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Abstract: In the realm of underwater exploration, particularly within the domain of autonomous
detection, sidescan sonar stands as a pivotal sensor apparatus. Autonomous detection models ne-
cessitate a substantial volume of scanned sonar image data for optimal training, yet the challenges
and costs associated with acquiring such data pose significant limitations on the deployment of
autonomous detection models in underwater exploration scenarios. Consequently, there arises a
demand for the development of cost-effective data augmentation techniques. In the present investiga-
tion, an initial collection of scanned sonar image data was conducted during lake trials, encompassing
diverse environmental regions, including rocky terrain, shadowed areas, and aquatic bodies. Subse-
quently, a proprietary generative adversarial network (GAN) model was devised for the purpose
of synthesizing scanned sonar data. The synthesized data underwent denoising and underwent
post-processing via algorithmic methods. Subsequently, similarity metrics were computed to gauge
the quality of the generated scanned sonar data. Furthermore, a semantic segmentation model was
meticulously crafted and trained by employing authentic data. The generated data were subse-
quently introduced into this semantic segmentation model. The output outcomes demonstrated that
the model exhibited preliminary labeling proficiency on the generated image data, requiring only
minimal manual intervention to conform to the standards of a conventional dataset. Following the in-
clusion of the labeled data into the original dataset and the subsequent training of the network model
utilizing the expanded dataset, there was an observed discernible enhancement in the segmentation
performance of the model.

Keywords: WGAN-GP; sidescan sonar; semantic segmentation; data processing; data generation

1. Introduction

In underwater detection tasks, autonomous detection based on sidescan sonar (SSS)
images [1–4] plays a crucial role in the field of underwater intelligence due to its wide
detection range and high imaging accuracy for underwater substrates. Among traditional
detection methods and deep learning-based approaches, deep learning-based object detec-
tion has demonstrated significant advantages. Compared to traditional methods that suffer
from poor robustness, high algorithm design complexity, and subpar detection perfor-
mance, deep learning-based methods, when given sufficient training data, achieve superior
detection results without these limitations, making them the most popular approach for
autonomous detection. Our team previously conducted research in the domain of applying
lightweight neural network models to semantic segmentation tasks in sidescan sonar image
analysis [5]. We have also released relevant models, some of which are utilized in this
paper. Our primary aim was to further optimize these models to enhance their accuracy,
optimize their speed, or reduce their parameter count. However, upon experimentation,
we encountered a significant limitation imposed by the available dataset. The performance
of the models on datasets with ample ground-based data far surpassed their performance
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on datasets with relatively limited underwater data. As a result, we redirected our focus to-
wards acquiring a more extensive dataset. However, in underwater detection, the collection
of SSS data is extremely challenging and costly, especially in marine environments. The
insufficient amount of data severely hampers the development of underwater autonomous
detection techniques. Therefore, generating and augmenting limited data to meet the
requirements of deep learning algorithms is crucial.

Generative adversarial networks (GANs) are a category of deep learning-based genera-
tive models designed to harness the essence of human-inspired creative processes. The core
idea involves training generator and discriminator models in a competitive manner using
two deep neural networks to generate samples resembling real data. Since their inception
in 2014 [6], GANs have made remarkable progress in overcoming the bottleneck of pattern
generation in various domains, such as images, audio, and text. Many research teams have
contributed significantly in this field; for example, Chen T et al. [7] suggest a framework to
offer orthogonal gains to existing real image data augmentation methods and additionally
presented a new feature-level augmentation that could be applied together with them.
Xu L et al. [8] introduced a GAN-based transformer for general action-conditioned 3D
human motion generation, including not only single-person actions but also multi-person
interactive actions. Chai X et al. [9] proposed a robust compressed sensing image encryp-
tion algorithm based on a generative adversarial network, a convolutional neural network
(CNN), a denoising network, and a chaotic system.

Moreover, GANs have achieved great success in various domains. In image processing,
GANs are widely used for generating and restoring images of faces, scenes, and Renais-
sance styles [10,11]. In the field of speech, GANs are utilized for generating high-quality
speech samples and speech recognition [12,13]. In natural language processing, GANs are
employed to generate text content with good semantics [14,15].

