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Abstract: The Northwest Indian Ocean is a key fishing ground for China’s pelagic fisheries, with
the purpleback flying squid being a significant target. This study uses commercial fishing logs of
the Indian Ocean between 2015 and 2021, alongside pelagic seawater temperature and its vertical
temperature difference within the 0–200 m depth range, to construct generalized additive models
(GAMs) and gradient boosting tree models (GBTs). These two models are evaluated using cross-
validation to assess their ability to predict the distribution of purpleback flying squid. The findings
show that factors like year, latitude, longitude, and month significantly influence the distribution
of purpleback flying squid, while surface water temperature, 200 m water temperature, and the
150–200 m water layer temperature difference also play a role in the GBT model. Similar factors
also take effects in the GAM. Comparing the two models, both GAM and GBT align with reality in
predicting purpleback flying squid resource distribution, but the precision indices of GBT model
outperform those of the GAM. The predicted distribution for 2021 by GBT also has a higher overlap
with the actual fishing ground than that by GAM, indicating GBT’s superior forecasting ability for
the purpleback flying squid fishing ground in the Northwest Indian Ocean.

Keywords: generalized additive model; Northwest Indian Ocean; gradient boosted trees;
Sthenoteuthis oualaniensis; fishing ground prediction

1. Introduction

The purpleback flying squid (Sthenoteuthis oualaniensis) belongs to the class Cephalopoda,
order Teuthida, and family Ommastrephidae [1], a warm-water oceanic species that predom-
inantly resides in the tropical and subtropical waters of the Indian and Pacific Oceans [2].
This species is notable for its broad distribution and significant economic value. Charac-
terized by a strong swimming ability, rapid generational turnover, and a brief life cycle,
the marine environment significantly influences the purpleback flying squid’s resource
distribution [3]. As an active predator, it plays a crucial role in tropical marine ecosys-
tems, often preying on small fish and shellfish, with cannibalistic behavior also commonly
observed [2,4]. Furthermore, this squid serves as prey for predatory fish and tropical
seabirds [5,6], indicating its potential role in sustaining marine ecosystem levels [7].

With the ongoing growth of global fisheries and the increasing demands for commer-
cial and food security purposes, the number of cephalopod species entering commercial
fisheries has continued to grow [8]. The purpleback flying squid, once disregarded in
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commercial fishing, has now emerged as a pivotal cephalopod resource in the South China
Sea [9], where China has been engaging in fishing activities targeting squid using light
falling gear since 2010 [10]. Previous surveys indicate a substantial resource reserve of the
purpleback flying squid, with 1–2 million tons in the South China Sea [11,12], 3–4 million
tons in the Indian Ocean [13] and 5–7 million tons in the Pacific Ocean. China initiated
fishing activities in the high seas of the Indian Ocean using light falling gear in 2014, es-
tablishing a fleet of six vessels by 2016 [14]. Current research on light falling gear fishing
centers primarily on the South China Sea. In the Indian Ocean, however, there is a lack of
reports on this species because of its short fishing history. The Northwest Indian Ocean has
extensive upwelling because of the influence of countercurrent and monsoon currents [15]
and is identified as a high-density distribution area for the purpleback flying squid [16,17].

The temperature of seawater and its spatial structure are important indicators of
the upper-level fisheries resources and environmental changes in the ocean, which can
significantly impact the distribution of marine biological resources [18–20]. Similarly,
seawater temperature is an influencing factor for the activity and distribution of squid [21].
It is known that purpleback flying squid in the Northwest Indian Ocean show significant
diel vertical migration that is influenced by the vertical structure of the water temperature,
probably changing the catch efficiency. Therefore, clarifying the relationship between
the squid’s distribution and the water temperature will contribute to the sustainable
development and management of the fishery.

Because of the intricate interplay between marine organisms and the environment,
many factors can influence species distribution [22]. Linear regression, owing to its ease of
use and interpretability, is a common approach for investigating the impact of environmen-
tal factors on species patterns. However, the relationship between the environment and
species can sometimes be challenging to ascertain as purely linear, necessitating models
that allow for nonlinear effects [23]. Hence, models accommodating nonlinear effects might
be better suited for exploring the intricate relationship between marine organisms and
their environment [24]. The generalized additive model (GAM) has been widely applied in
studying the relationship between species distribution and environmental factors [25,26].
This model allows for the use of nonparametric smoothing functions to simulate the non-
linear relationship between response variables and environmental factors. It has also been
used to explore the impact of surface marine environmental elements on the distribution of
purpleback flying squid resources. Zhang et al. [27] and Yan et al. [28] utilized the GAM
to analyze the purpleback flying squid resources in the Northwest Indian Ocean and the
South China Sea, respectively, both concluding that longitude, latitude, and temperature
significantly influence the distribution of purpleback flying squid.

