residual generators and autonomous decision-making based
on the Architecture RF. The LSTM network showed excellent results in processing time
series data of wind turbine units. However, due to the computation requirements of using
a single LSTM for long sequences, training and inference speeds are comparatively slower.

After considering the advantages and disadvantages of traditional artificial intelli-
gence algorithms, this paper proposes an innovative fault diagnosis method for short circuit
faults in the three-phase synchronous generator output of a ship’s MVDC power propul-
sion system, utilizing MWDN and the fusion of deep-gated RNN-FCN. Firstly, MWDN
is employed to preprocess the power grid data by performing signal decomposition and
denoising to facilitate further feature extraction. Next, the issue of imbalanced sample data
is addressed by using SMOTE, improved by Gaussian random variables, for oversampling
the fault class samples and generating synthetic samples to balance the dataset. Finally,
the deep-gated RNN-FCN network is utilized to extract features and classify faults from
the preprocessed dataset. This is performed by introducing the dropout regularization
technique after each deep-gated RNN submodule to reduce the risk of overfitting. Experi-
ments show that the developed method achieves high accuracy, thus presenting innovative
contributions to fault diagnosis, including the following:

(1) A novel data preprocessing method based on MWDN is employed to extract both
time-domain and frequency-domain features of the power grid signals. The method
decomposes the collected electrical signals into sub-signals, adds the denoising pro-
cess, and improves the accuracy of fault diagnosis by reducing the impact of noise on
feature extraction from original signals.

(2) To address the issue of imbalanced sample data, a SMOTE algorithm based on Gaus-
sian random variables is proposed. While the SMOTE algorithm can handle the
class imbalance problem in power grid data, the artificially synthesized new samples
tend to lie on the same straight line, resulting in an issue of overgeneralization. By
introducing Gaussian probability distribution into the feature space, the SMOTE algo-
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rithm based on Gaussian random variables is developed, which allows the artificially
generated samples to deviate from the straight line, thereby addressing this problem.

(3) A fault diagnosis method based on deep-gated RNN-FCN is introduced, with hidden
state calculation performed by LSTM, creating a deep-gated RNN. Additionally, a
deep-gated RNN submodule is added to the FCN module, expanding the FCN into
a deep-gated RNN-FCN and improving fault feature extraction. Softmax function
is utilized in the classification layer to address the problem of gradient vanishing
and capture long-distance dependencies in the time series data, leading to enhanced
network performance.

This paper is structured as follows. In Section 2, the structure of the synchronous
generator is explained, including its mathematical models for voltage, magnetic flux,
and short-circuit current, and fault labels are provided. Section 3 presents the overall
framework of the proposed fault diagnosis algorithm, along with detailed descriptions
of each component. In Section 4, simulations of the proposed algorithm are conducted
and compared with other algorithms. Based on the simulation results, a comprehensive
evaluation of the performance of the proposed method is provided. Finally, Section 5
concludes the paper.

2. Mathematical Model and Fault Analysis of Synchronous Generators
2.1. Mathematical Modeling of Voltage, Magnetic Flux, and Short-Circuit Current in Synchronous
Generators

When a short-circuit fault happens at the synchronous generator’s terminal, mathemat-
ical models can be utilized for fault diagnosis, analysis, and prediction. By incorporating
effects such as changes in current, voltage, and power resulting from the fault, as well as
fault propagation and diffusion mechanisms, mathematical models offer valuable insights
for analyzing faults. Additionally, mathematical models can aid in fault diagnosis and
localization.

Synchronous generators can be classified into two types based on their structure:
rotating armature synchronous generators and rotating field synchronous generators.
Currently, rotating field synchronous generators are widely used in medium to large-
sized motors. The two types of rotating field synchronous generators are salient pole
synchronous generators and non-salient pole synchronous generators, as illustrated in
Figure 2, which depict their basic structures.
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This study focuses on the investigation of salient pole three-phase synchronous gen-
erators. The dynamic characteristics of synchronous generators are complex, with intri-
cate coupling relationships existing among different windings. Therefore, modeling the
generator using a three-phase stationary coordinate system would result in a significant
computational burden. As a solution, this paper utilizes a dq rotating coordinate system to
transform the three-phase coordinate system, enabling decoupling between the different
magnetic fluxes in the generator. This reduces the number of variables in the generator
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equations and improves computational efficiency. The following is the Park transformation
matrix for dq0 coordinate conversion:

P =
2
3

cos θ cos(θ − 2π
3 ) cos(θ + 2π

3 )
sin θ − sin(θ − 2π

3 ) − sin(θ + 2π
3 )

1
2

1
2

1
2

 (1)

The transformed flux equations are as follows:
ϕd
ϕq
ϕ f
ϕD
ϕQ

 =


Xd 0 Xad Xad 0
0 Xq 0 0 Xaq

Xad 0 X f Xad 0
Xad 0 Xad XD 0

0 Xaq 0 0 XQ



−id
−iq
i f
iD
iQ

 (2)

The transformed voltage equations are as follows:
ud
uq
u f
uD
uQ

 =
d
dt


ϕd
ϕq
ϕ f
ϕD
ϕQ

+


−raid
−raiq
r f i f
rDiD
rQiQ

+


−ωϕq
ωϕd

0
0
0

 (3)

where uD = 0 and uQ = 0. The equation for the electromagnetic torque of the synchronous
generator after the transformation is as follows:

Me = ϕdiq − ϕqid (4)

In ship power systems, a short circuit fault can cause a transient process in the genera-
tor, resulting in a deviation of the terminal voltage and frequency from their steady-state
values. Despite the short duration of the short circuit effect due to the large rotor inertia, it is
still necessary to consider the electromagnetic transient process of the generator. Therefore,
it is commonly assumed that the generator rotor maintains synchronous speed, keeping the
frequency constant. However, it is still necessary to consider the electromagnetic transient
process of the generator, which means that the terminal voltage cannot remain stable [21].

During normal operation, the three-phase stator currents of a synchronous generator
are symmetrical and balanced positive-sequence currents, expressed by the following
equation: 

ia = Im cos(ωt + α0)
ib = Im cos(ωt + α0 − 2

3 π)
ic = Im cos(ωt + α0 +

2
3 π)

(5)

When a short circuit occurs at a synchronous generator’s terminal, the resulting fault
current is equal to the sum of its AC and DC components [22]. The expression for the total
stator three-phase current is given by

ia(t) = [(
E′′q0

X′′d
−

E′q0
X′d

)e
− t

T′′d + (
E′q0
X′d
− Eq(0)

Xd
)e
− t

T′d +
Eq(0)
Xd

] cos(ωt + θ0)

+
E′′d0
X′′q

e
− t

T′′q sin(ωt + θ0)

− u0
2 ( 1

X′′d
+ 1

X′′q
)e−

1
Ta cos(δ0 − θ0)− u0

2 ( 1
X′′d
− 1

X′′q
)e−

1
Ta cos(2ωt + δ0 + θ0)

(6)
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ib(t) = [(
E′′q0

X′′d
−

E′q0
X′d

)e
− t

T′′d + (
E′q0
X′d
− Eq(0)

Xd
)e
− t

T′d +
Eq(0)
Xd

] cos(ωt + θ0 − 2
3 π)

+
E′′d0
X′′q

e
− t

T′′q sin(ωt + θ0 − 2
3 π)

− u0
2 ( 1

X′′d
+ 1

X′′q
)e−

1
Ta cos(δ0 − θ0 − 2

3 π)− u0
2 ( 1

X′′d
− 1

X′′q
)e−

1
Ta cos(2ωt + δ0 + θ0 − 2

3 π)

(7)

ic(t) = [(
E′′q0

X′′d
−

E′q0
X′d

)e
− t

T′′d + (
E′q0
X′d
− Eq(0)

Xd
)e
− t

T′d +
Eq(0)
Xd

] cos(ωt + θ0 +
2
3 π)

+
E′′d0
X′′q

e
− t

T′′q sin(ωt + θ0 +
2
3 π)

− u0
2 ( 1

X′′d
+ 1

X′′q
)e−

1
Ta cos(δ0 − θ0 +

2
3 π)− u0

2 ( 1
X′′d
− 1

X′′q
)e−

1
Ta cos(2ωt + δ0 + θ0 +

2
3 π)

(8)

2.2. Fault Types and Labels

The occurrence of generator-end short circuit faults in ship power systems denotes a
situation where one or several phases of the generator output terminal are short-circuited
to the ground or between different phases. Such faults cause severe and common damage
to the ship’s power system during normal operation. Short circuit faults in ship power
systems are classified into single-phase, two-phase, and three-phase depending on their
specifics. These faults result in 11 fault state labels, which are presented in Table 3. The
labeled dataset is used for training and testing the algorithm proposed in this paper.