Despite the numerous advantages of GAN networks, two significant problems exist:
gradient vanishing and mode collapse. These issues make it difficult for GAN networks
to converge, requiring extensive parameter tuning to obtain good results. In order to
address these problems, Radford et al. [16] proposed the WGAN network model, and
Ishaan Gulrajani et al. further improved it by introducing WGAN-GP [17], effectively
alleviating the aforementioned issues. The mainstream GAN networks are now built upon
this design basis. A new method called Markov chain conditional pix2pix (MC-pix2pix)
has been proposed in the field of underwater detection [18] to generate realistic SSS images,
and MC-pix2pix data were used to train autonomous object detection networks. Another
study [19] presented a semantic image synthesis model based on pix2pix, reconstructing
SSS simulation images from simple hand-drawn segmentation maps of target photos. This
approach can generate sonar images at different water depths and frequencies. However,
the application of GAN networks in underwater detection remains relatively rare, and
there are few datasets of sonar images that are rich in substrate features suitable for
semantic segmentation.

By building upon prior research, the proposed substrate classification architecture
is designed for application to a limited SSS dataset. This architecture employs a neural
network model grounded in the principles of WGAN-GP. It encompasses the generation of
raw data and the preliminary labeling of sample labels. Image feature processing methods
are then employed to reduce image noise and enhance the clarity of the generated images.
Subsequently, the usability of the generated data is assessed through experiments, and the
enhancement in substrate semantic segmentation performance is evaluated.

The main contributions of this study are as follows:
1. A network model is formulated in accordance with WGAN-GP principles for the

purpose of sidescan sonar (SSS) image segmentation. The model’s architecture is tailored
to accommodate the distinctive characteristics of various environmental regions;

2. Image feature processing algorithms are applied to mitigate image noise and
enhance the perceptual clarity of the generated images;
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3. An encoder-decoder-based semantic segmentation network model is established
and trained using unprocessed data to conduct preliminary autonomous labeling on
the generated data. Subsequently, through manual refinement, the labeled dataset is
reintegrated into the training pipeline, culminating in enhanced semantic segmentation
performance on authentic data;

2. Related Work

Within this section, the exploration of pivotal concepts in model design ensues. These
encompass the foundational principles underpinning GANs, the WGAN-GP variation, and
the methodology of segmentation.

2.1. GAN Model

Generative adversarial networks (GANs) operate on the fundamental principle of pit-
ting two networks against each other: a generator and a discriminator, which are engaged
in competitive interplay. The generator’s role is to persistently create samples, endeavoring
to render it challenging for the discriminator to differentiate between the generated and
genuine samples. Conversely, the discriminator’s objective is to enhance its discriminative
prowess by accurately discerning whether an input is authentic or generated. Through this
adversarial dynamic, the generator strives to produce samples that progressively mimic
real ones, whereas the discriminator grapples with increasing difficulty in distinguishing
between them. Eventually, as the generator improves, it learns the distribution character-
istics of real samples and generates new samples that exhibit authenticity. The objective
function of the GAN network is defined as follows:

min
G

max
D

V(G, D) = Ex∼pdata(x)[log D(x)] +Ez∼p(z)[log(1− D(G(z)))] (1)

In the given context, the symbol x represents authentic data, whereas D(x) signifies
the output produced by the discriminator network. Typically, this output is a scalar value
denoting the proximity of the input to genuine data. z represents the input provided to the
generator network, denoted as G, and (G(z)) represents the resultant output generated by
the generator.

The primary objective of the discriminator network is to differentiate between real
and synthetic samples. Specifically, when presented with a legitimate image, denoted as x,
the discriminator should assign a high score, aiming to maximize D(x). Conversely, when
confronted with images generated by the generator (G(z)), the aim is for the discriminator
D to allocate a low score, with the objective of minimizing D(G(z)). Therefore, the objective
function of the discriminator network can be expressed as

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] +Ez∼p(z)[log(1− D(G(z)))] (2)

The objective of the generator is to maximize the score assigned by the discriminator,
which is equivalent to minimizing 1 − D(G(z)). Thus, the objective function for the
generator can be written as

min
G

V(D, G) = Ez∼pz(z)[log(1− D(G(z)))] (3)

The combination of these objectives leads to the overall objective function of the GAN
network. It has been proven that this function has a unique optimal solution [20].