The GAM has the characteristic of being sensitive to extreme values [29]. However,
when the model is used for extrapolation, unrealistic inferences can be generated [30].
gradient boosted trees (GBTs) is a model that sequentially fits multiple individual decision
trees and aggregates the predicted results. Each additional tree adapts to the residuals
of the previous tree [31]. The GBT model is insensitive to outliers, extreme values, and
missing values in the data [32]. Some scholars have applied the GBT model in fisheries
research [33,34], but there have not been any reports on its application in the distribution
study of cephalopod resources.

Considering the scant previous research on the distribution of purpleback flying squid
resources in the Northwest Indian Ocean, where most studies have primarily focused on
surface environmental factors [18,35,36], while less attention has been given to subsurface
seawater temperature influence, this study aims to utilize temperature values from pelagic
water layers and vertical temperature differences in the Northwest Indian Ocean. By
integrating Chinese commercial fishing logs data of purpleback flying squid, GBT and
GAM can be constructed. The training accuracy of the two models are compared to
explore their potential in analyzing the spatiotemporal variations of the fishing grounds
and predicting their habitats. At the same time, the influence of the surface and subsurface
seawater temperatures on the fishing grounds are investigated to provide a theoretical
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basis and more methodological choices for the resource management of purpleback flying
squid in the Indian Ocean.

2. Materials and Methods
2.1. Data Sources
2.1.1. Fishing Ground Areas and Fishery Data

The study area of this research covers the Northwest Indian Ocean, with a time span
from November 2015 to November 2021, and a spatial range of 10◦–22◦ N and 55◦–70◦ E.
The distribution of fish catches of purpleback flying squid in the Northwest Indian Ocean
during 2015–2021 was illustrated in Figure 1.
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Figure 1. Distribution of fish catches of purpleback flying squid in the Northwest Indian Ocean
during 2015–2021.

The fisheries data of light falling gear [14] in the Northwest Indian Ocean for this
study were sourced from the fishing log of China high seas commercial fishing vessels.
Because of the strong Southwest Monsoon in the summer, there is a fishing moratorium
from June to August, and therefore, there is no production data for squid during these
3 months. The dataset consists of 20,258 operation records, providing information such
as operation time, latitude and longitude coordinates of each operation’s starting and
ending points, and the catch quantity. The fishing areas were statistically analyzed using
a 0.25◦ × 0.25◦ latitude–longitude grid. The catch data within each fishing grid were
aggregated into three-day intervals to calculate the catch per unit effort (CPUE, t/net), as
shown in Equation (1):

CPUE = Catch/N (1)

Catch represents the total catch(t) within a fishing grid over a three-day interval, and
N represents the total number(net) of fishing operations in that grid over the same period.

2.1.2. Selection and Processing of Environmental Data

Purpleback flying squid primarily inhabit waters above the 200 m layer [5,37], and
the yield is closely associated with surface water temperature, 50 m water temperature,
and 200 m water temperature [38]. Therefore, this study limits the vertical depth to within
200 m. In light of this, the study downloaded environmental data from 2015 to 2021
from the Copernicus Marine Service (https://resources.marine.copernicus.eu/products
(accessed on 25 April 2023)), which are reanalysis values based on the NEMO model. The
data have a daily time resolution and a spatial resolution of 0.25◦. The temperatures at
0 m (T0), 50 m (T50), 100 m (T100), 150 m (T150), and 200 m (T200) were extracted from this
dataset. Moreover, because the temperature difference between different water layers may
affect the distribution of purpleback flying squid [39], this study also calculated the vertical
temperature differences between each adjacent 50 m layer from the top to 200 m depth as
independent factors, denoted as ∆T0–50, ∆T50–100, ∆T100–150, and ∆T150–200.

https://resources.marine.copernicus.eu/products
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2.2. GAM and GBT Models

The GAM is a combination of generalized linear models and additive models, where
the components are smooth functions. Nonlinear relationships can be established by adding
smooth terms [40,41]. The GAM can directly handle the nonlinear relationship between the
response variable and multiple explanatory variables. It utilizes nonparametric methods to
detect the underlying data structure and identify patterns to obtain predictive results. The
formula for the GAM constructed in this study is as follows:

log(CPUE + 1) ∼ s(year) + s(month) + s(lon) + s(lat)+
∑t∈T s(T)+∑∆t∈∆T s(∆T)

(2)

Because of the skewed distribution of CPUE, a logarithmic function is used to correct
the bias. Additionally, to avoid zero values, a constant of 1 is added to the CPUE in
this study. In the equation, s() represents the spline smoothing function, which captures
nonlinear effects and improves the model’s predictive accuracy. Lon and lat represent
longitude and latitude, respectively. T denotes the collection of water temperature variables
for different water layers (T0, T50, T100, T150, and T200), and ∆T represents the collection of
temperature differences at 50 m intervals (∆T0–50, ∆T50–100, ∆T100–150 and ∆T150–200). The
GAM was fitted using the mgcv package (version 1.8.41) in R software version 4.2.2 [42].