Table 3. Correspondence between fault types and labels.

Mode Type Label

Fault 1 A-phase grounding 1
Fault 2 B-phase grounding 2
Fault 3 C-phase grounding 3
Fault 4 A and B-phase short circuit grounding 4
Fault 5 A and C-phase short circuit grounding 5
Fault 6 B and C-phase short circuit grounding 6
Fault 7 Three-phase short circuit grounding (A, B, and C phases) 7
Fault 8 A and B-phase short circuit 8
Fault 9 A and C-phase short circuit 9

Fault 10 B and C-phase short circuit 10
Fault 11 A, B, C three-phase short circuit 11

3. Overall Framework and Detailed Explanation of Fault Diagnosis Algorithm

This paper proposes a novel fault diagnosis method based on MWDN and Deep-
Gated RNN-FCN to diagnose the three-phase synchronous generator terminal short-circuit
fault prevalent in ship MVDC power propulsion systems. The overall framework of the
proposed method is illustrated in Figure 3. The model takes raw voltage and current
data as input and uses MWDN to extract time-domain and frequency-domain features of
the power system signals. The method addresses the class imbalance issue via SMOTE
based on Gaussian random variables, generating artificial samples to balance the dataset.
To achieve fault classification, the deep-gated RNN-FCN model is employed for feature
extraction, with the output being the result of fault classification.
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3.1. Multi-Level Wavelet Decomposition Network

MWDN can break down the fault data sequence in a power grid into a collection of
high- to low-frequency sub-sequences. The MWDN method is an approximate MDWD that
operates within the framework of a deep neural network, utilizing the temporal decom-
position capability of wavelets while benefiting from the learning ability of deep neural
networks. Compared to FFT, the MWDN technique excels in handling non-stationary
signals, offering excellent time-frequency dual resolution and multi-scale analysis. It is
especially useful for processing power grid fault signals as it displays energy concentra-
tion [23,24]. MWDN is similar in principle to MDWD recommended in reference [25].
Unlike MDWD, MWDN enables model parameter fine-tuning, enhancing its adaptability
to data from various sources. Figure 4 shows the schematic diagram of the MWDN.

First, the principle of multilevel discrete wavelet decomposition is introduced. Let
x = {x1, . . . , xt, . . . , xT} represent the input fault data sequence, xh(i) represent the high-
frequency subsequence of the i-th level, xl(i) represent the low-frequency subsequence,
l represent the low-pass filter, l = {l1, . . . , lk, . . . , lK}, h represent the high-pass filter,
h = {h1, . . . , hk, . . . , hK}, where K � T. In the i + 1-th level, MDWD uses both the high-
pass and low-pass filters to convolve the lower-level low-frequency subsequence, as shown
in Equation (9):

al
n(i + 1) =

K
∑

k=1
xl

n+k−1(i)•lk

ah
n(i + 1) =

K
∑

k=1
xl

n+k−1(i)•hk

(9)

The low-frequency subsequence xl(i) and the high-frequency subsequence xh(i) in the
i-th level are generated by downsampling al(i) =

{
al

1(i), al
2(i), al

3(i) . . .
}

and ah(i) ={
ah

1(i), ah
2(i), ah

3(i) . . .
}

by a factor of 1/2. al(i) =
{

al
1(i), al

2(i), al
3(i) . . .

}
and ah(i) ={

ah
1(i), ah

2(i), ah
3(i) . . .

}
are intermediate variable sequences. xh(1), xh(2), xh(3), . . . , xh(i),

xl(i) together form the subset X(i)=
{

xh(1), xh(2), xh(3), . . . , xh(i), xl(i)
}

, which represents
the i-th level decomposition result of the sequence x. Additionally, sequence X(i) satisfies
the following three conditions:

(1) x can be completely reconstructed from X(i);
(2) The frequency decreases sequentially from xh(1) to xl(i); i.e., it goes from high-

frequency to low-frequency;
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(3) At different levels, the time and frequency resolutions of the subset X(i) are different.
Moreover, as i increases, the frequency resolution also increases, while the time
resolution decreases. These phenomena are particularly evident in the low-frequency
subsequence.
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Based on the principle of MDWD, we can obtain the framework of MWDN. As shown
in Figure 4a, MWDN performs hierarchical decomposition of fault data sequences using
functions ah(i) and al(i):

ah(i) = σ(Wh(i)xl(i− 1) + bh(i))
al(i) = σ(W l(i)xl(i− 1) + bl(i))

(10)

The sigmoid function is used in MWDN. xh(i) and xl(i) have the same meanings as

in MDWD, and xl
j(i) =

(al
2j(i)+al

2j−1(i))
2 . The weight matrices Wh and Wl in Figure 4a are
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trainable and belong to RM×M. M represents the size of xl(i− 1), Wh and Wl are defined
as follows:

Wh(i) =



h1 h2 h3 · · · hK ∈ · · · ∈
∈ h1 h2 · · · hK−1 hK · · · ∈
...

...
...

. . .
...

...
...

...
∈ ∈ ∈ · · · h1 · · · hK−1 hK
...

...
...

. . .
...

...
...

...
∈ ∈ ∈ · · · · · · · · · h1 h2
∈ ∈ ∈ · · · · · · · · · ∈ h1



Wl(i) =



l1 l2 l3 · · · lK ∈ · · · ∈
∈ l1 l2 · · · lK−1 lK · · · ∈
...

...
...

. . .
...

...
...

...
∈ ∈ ∈ · · · l1 · · · lK−1 lK
...

...
...

. . .
...

...
...

...
∈ ∈ ∈ · · · · · · · · · l1 l2
∈ ∈ ∈ · · · · · · · · · ∈ l1



(11)

where |∈| � |l|, ∀l ∈ 1, |∈| � |h|, ∀h ∈ h. With this, the construction of MDWN is
complete.

In this paper, MWDN is employed to decompose the voltage and current data collected
during fault occurrences into high-frequency and low-frequency sub-sequences. This
approach extracts frequency-domain and time-domain characteristics of the signals and
applies denoising techniques to collected power system signals. The goal of this approach
is to improve the final fault diagnosis accuracy.

3.2. SMOTE Method Based on Gaussian Random Variable

The data collected from ship power systems are characterized by a significant imbal-
ance between the normal and faulty classes, with a large majority of normal operating
data. The data imbalance presents challenges for fault diagnosis. This paper proposes an
enhanced SMOTE optimization algorithm based on Gaussian random variables to address
the class imbalance between the fault and normal classes.

The SMOTE [26] algorithm uses the KNN to obtain a uniform probability distribution
and oversamples the fault class by generating synthetic samples [27]. First, the power
system data is divided into normal and fault data. Next, the K-nearest neighbors are
obtained using the KNN algorithm for each fault data point. A random selection of
neighbors is then made within the K nearest neighbors for each fault sample to create
synthetic new samples. Finally, the difference is computed between the fault sample data
and its nearest neighbors, as depicted in Equation (12).

di f =
∣∣∣C f ault − Ck

NN

∣∣∣ (12)

The value di f , obtained from Equation (12), is multiplied by a random value following
a uniform probability distribution to introduce randomness. Synthetic new samples can be
generated using the following equation:

Csynthetic = C f ault +
∣∣∣C f ault − Ck

NN

∣∣∣× Prandom (13)

This process is repeated until the desired number of synthetic samples is obtained.
The process described above refers to the standard SMOTE algorithm. Nonetheless,

the synthetic samples generated by the standard SMOTE algorithm tend to lie on the same
line, resulting in overfitting. To overcome this issue, we propose a SMOTE algorithm
based on the Gaussian random variable. The calculation of the difference value in the
SMOTE algorithm based on Gaussian random variables utilizes the same approach as
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SMOTE. However, the improved algorithm makes a random selection between 0 and using
Equation (14):

gap ∼ U(0, di f ) (14)

With this equation, we can estimate potential locations for synthetic samples. Next,
we follow Equation (15) and sample another number from a Gaussian distribution to use
as the parameter σ:

range ∼ N(gap, σ) (15)

Equations (14) and (15) help derive the parameters required for generating synthetic
data in the feature space, as depicted in Equation (16):

Csynthetic = C f ault + di f × range (16)

The SMOTE algorithm based on Gaussian random variables improves synthetic sam-
ple generation by utilizing parameters selected from a Gaussian distribution. As a result,
synthetic samples can be created in locations beyond the straight line that connects fault
class samples. Nonetheless, the algorithm guarantees that the synthetic samples remain
near the line to ensure accuracy and reasonableness. Figure 5 shows the schematic diagram
and flowchart of the algorithm.