2.2. WGAN-GP

Training a GAN can be challenging as it often encounters various problems, with three
major issues listed as the following:
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(1) Gradient vanishing: This often occurs when the discriminator is too good, hindering
the improvement of the generator. When using an optimal discriminator, training can fail due
to gradient vanishing, resulting in insufficient information for the generator’s improvement.

(2) Mode collapse: This refers to the phenomenon where the generator repeatedly
produces the same output or a small group of outputs. If the discriminator gets trapped in a
local minimum, it becomes easy for the next generator iteration to find the most reasonable
output according to the discriminator. The discriminator never learns to escape this trap.

(3) Convergence failure: Due to various known and unknown factors, GANs often fail
to converge.

Wasserstein GAN (WGAN) makes a simple modification by replacing the Jensen-
Shannon divergence loss function with Wasserstein distance (also known as Earth Mover’s
(EM) distance) in traditional GANs (showed in Figure 1). The GAN network aims to
make the generated and real data distributions as close as possible, with the objective of
minimizing the Jensen-Shannon divergence. By optimizing the Jensen-Shannon divergence,
the network pulls the generated distribution closer to the real distribution, ultimately
generating highly similar data. This concept holds when there is some overlap between
the two distributions in their initial states. However, if the two distributions have no
overlapping parts or the overlapping parts are negligible, the Jensen-Shannon divergence
remains constantly at log2, and the model becomes trapped in an optimization problem.

Figure 1. Discriminator saturation in GAN, resulting in gradient vanishing. WGAN provides a clean
gradient across all parts of the space (the horizontal axis represents different sample spaces).

The key solution lies in using Wasserstein distance to measure the distance between
the two distributions. Wasserstein distance has the advantage that it can reflect the distance
between two distributions even when there is no overlapping area.

Assuming that we want to transform probability distribution p to q and define the
distance function (transportation cost) as d(x,y), then the Wasserstein distance is defined
as [16]:

W [p, q] = inf
γ∈Π[p,q]

∫∫
γ(x, y)d(x, y)dxdy (4)

where γ ∈ Π[p, q] represents the joint distribution of p and q.
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The authors of WGAN derived and transformed the traditional GAN formulation
based on Kantorovich-Rubinstein duality.

L(D) = −Ex∼Pr [D(x)] +Ex∼Pg [D(x)] (5)

L represents the network function, Pr represents the distribution of real data, and Pg
represents the distribution generated by the model.

However, to satisfy the Lipschitz constraint, WGAN constrains the parameter values
in the network. Even with this constraint, when stacking multiple layers in the model,
gradient vanishing and explosion can still occur. WGAN-GP introduces an additional
regularization term based on the WGAN objective function [17]:

L(D) = −Ex∼pr [D(x)] + Ex∼Pg [D(x)] + λEx∼Px̃ [|| 5 D(x)|| − 1]2 (6)

The latter half is the regular term, x̃ represents data generated by the model, and this
term is the gradient penalty (GP) in WGAN-GP, which enforces the gradient constraint.
The constraint implies that the L2 norm of the critic’s gradient relative to the original
input should be close to 1 (bilateral constraint). This constraint ensures better training
performance while preserving the Lipschitz constraint.

2.3. Semantic Segmentation

The realm of semantic segmentation tasks boasts a range of noteworthy models, in-
cluding DeepLabV3 [21], hrnet [22], and Transformer [23]. However, the foundational
concept behind segmentation models traces back to the inception of fully convolutional net-
works (FCNs). FCNs introduced a pivotal paradigm shift by substituting fully connected
layers with fully convolutional layers for generating activation outputs. This transfor-
mation entails a shift from a simplistic, one-dimensional probability vector output to
a more sophisticated two-dimensional probability matrix output, facilitating pixel-level
segmentation accuracy.

FCN’s innovation also encompassed image size restoration via deconvolution oper-
ations, coupled with the incorporation of skip connections. The integration of these skip
connections, bridging high-dimensional and low-dimensional features, exerted a profound
influence on subsequent semantic segmentation models. In the wake of FCN’s pioneering
work, the U-Net model emerged as another influential milestone. U-Net departed from the
usage of VGG networks as the backbone and instead introduced a symmetrical encoder-
decoder architecture comprising four layers. Additionally, U-Net incorporated cascaded
connections between each layer of the encoder-decoder structure.