In this study, the GAM was constructed by progressively incorporating environmental
factors. Akaike’s information criterion (AIC) was used to test the model’s goodness after
the new addition of explanatory variables. The smaller the value of the AIC, the better the
fit of the model was proved. The F-test was used to determine whether the effect of the
explanatory variables on the response variables was significant.

The GBT model is an ensemble learning algorithm based on decision trees. It combines
multiple iteratively trained weak classifiers to form a robust classifier [43]. This algorithm
does not assume an additive relationship between explanatory variables and the response
factor, allowing for high-order interactions among factors [44]. Based on the previous
round’s results, the GBT model adjusts the weights of samples during the iterations. It
emphasizes the prediction of misclassified samples in the next round of iteration, leading
to higher accuracy and greater robustness.

The GBT model in this study was constructed using the sklearn package (version 1.2.1)
of Python 3.8. The optimal combination of hyperparameters of the model can be obtained
automatically based on different datasets and problems, reducing the time and cost of
manual trial. Moreover, it can also decrease errors and improve efficiency and accuracy
during model training. In this study, the GBT model utilized nontransformed CPUE
values. This study configured four essential hyperparameters: (1) Number of decision trees
determines how many decision trees are combined in the model. (2) Maximum depth of the
decision tree refers to how detailed the tree can be. (3) Learning rate controls the step size
in adjusting the model. Lower rates make convergence gradual for better generalization,
but need more iterations. (4) L1-regularization penalty coefficient adds a penalty for using
fewer features, helping prevent overfitting and improve model simplicity. The parameter
configuration of the model is shown in Table 1.

Table 1. Hyperparameters configuration for GBT models.

Hyperparameter Values

Number of decision trees 200, 300, 400
Maximum depth of the decision tree 7, 9, 11, 13

Learning rate 0.01, 0.05, 0.1
L1-Regularization penalty coefficient 0, 0.1, 0.2

Finally, this study used Python GridSearchCV function to train, evaluate, and auto-
matically optimize the GBT model. In the process of machine learning, the configuration
of hyperparameters significantly influences the model’s performance [45]. GridSearchCV
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is a method used to determine the optimal values for model hyperparameters and set the
number of cross-validation iterations for each set of hyperparameters. All combinations
are tested to determine the optimal result [46,47]. During the training process, 5-fold
cross-validation was employed, with mean squared error (MSE) as the evaluation metric
for each combination [48].

2.3. Validation of the Two Models and Analysis of Factor Contributions

Cross-validation was employed in this study to assess the forecasting performance
of the two models. The GAM and GBT model were trained using 70% of the samples for
the models’ construction through random selection. The remaining 30% of the data were
reserved for evaluating the performance of the models as a test set [49]. This process was re-
peated 100 times, and the average results were calculated. Regression analysis [38,50], mean
squared error (MSE), and coefficient of determination (R2) were employed as 3 evaluation
indicators for the models.

The explained deviance represented the factor contribution of the GAM. It is deter-
mined by the difference in explained deviance between a particular independent factor
added and removed [23,51]. The feature importance in the GBT model was calculated, and
the average value was obtained as the final factor contribution after performing 100 itera-
tions of 5-fold cross-validation.

2.4. Prediction of the Spatial Distribution of Fishing Grounds

This study utilized well-trained GAM and GBT models to predict monthly spatial
distribution with spatiotemporal and environmental data in 2021. The predicted CPUE
values were presented at 0.25◦ × 0.25◦ grids at different spatial locations. A comparison
was conducted between the two models to evaluate their respective abilities and drawbacks
in predicting the distribution of catch quantities by their prediction results.

3. Results
3.1. Performance Comparison of GAM and GBT Models

The 100 rounds of cross-validation results showed that the GBT model has a better fit
than the GAM (Table 2). The MSE of the GBT model was 0.45, much smaller than that of
the GAM, which was 1.09. The slope and the coefficient of determination of the GBT model
were also closer to 1, and the intercept was closer to 0.

Table 2. Performance comparison of the 2 models.

Model MSE R2 Intercept Slope

GAM 1.09 ± 0.0476 0.81 ± 1.284 0.43 ± 0.005 0.74 ± 0.03
GBT 0.45 ± 0.0442 0.88 ± 0.002 0.30 ± 0.008 0.86 ± 0.02

The values following the ± symbol represent variance.