In synthetic samples, overgeneralization is a persistent problem due to the significant
class imbalance that necessitates the creation of synthetic data. Consequently, there is a high
probability that the synthetic data will be located along the same line. This phenomenon
represents a type of overgeneralization. To address this issue, this paper proposes the
Gaussian random variable-based SMOTE method, which incorporates Gaussian probability
distributions in the feature space. This approach permits the SMOTE algorithm’s newly
generated synthetic samples to deviate minimally from the dominant line due to the
Gaussian probability distribution.
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3.3. Deep-Gated RNN-FCN

FCN, RNN, and LSTM are widely used neural networks for time series classification
tasks [28,29]. Specifically, the data sequence of the ship’s power grid represents a time
series. To enhance the RNN’s performance in capturing the dependency relationship of fault
sequences and address the gradient vanishing issue, we replaced the computation of hidden
states in the RNN with that in an LSTM. This technique creates a deep-gated RNN for our
investigation. The modification of adopting the LSTM-based computation helps alleviate
the problem of vanishing gradients in RNN while also improving its capacity to capture
the dependence relation of fault sequences more effectively. We further constructed the
Deep-Gated RNN-FCN model by integrating the deep-gated RNN with FCN. Through this
combination, the deep-gated RNN enhances FCN’s performance in time series classification,
thereby improving the fault classification accuracy significantly.

RNN can be categorized into two types: those without hidden states and those with
hidden states. In this study, we utilized the RNN with hidden states to capture and store
contextual information from prior time steps. Given a regular RNN, the computation of
the hidden variable Ht at a time step t is represented by Equation (17). This calculation is
recurrent and directly depends on both the input at the current time step and the hidden
variable from the preceding time step.

Ht = φ(XtWxh + Ht−1Whh + bh) (17)
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where Ht ∈ Rn×h is the hidden variable, also known as the hidden state, at the current time
step t. Ht−1 is the hidden variable at the previous time step t− 1. Xt ∈ Rn×d represents
the mini-batch input at the current time step. Wxh ∈ Rd×h and Whh ∈ Rh×h are the weight
parameters of the hidden layer, and bh ∈ R1×h is the bias parameter of the hidden layer.

The calculation of the output Ot at the time step t is given by Equation (18):

Ot = HtWhq + bq (18)

In the equation, Whq ∈ Rh×q represents the weight parameters of the output layer,
and bq ∈ R1×q represents the bias parameters of the hidden layer. In an RNN, the model
parameters remain unchanged across different time steps, and the calculation logic is
illustrated in Figure 6.
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LSTM networks are equipped with input gates, forget gates, output gates, and a
dedicated hidden state called the memory cell. The computation of LSTM’s hidden state
is depicted in Figure 7, where the output gate manages the flow of information from the
memory cell to the hidden state:

Ht = Ot � tanh(C1) (19)

In the equation, Ht ∈ Rn×h represents the hidden state at the time step t, Ot represents
the output state, and tanh represents a function. It is ensured that the hidden state is within
the range [−1, 1].
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To replace the calculation of the hidden state in a traditional RNN with the hidden
state calculation in an LSTM, we created a deep-gated RNN.

The FCN block, consisting of three stacked temporal convolutional blocks, with con-
volution kernel sizes of 128, 256, and 128, respectively, can be enhanced by incorporating
the Deep-Gated RNN block. The input to the temporal convolutional blocks is the fault se-
quence signal. Let Xt ∈ RF0 be the input feature vector of length F0 at the time step t, where
t ∈ (0, T]. Assuming each layer has a time step of Tl and there are C classes, yt ∈ {1, . . . , C}
represents the true action label for each frame. The number of convolutional layers is L, and
the convolutional kernels (or filters) of each layer are parameterized using Equation (20):

W l ∈ RFl×d×Fl−1 , bl ∈ RFl (20)