3.2. Factor Importance in GAM and GBT Models
3.2.1. GAM

From the Accumulation of deviance explained and the AIC value, the optimal GAM
had a total explanation deviation rate of 80.4% for CPUE (Table 3). As shown in Table 4,
among the spatiotemporal factors, the most significant contribution to the explanatory rate
was the year (37.6%), followed by the month (22.9%), and the importance of latitude and
longitude was 9% and 6.4%, respectively. Among the environmental factors, T0 contributed
the most (1.4%). T150 and ∆T 0–50 contributed 0.6% and 0.5%, respectively. T50, T100,
∆T100–150, and ∆T 150–200 all contributed 0.4%, while T200 and ∆T150–200 contributed 0.2%.
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Table 3. GAM statistical results.

Formula AIC Accumulation of
Deviance Explained/%

Determination
Coefficient p-Value

log(CPUE+1)~s(year) 6031.437 37.6 0.375 <0.0001
log(CPUE+1)~s(year)+s(month) 4225.134 60.5 0.604 <0.0001
log(CPUE+1)~s(year)+s(month)+s(lon) 3245.926 69.5 0.692 <0.0001
log(CPUE+1)~s(year)+s(month)+s(lon)+s(lat) 2348.830 75.9 0.755 <0.0001
log(CPUE+1)~s(year)+s(month)+s(lon)+s(lat)+s(T0) 2143.497 77.3 0.768 <0.0001
log(CPUE+1)~s(year)+s(month)+s(lon)+s(lat)+s(T0)+
s(T50) 2082.958 77.7 0.772 <0.0001

log(CPUE+1)~s(year)+s(month)+s(lon)+s(lat)+s(T0)+
s(T50)+s(T100) 2004.079 78.1 0.777 <0.0001

log(CPUE+1)~s(year)+s(month)+s(lon)+s(lat)+s(T0)+
s(T50)+s(T100)+s(T150) 1911.056 78.7 0.780 <0.0001

log(CPUE+1)~s(year)+s(month)+s(lon)+s(lat)+s(T0)+
s(T50)+s(T100)+s(T150)+s(T200) 1874.310 78.9 0.785 <0.0001

log(CPUE+1)~s(year)+s(month)+s(lon)+s(lat)+s(T0)+
s(T50)+s(T100)+s(T150)+s(T200)+s(∆T0–50) 1800.722 79.4 0.789 <0.0001

log(CPUE+1)~s(year)+s(month)+s(lon)+s(lat)+s(T0)+
s(T50)+s(T100)+s(T150)+s(T200)+s(∆T0–50)+s(∆T50–100) 1777.817 79.6 0.790 <0.0001

log(CPUE+1)~s(year)+s(month)+s(lon)+s(lat)+s(T0)+
s(T50)+s(T100)+s(T150)+s(T200)+s(∆T0–50)+s(∆T50–100)+
s(∆T100–150)

1716.990 80.0 0.794 <0.0001

log(CPUE+1)~s(year)+s(month)+s(lon)+s(lat)+s(T0)+
s(T50)+s(T100)+s(T150)+s(T200)+s(∆T0–50)+s(∆T50–100)+
s(∆T100–150)+s(∆T150–200)

1668.537 80.4 0.797 <0.0001

Table 4. Deviance explained of the different factors in the optimal GAM.

Predictor Factor Deviance Explained/%

Year 37.6%
Month 22.9%

Longitude 9.0%
Latitude 6.4%

T0 1.4%
T150 0.6%

∆T0–50 0.5%
T50 0.4%
T100 0.4%

∆T100–150 0.4%
∆T150–200 0.4%

T200 0.2%
∆T50–100 0.2%

In terms of spatiotemporal factors in the GAM (Figure 2), it showed that the effect
of the year factor on CPUE increased year by year from 2015 to 2019, and then began to
decline until 2021. The highest effect of the month factor on CPUE was December and the
second highest month was April; the optimal periods were February–April and September–
December, and at these two stages the confidence interval of the factor was small, and its
effect was significant. The effect of longitude on CPUE first showed a fluctuating upward
trend and then gradually decreased after reaching the maximum value at 63◦ E. The effect of
latitude on CPUE showed an upward trend and then fluctuated at a high level after 15.5◦ N,
with a small confidence interval from 15.5◦ N to 16.25◦ N, and its effect was significant.
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The results of the effect of water temperature on CPUE (Figure 3) showed that CPUE
was roughly negatively correlated with T0; CPUE reached the lowest value when T0 was
31 ◦C; the suitable T0 range was 24~28 ◦C; the confidence interval was mostly minor; and
the confidence level was high at 26~28 ◦C, which indicates that this factor had a significant
effect on CPUE. CPUE showed a slow decline with the increase of T50, and it reached the
lowest value when T50 was 26 ◦C, and then it increased with the increase in temperature.
And then, with the increase in temperature, in the vicinity of a 26 ◦C, the confidence interval
was small, and the appropriate T50 temperature was 20~23 ◦C and 26~28 ◦C. When the T100
was less than 22 ◦C, the CPUE increased with the water temperature, reaching the highest
value when the T100 was 22 ◦C and showed a decreasing trend when it was more than
20 ◦C, and the optimal T100 range was 20~23 ◦C. In the 150 m water layer, when the water
temperature was less than 20 ◦C, CPUE showed an increasing trend with the increase in the
water temperature and reached the highest value when T150 was 20 ◦C. Then CPUE slowly
decreased with the rise in temperature, and the suitable T150 range was 18~22 ◦C, and the
confidence interval was the smallest when it is 19~20 ◦C, which is the closest temperature
value. In the 200 m water layer, CPUE decreased with increasing temperature until the
water temperature reached 18 ◦C, then showed an increasing trend.

In terms of the performance of the vertical temperature difference of the water layer
(Figure 3), in the range of 0~50 m water layer, the CPUE increased with a greater tempera-
ture difference of 0–50 m (∆T0–50), but gradually decreased when greater than 5 ◦C of the
temperature difference. In the 50~100 m pelagic range, CPUE generally increased with
an increasing temperature difference, and the confidence interval was minimized when
the temperature difference was 3.5 ◦C. In the 100~150 m aquatic range, CPUE increased
and then decreased with an increasing temperature difference and reached the regional
minimum at 2.5 ◦C, with a small confidence interval at 2~3.5 ◦C, which was closely affected.
In the range of the 150~200 m water layer, CPUE firstly decreased and then increased
with the increase in the temperature difference, and gradually decreased after reaching the
regional maximum value at 2.8 ◦C, and then showed an increasing trend after reaching
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the regional minimum value at 3.4 ◦C, with a small and close influence in the confidence
interval of 2.5~2.8 ◦C.
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3.2.2. GBT Model

The importance of the different factors in the GBT model is shown in Table 5, where
the spatiotemporal factors are much more important than the environmental factors, and
the most important of the spatiotemporal and environmental factors are year (22.68%) and
T0, respectively (5.62%).

Table 5. Mean feature importance of the GBT model.

Predictor Factor Mean Value of
Feature Importance

Standard Deviation of
Feature Importance

Year 22.68% 0.008
Latitude 22.34% 0.143

Longitude 15.31% 0.126
Month 8.45% 0.004

T0 5.62% 0.003
T200 4.97% 0.004

∆T150–200 4.32% 0.005
∆T0–50 4.08% 0.003

∆T100–150 3.98% 0.004
T50 3.18% 0.002
T150 2.51% 0.001

∆T50–100 2.37% 0.001
T100 2.20% 0.002

The partial dependency plot of the GBT model (Figure 4) shows that the effect of year
on CPUE increased year by year and reached a peak in 2019, followed by a decreasing
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trend; the effect of month on CPUE reached a peak in November, and the optimal operating
months are April and September to December.
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Among the environmental factors (Figure 5), CPUE was the lowest at T0 at 26 ◦C,
and the optimum operating temperature was 27~28.5 ◦C. The T50 temperature was the
optimum operating temperature at 24.2~25 ◦C, and then CPUE decreased with the increase
of temperature, and after the temperature exceeded 26 ◦C, CPUE was generally at its
lowest state. The optimum T100 range was 21.3~22 ◦C, and at a depth of 150 m water
temperature, CPUE was the lowest at 18 ◦C, after which the CPUE response gradually
increased with the increase of temperature, and after the temperature reached 19 ◦C, the
CPUE and temperature curves flattened out, and the suitable operating temperature was
19~21 ◦C. In the depth of 200 m water temperature, CPUE started from 14 ◦C, gradually
increased with the increase of temperature, and reached the highest value around 17.8 ◦C,
and then CPUE fluctuated little with the change of temperature, and the optimal operating
temperature was 17.8~18 ◦C. In the vertical gradient of water temperature, in the range of
0–50 m water layer, CPUE showed an increasing trend when greater temperature difference,
reached the highest value at 3 ◦C, and then slowly decreased. In the 50~100 m range,
CPUE showed a negative correlation with the temperature difference. In the 100–150 m
pelagic range, the effect of temperature difference on CPUE showed a fluctuating trend,
decreasing with the increase in the difference in the range of 2~2.6 ◦C and the lowest at
2.6 ◦C, then showing an increasing trend, reaching a high value at 3.2 ◦C, and then showing
a decreasing trend in general. In the 150–200 m water layer range, CPUE showed a general
decreasing trend with an increasing ∆T150–200, and a regional high value appeared at 2.7 ◦C.
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3.3. CPUE Prediction of the 2 Models

The GBT and GAMs were used to predict the spatial distribution of CPUE of the
Northwest Indian purpleback flying squid, respectively, and the data used in the forecast
were different pelagic temperature, pelagic gradient, and latitude/longitude data for the
proposed forecast months in 2021.