In the equation, l represents the index of a certain layer, satisfying l ∈ {1, . . . , L}, and
d represents the filtering time. On the l-th layer, Êl

t ∈ RFl is the i-th activated component,
which is not normalized; El−1 ∈ RFl−1×Tl−1 is the activated matrix passed from the previous
layer, which is normalized. As shown in Equation (21), Êl

t is a function of El−1. f (•)
represents the rectified linear unit for any time step t:

Êl
i,t = f (bl

i +
d

∑
t′=1
〈W l

i,t′ ,., El−1
,.t+d−t′〉) (21)

Figure 8 illustrates the framework of the Deep-Gated RNN-FCN algorithm. The
stacked time convolution blocks in FCN serve as the fault feature extraction module, and
global average pooling is applied after the last convolution block to reduce the number of
parameters in the model. Each time convolution block consists of a time convolution layer
that performs BN on the input of each batch, accelerating the training of the neural network
and improving model convergence. The activation function used is ReLU. The preprocessed
power grid fault sequence passes via a dimension-shifting layer, which ultimately enables
passing to the Deep-Gated RNN submodule. Dropout regularization is performed on each
submodule to prevent overfitting and enhance the model’s generalization capability, hence
significantly reducing generalization errors. The global pooling layer and the Deep-Gated
RNN’s output are then concatenated and processed by the softmax fault classification layer.
Thus, forming the network architecture of the Deep-Gated RNN-FCN algorithm. The input
of the network is the preprocessed power grid fault dataset, and the output is the fault
classification result.
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4. Analysis of Experimental Results and Comparison of Algorithms

The ship’s integrated power system under study in this paper is the next-generation
all-electric MVDC ship integrated power system proposed by the United States [30]. The
ship has a reference mass of 1.429× 107 kg and a rated voltage of 5 kV. In this paper, a
simulation model of the system is established to validate the effectiveness of the proposed
methods. The simulation includes the short-circuit fault at the generator side of the ship’s
MVDC power propulsion system and its fault diagnosis. A total of 11 types of fault electrical
signals were collected, with 100,000 training data samples for each category. During the
experimental process, the FCN block remained unchanged. Through hyperparameter
search, the dropout rate was set to 80%, the initial learning rate was 0.001, and the learning
rate adjustment strategy was as follows: after every 100 training iterations, if the model’s
validation score did not improve, the learning rate would be reduced by a factor of 0.794
until reaching the final learning rate of 0.0001. The model was trained using the Adam
optimizer.

4.1. Model Evaluation Criteria

The proposed model will be evaluated based on accuracy, precision, ROC curve,
and AUC. These evaluation criteria rely on a confusion matrix, which is illustrated in
Table 4. The confusion matrix depicts the actual and predicted classes in its rows and
columns, respectively. TN denotes the number of true negatives (negative instances that are
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correctly classified), FP represents the number of false positives (negative instances that are
incorrectly classified), FN indicates the number of false negatives (positive instances that
are wrongly classified), and TP denotes the number of true positives (positive instances
that are correctly classified).

Table 4. Confusion matrix.

Actual
Predicted Predicted

Negative
Predicted
Positive

Actual
Negative TN FP

Actual
Positive FN TP

The accuracy (Acc) is defined as (TP + TN)/(TP + FP + TN + FN) and repre-
sents the proportion of correctly classified instances among all the predicted samples.

Precision (Pre) is calculated as TP/(TP + FP) and indicates the proportion of true
positive instances among all predicted positive instances.

The ROC curve, which has FPR = FP/(TN + FP) as its horizontal axis, is also called
specificity and shows the proportion of correctly classified negative instances among all
negative samples. The vertical axis represents TPR = TP/(TP + FN), which is also
known as recall or sensitivity and measures the model’s ability to correctly identify positive
instances. This curve evaluates the True Positive Rate and False Positive Rate at different
thresholds. The AUC is a metric used to measure the area under the ROC curve and
assess the performance of a binary classification problem. A higher AUC value, closer to 1,
indicates better performance of the model, with a balance of high True Positive Rate and
low False Positive Rate. A value closer to 0.5 indicates poor model performance.

4.2. Simulation Results and Analysis

The dataset was partitioned with an 80–20 ratio for training and testing, respectively.
Figures 9 and 10 show the confusion matrices for the corresponding sets. The training set
had a final accuracy of 98.8636%, while the testing set had an accuracy of 96.8182%.