To test the predictive effect of the models, the actual CPUE values from January to
May and September to November 2021 were spatially superimposed and compared with
the predicted values in this study.

The CPUE predictions of the two models are shown in Figures 6 and 7. It can be
seen that the CPUE distribution of the purpleback flying squid is more concentrated, with
more obvious seasonally variations in distribution. Regarding spatial distribution, the
predicted CPUE generally showed high in the north and low in the south of Northwest
Indian Ocean. The high production area of the purpleback flying squid predicted by the
GBT model was roughly consistent with the actual fishing area. In the residual table
comparing the predicted values against the observed values for different months using
both models (Table 6), it is evident that the GBT model exhibits smaller residuals overall.
Furthermore, the GBT model demonstrates a lower variance of residuals, substantiating its
enhanced stability.
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Table 6. Residuals of GBT and GAMs for Predicted CPUE and Nominal CPUE Across Different Months.

Month GBT Model GAM

1 0.82 ± 0.081 0.62 ± 0.199
2 0.65 ± 0.325 0.57 ± 0.502
3 −0.84 ± 0.310 −1.32 ± 0.551
4 0.41 ± 0.556 −0.74 ± 0.141
5 1.21 ± 0.161 1.58 ± 0.620
9 −0.38 ± 0.439 −0.73 ± 0.840
10 −0.65 ± 0.479 −0.59 ± 1.757
11 −0.69 ± 0.114 −1.31 ± 0.504

The values following the ± symbol represent variance.
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4. Discussion
4.1. Contribution of Different Factors in Models

In both the GAM and GBT models, spatiotemporal factors consistently rank highly
regarding variance explanation and relative contribution. The results shown by the GAM
and GBT models in the time factors are relatively consistent. The purpleback flying squid
is a species that spawns throughout the year [52] and is influenced by continuous tem-
poral change [53]. Therefore, considering this ongoing temporal variation is necessary to
comprehensively understand its impact on the biomass dynamics of the purpleback flying
squid. The year and month factors showed significant performances in predicting the
CPUE of squid in the models, with high contribution rates. This indicates that time changes
significantly influence the biomass of purpleback flying squid resources. The analysis
results of two models on the effect of spatiotemporal factors on CPUE (Figures 6 and 7)
show that the purpleback flying squid biomass has been increasing by years from 2015
to 2019. And after reaching the peak biomass in 2019, it starts declining. A similar trend
was also shown in studies of Chen et al. [54] and Wen et al. [55]. April and September to
December are suitable for purpleback flying squid fishing, with the month effect reaching
the highest value in December and the highest CPUE response value in the fourth quarter.
This is consistent with the study by Wei et al. [56]. The spatial factors have a high contribu-
tion rate to the prediction performance of squid CPUE, indicating that the squid fishing
ground has a strong spatial correlation. The GAM result map shows that the area between
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14.5◦ N–18.5◦ N and 61.5◦ E–64.5◦ E has a significant impact on CPUE, which is consistent
with the studies by Xiao et al. [18] and Zhang et al. [57], indicating that the purpleback
flying squid has spatial aggregation characteristics to some extent. This phenomenon may
be attributed to the seasonal activities of monsoons and ocean currents in this maritime
region. The entire marine environment is influenced by the cyclical changes brought about
by monsoons, subsequently impacting the distribution of purpleback flying squid [58].
Under the influence of monsoons, the movement of ocean currents gives rise to extensive
upwelling zones in the area. Within these upwelling zones, abundant nutrients foster the
aggregation of purpleback flying squid, creating productive fishing grounds [17].

Concerning environmental factors, both the GBT and GAM underscore the significance
of SST. The GAM identifies an optimal range of 24~28 ◦C, while the GBT model suggests
an optimal range of 27~28.5 ◦C. Compared to other cephalopods, purpleback flying squid
display a pronounced adaptability to variations in SST [41]. Zhang et al. [27] propose that
the optimal SST range for Indian Ocean squid is 25~29.0 ◦C, while Yu et al. [19] suggest an
optimal fishing ground SST range for squid of 27.0~29.0 ◦C. These findings align well with
the results of this study. Within the GAM, the temperature difference in the 0–50 m water
layer significantly contributes to the model’s variance, with peak catch values observed
at a temperature differential of 4–6 ◦C. Yan et al. [59], using grey relational analysis [60],
a factor relationship analysis method suitable for small samples, found that the 5–50 m
temperature gradient had the most substantial impact on purpleback flying squid CPUE
in the South China Sea. This finding diverges from the results of our study. The variance
in outcomes could be attributed to two principal factors. Firstly, it is worth noting that
the data utilized by Yan et al. [59], encompassed survey data from 2012–2013 when the
purpleback flying squid fishery in the South China Sea was still in its developmental phase,
and the survey duration was relatively brief. Subsequent investigations, such as those
conducted by Li et al. [61], incorporated more extensive datasets spanning 2016–2017 and
2019. Li et al. [61] emphasized that latitude and longitude emerged as the most critical
factors influencing purpleback flying squid distribution, with sea surface temperature (SST)
and the temperature difference between depth layers (∆T0–50) being of relative importance.

Additionally, a divergence in the findings may be attributable to regional distinctions
between the South China Sea and the Indian Ocean. Monsoons and ocean currents stand
as pivotal factors influencing marine organism distribution [55]. While the South China
Sea is less influenced by the southwest monsoon and more affected by the northeast
monsoon [62], and both of these monsoons exert substantial influence over the Northwest
Indian Ocean [63]. These climatic forces impact ocean currents, consequently shaping
primary productivity and subsequently influencing the distribution of the purpleback
flying squid [17].

The water temperature of 100–200 m and the vertical temperature gradient of the water
layers showed high importance in both models. This could be attributed to the presence of
a thermocline within the 100–150 m water layer in the Northwest Indian Ocean [20], which
influences the distribution of fish inhabiting the upper-middle layers [21]. Meanwhile, the
Arabian Sea exhibits an oxygen minimum zone at depths ranging from 100 to 200 m [64]. In
the Northwest Indian Ocean, extensive oxygen consumption occurs due to surface algae’s
proliferation and relatively short life cycles. This consumption happens as the algae sink to
the seabed, forming a prominent anoxic layer at a depth of 100 m in the Arabian Sea [65,66].
The upwelling of deep anoxic seawater, influenced by surface winds driving the movement
of surface seawater, generates a cold anoxic region characterized by high productivity.
This region is juxtaposed with adjacent warm oxygenated water masses, contributing
significantly to establishing productive fishing grounds [67]. Zuyev et al. [13] noted that
purpleback flying squid possess the ability to utilize proteins and their decomposition
products for anaerobic energy metabolism in anaerobic conditions. Purpleback flying squid
is abundant in hypoxic zone with low temperature, displaying such abundance during
both diurnal and nocturnal activity periods. Other environmental factors have a relatively
minor contribution, exhibiting a limited ability to enhance the model fitting precision.
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4.2. Analysis of the Spatiotemporal Distribution Characteristics of Predicted Fishing Grounds

Upon comparing the predicted CPUE of both the GBT model and GAM with the
nominal CPUE, it becomes apparent that these two models exhibit distinct differences in
their spatial performance. The GBT model demonstrates a higher degree of consistency
with the spatial distribution of nominal CPUE than the GAM. The deviation of both only
occurs in specific months, such as January and February. In these months, the actual fishing
operations showed a lower CPUE, with only a handful of scattered fishing zones surpassing
one ton/net of CPUE. Thus, these deviations in model predictions may be attributed to the
scarcity of high CPUE data during the actual fishing process.

The distribution of the predicted CPUE across fishing grounds reveals a state of
higher values in the northern region and lower ones in the southern part. Within the
area spanning 15◦–19◦ N and 61◦–65◦ E, the CPUE of purpleback flying squid is notably
higher, corroborating previous research findings [68]. During October and November, the
fishing grounds appear more dispersed, with a tendency to move southward. Regions with
high-value production, located at 13◦ N–17◦ N, 60◦ E–64◦ E and 18◦ N–21◦ N, 61◦ E–64◦ E,
generally align with conclusions that Shao et al. [69] and Chen et al. [54] drew. The
observed southward shift in purpleback flying squid distribution can be attributed to the
influence of the winter monsoon, characterized by a counterclockwise flow in the southwest
direction [70]. This monsoon generates a substantial movement of ocean currents towards
the south. This dynamic process prompts the upwelling of nutrient-rich deep waters to the
surface, thereby elevating primary productivity levels. The influx of these nutrient-rich
waters effectively enhances the availability of food resources within the ocean’s upper
layers [17]. As a result, purpleback flying squid are drawn towards these productive zones
in search of abundant foraging opportunities.