Figure 11 shows the best accuracy and precision curves of the proposed fault diagnosis
method in this paper after 100 iterations. The final accuracy of the test set was 97.35%,
demonstrating the satisfactory performance of the proposed model based on MWDN and
deep-gated RNN-FCN in terms of accuracy and precision.

The performance of the proposed model in this paper is evaluated using the ROC
curve and its AUC. The evaluation criteria for AUC are as follows:

(1) AUC = 1: Perfect classifier that can perfectly distinguish positive and negative in-
stances without any misclassifications, although it is challenging to achieve in practice.

(2) 0.5 < AUC < 1: Better than random guessing, indicating that the model has some
classification ability.

(3) AUC = 0.5: Random guessing, indicating that the model’s classification ability is
equivalent to random selection.

(4) 0 < AUC < 0.5: Worse than random guessing, indicating that the model’s classification
ability is inferior to random selection.
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Figure 9. Confusion matrix diagram of the training set and test set: (a) confusion matrix for the 
training set and (b) confusion matrix for the testing set. 
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The AUC value ranges from 0 to 1, with values closer to 1 indicating better model
performance and values closer to 0.5 indicating poorer model performance. The ROC curve
and AUC of the proposed algorithm in this paper are shown in Figure 12, with an AUC
of 0.85. The curve y = x serves as a comparison. The AUC indicates that the proposed
method in this paper has good classification ability.
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4.3. Comparative Experimental Results with Other Algorithms

To evaluate the effectiveness of the diagnostic method presented in this research, we
conducted a comparison with several other algorithms.

(1) Effectiveness of Deep-Gated RNN
In order to validate the effectiveness of extending FCN with Deep-Gated RNN, we

created a standalone FCN model and applied the dataset for simulation. The outcomes in
terms of accuracy, precision, and AUC of the test set are presented in Figure 13. The FCN
model achieved an accuracy and precision of 92.53% and an AUC value of 0.76. From the
graph, it is evident that the performance evaluation metrics for the Deep-Gated RNN-FCN
surpass those of the standalone FCN model, indicating that integrating Deep-Gated RNN
is an effective method to improve the performance of fault diagnosis using FCN.
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(2) Effectiveness of Multi-level Wavelet Decomposition Network
In order to evaluate the effectiveness of MWDN in our proposed algorithm, we

conducted a comparative simulation by excluding the MWDN component and contrasting
the results with our algorithm. The simulation results are presented in Figure 14. The
purpose of including the MWDN is to improve the accuracy of the final fault diagnosis
outcomes. The comparative simulation revealed that the deep-gated RNN-FCN without
MWDN achieved an accuracy of 91.26%, a precision of 92.43%, and an AUC value of
0.72. In contrast, our algorithm performed significantly better with an AUC value of 0.85.
Based on the accuracy and precision, it is evident that the MWDN played a crucial role
in enhancing the fault diagnosis performance of the deep-gated RNN-FCN. Hence, these
findings confirm the effectiveness of MWDN.
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(3) The Effectiveness of SMOTE based on Gaussian Random Variable
The simulation results in Figure 15 compare the proposed Gaussian random variable-

based SMOTE algorithm with the regular SMOTE algorithm and the algorithm that does
not use SMOTE. The regular SMOTE algorithm achieved an accuracy of 91.64%, a precision
of 91.89%, and an AUC value of 0.69. The algorithm without SMOTE yielded an accuracy
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of 88.98%, a precision of 90.52%, and an AUC value of 0.60. In contrast, our proposed
algorithm achieved significantly higher accuracy and precision than both the regular
SMOTE and the algorithm without SMOTE. These findings illustrate the effectiveness of
the contribution made by our Gaussian random variable-based SMOTE algorithm.
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(4) Comparison with other algorithms applicable to time series processing
As the power grid fault sequence constitutes a time series, it is appropriate to apply

machine learning algorithms designed for time series feature extraction like LSTM-FCN,
CNN-FCN, and TCN-FCN. Therefore, we compared the performance of our proposed
algorithm with these three algorithms. Our simulation results, as illustrated in Figure 16,
reveal that the accuracy of Deep-Gated RNN-FCN, LSTM-FCN, CNN-FCN, and TCN-FCN
are 96.82%, 94.45%, 89.61%, and 90.00%, respectively. The precision is 97.35%, 93.42%,
90.60%, and 90.05%, respectively. The AUC values are 0.85, 0.80, 0.73, and 0.75, respectively.
These metrics, taken together, demonstrate that our proposed algorithm outperforms the
other three methods.
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5. Conclusions

The vessel’s electrical propulsion system is responsible for powering the entire ves-
sel, with the vessel’s power system being centered around its three-phase synchronous
generators. A critical short-circuit fault occurring at the generator’s output terminal could
instantaneously interrupt the power supply to the entire vessel, with severe negative im-
plications for safety and vessel stability. Therefore, it is crucial to accurately diagnose and
locate any short-circuit faults at the generator’s terminal.