In the predictive maps generated by the GBT model, a distinct boundary phenomenon
is evident during certain months, i.e., January and February, along specific latitude and
longitude coordinates. This boundary remains relatively stable, situated around 15◦ N
and 61◦ E. This phenomenon can be partly attributed to the inherent characteristics of
the tree model, which formulates IF-ELSE rules by creating numerous branches for each
explanatory factor. Hence, the splitting strategy of tree model is fundamentally based on
the sample features [71]. In this study, latitude and longitude significantly influenced the
results of the model. They caused the GBT model to prioritize these features during the
splitting process, resulting in the horizontal and vertical boundaries in the resultant tree
model. Concurrently, Han et al. [14] found that, in the Arabian Sea, CPUE increases at
higher latitude, exhibiting a trend of initial decrease followed by an increase, with the
lowest CPUE value observed around 15◦25′ N. Between 15◦25′ N and 16◦25′ N, CPUE
drastically rises with an increasing latitude.

Similarly, between 61◦25′ E and 61◦75′ E, CPUE also rose fast with an increasing
longitude. Studies by Chen et al. [20] and Lin et al. [68] identified that the primary fish-
ing grounds for Northwest Indian Ocean purpleback flying squid are predominantly
situated near 15◦–16◦ N, 60◦–62◦ E. The results of Chen et al. [54], Wen et al. [57], and
Zhang et al. [27] also found that the CPUE of purpleback flying squid increased in this
latitude and longitude range. The distinct boundaries of the latitude and longitude in the
GBT model’s predictive results also reflect, to some degree, the spatial distribution patterns
of the actual fishing grounds.

4.3. Comparative Analysis of the Prediction Performance of Two Models

A comparison between the predicted CPUE results of the GAM and the actual ones
reveals significant discrepancies in the graphical representations of the GBT model and
GAM (Figures 6 and 7). The GAM’s predictions delineate clear high-value and low-value
production zones, with an overrepresentation of high-value zones that contradicts the
actual production scenario. This discrepancy arises because the GAM is susceptible to
extremes, and extrapolation beyond the operational area can yield unrealistic results [30].
Conversely, the prediction results of GBT model are more evenly distributed due to its
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lower sensitivity to outliers [32], contributing to its robustness. However, this trait may
also cause the model to overlook potential high-value production zones.

From the results in Table 6, when the GBT model and GAM were employed to forecast
CPUE of Indian Ocean purpleback flying squid, the GBT model demonstrated superior
fitness and predictive accuracy. Consequently, the GBT model is more feasible than the
GAM for predicting Indian Ocean purpleback flying squid fishing grounds. Furthermore,
the predicted results of GBT model align more closely with the actual production outcomes.

5. Conclusions

The purpleback flying squid in the Northwest Indian Ocean have strong fluctuations,
and the environment greatly affects their resource distribution. This study used the purple-
back flying squid as the research object, constructed a GBT model and an optimal GAM,
and predicted the fishing ground in 2021. Comparing the prediction results of the GBT
model and GAM 100 times using five-fold cross-validation, all of the model evaluation
indicators of the GBT model were better than those of the GAM, indicating that the GBT has
good predictive performance. The spatial distributions predicted by the GBT model from
January to May and September to November in 2021 were consistent with the observed
values, proving the model’s potential in predicting the distribution of purpleback flying
squid resources in the Northwest Indian Ocean.

Currently, no regional fishery organization is responsible for overseeing this fishery,
and established measures for conservation, management, monitoring, control, and surveil-
lance are lacking. Taking these circumstances into account, our study’s objective is to
employ modeling techniques to identify potential fishing grounds for purpleback flying
squid. Through the differentiation of areas with high and low catch rates, curtail energy
expenditure during fishing activities and alleviate the threat of overfishing. This strategy
has been formulated to guarantee the population’s sustainability while also offering a
foundation for subsequent evaluations of the purpleback flying squid’s resources.

This study is only an analysis of the vertical structure of the water layer in the North-
west Indian Ocean, so the model has some shortcomings. In fact, the distribution of squid
resources is influenced by temperature and factors such as chlorophyll concentration, dis-
solved oxygen, and sea surface height [21,72]. Dietary factors, represented by the presence
and distribution of zooplankton, also play a significant role, as squids seek out optimal
feeding environments [73,74]. Therefore, fluctuations in primary productivity can eluci-
date variations in squid fishing grounds. Large-scale environmental shifts, exemplified
by events like the El Niño phenomenon can further induce changes in purpleback flying
squid resources [75–77]. Consequently, future research should consider the integration of
additional environmental factors.
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