This study proposes a fault diagnosis method for short-circuit faults at the generator
terminal based on MWDN and Deep-Gated RNN-FCN. The following research achieve-
ments have been obtained:

Firstly, MWDN-based feature extraction is proposed. MWDN decomposes raw signals
into high-frequency sub-signals and low-frequency sub-signals, extracting time-domain
and frequency-domain features of power grid signals while reducing noise interference
and improving fault diagnosis accuracy.

Secondly, a Gaussian random variable-based SMOTE algorithm is proposed to ad-
dress the class imbalance problem between normal and fault classes in power grid data.
Compared to traditional SMOTE algorithms, the proposed approach reduces sample data
synthesis generalization issues, making it more effective for handling power grid data.
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Moreover, the study constructs a Deep-Gated RNN-FCN model. LSTM computation
replaces the computation of hidden states in RNN, resulting in a Deep-Gated RNN. The
Deep-Gated RNN model is then combined with the FCN model to extract features from
input fault sequences. This approach can address the gradient vanishing issue and capture
long-range dependencies in time series better, thus complementing the performance of
FCN in time series classification. As a result, the performance of fault diagnosis improves
significantly.

Finally, the softmax classifier is used for fault classification and results output. The
proposed method is evaluated and tested via simulation, utilizing three performance indi-
cators: accuracy, precision, and AUC. The accuracy rate is 96.82%; precision is 97.35%; and
AUC is 0.85. This demonstrates the method’s excellent performance. Comparative experi-
ments with other algorithms show that the proposed method achieves greater accuracy
and better classification of faults, validating its superiority and effectiveness. Furthermore,
the proposed method exhibits good generalization ability, making it applicable in other
fault diagnosis scenarios.
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Abbreviation

Symbol Implication
MWDN Multi-Level Wavelet Decomposition Network
MDWD Multi-Level Discrete Wavelet Decomposition
RNN Recurrent Neural Network
FCN Fully Convolutional Network
SMOTE Synthetic Minority Over-sampling Technique
MVDC Medium Voltage Direct Current
WT Wavelet Transform
EMD Empirical Model Analysis
MSP Morphological Signal Processing
PCA Principal Component Analysis
ANN Artificial Neural Network
SVM Support Vector Machine
SDG Signed Directed Graph
AI Artificial Intelligence
CNN Convolutional Neural Network
PSO Particle Swarm Optimization
LSTM Long Short-Term Memory
RF Random Forest
FFT Fast Fourier Transform
BN Batch Normalization
AUC Area Under Curve
ϕ the magnetic flux of each winding
u the voltage across each winding
i the current flowing through each winding
r the resistance of each winding
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Xd the d-axis winding
Xq the q-axis winding
X f the excitation winding
XD the damping winding
XQ the self-inductance
Xad the mutual inductance between d-axis windings
Xaq the mutual inductance between q-axis windings
E′′q0 the transient potential on the transverse axis before the short circuit
E′′d0 the transient potential on the direct axis before the short circuit
X′′d the transient reactance on the direct axis
X′′q the transient reactance on the transverse axis
E′q0 the transient electromotive force before the short circuit
X′d the transient reactance
Eq(0) the steady-state potential
Xd the steady-state reactance
T′′d the transient time constant on the d-axis
T′d the transient time constant on the q-axis
T′′q the time constant for the decay of the DC component
xl

n+k−1(i) the n + k− 1-th element of the i-th level low-frequency subsequence
xl(0) the input sequence
bh(i)

trainable bias vectors, initialized with random values that are infinitesimally close to zero
bl(i)
σ(•) the activation function
C f ault a fault data point
Ck

NN a randomly selected neighbor from k nearest neighbors following a uniform probability
distribution for fault class data

Prandom a random value
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