The decision to forego deep networks as the backbone proved to be an effective
strategy in mitigating overfitting, particularly in scenarios characterized by limited dataset
sizes. Even today, U-Net continues to find applications in contexts with restricted sample
sizes, such as medical image segmentation.

3. Method

A generator model and a discriminator model have been meticulously devised, both
relying on multi-layer convolutional neural networks. The generator adopts a forward-
stacked convolutional neural network architecture, featuring a gradual reduction in the
number of channels in each layer, ultimately producing RGB images with three channels as
output. Conversely, the discriminator progressively increases the number of channels in
each layer, culminating in the last layer’s transformation through a fully connected layer to
yield the judgment result.

Following this, a semantic segmentation network model was formulated, drawing
inspiration from the U-net architecture for the autonomous labeling of generated images.
This network incorporates multi-scale convolutional kernels, multi-link parallel structures,
and the integration of attention mechanism modules. After undergoing training with
genuine images, the generated images underwent an initial phase of autonomous labeling.
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3.1. Image Generation Model

The image generation network was devised within the WGAN-GP framework, and its
architecture is depicted in Figures 2 and 3.

noise

len(16384)

256 8

TransConv
256 16

Conv+Relu+UnPool
128 32

64 64

32 12
8

16 25
6

8 51
2

3 51
2

sigmoid

Figure 2. Generator Structure.

The generator’s structure begins with a one-dimensional Gaussian noise vector as
input. Since the input image size is large, the first two layers of the network apply
7 × 7 convolutions for deconvolution, followed by a ReLU activation function. The follow-
ing layer sequence is repeated six times: convolutional layer, batch normalization layer,
ReLU activation, and upsampling layer. For the first and second iterations, the filter size
of the convolutional layer is 4 × 4, while for the remaining parts, the size is 3 × 3. Finally,
after the convolutional layers, a sigmoid activation function is applied. The result of this
layer sequence is an image with a size of 256 × 256.

8 25
6

Conv+Pool+LeakyRelu

16 12
8 32 64 64 32 128 16 256

8
1 12

8

FC

1 1

FC+sigmoid

Figure 3. Discriminator Structure.

The discriminator takes previously generated images from the generator as input and
applies a series of layers. This layer sequence is also repeated six times: convolutional layer,
batch normalization layer, ReLU activation, and average pooling layer. All convolutional
layers of the discriminator use a 3 × 3 filter size. Finally, a fully connected layer followed
by a sigmoid activation function is used as a binary classifier.

3.2. Feature Enhancement

Images generated by GAN networks have some deficiencies in terms of clarity, size
discrepancies with the original image, and lack of smoothness. Feature enhancement is
needed to address these issues. Initially, image smoothing is achieved by the construction
of a Laplacian image pyramid. The Laplacian pyramid is grounded in scale-space theory
and Gaussian filters, entailing a two-step implementation process: downsampling and
upsampling. In the downsampling phase, the original image is subjected to Gaussian
smoothing, yielding a sequence of scaled images with distinct sizes and varying degrees
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of blurriness. Subsequently, in the upsampling phase, the Laplacian pyramid generates
higher-resolution images by computing the differences between adjacent scale images.

Within the Laplacian pyramid’s construction process, Gaussian filtering is first applied
to the input image, yielding a succession of scaled images.

Gi(x, y) = G(i, x, y) = Gi−1(x, y) ∗ G(x, y) (7)

G(x, y) represents a Gaussian filter, and i denotes the scale (scaling factor) of the image.
The downsampling process can be achieved by retaining every kth image in the Gaussian
pyramid, where k is a multiple factor controlled by the scale coefficient. Subsequently,
an upsampling process is performed on the Gaussian pyramid, followed by taking the
difference between adjacent images.

Li(x, y) = Gi(x, y)−U(Gi+1(x, y)) (8)

Here, U denotes upsampling, which is performed using bi-cubic interpolation to
enhance clarity and enlarge the image. Through this process, a Laplacian pyramid can
be generated, where each level is represented by a pair of vertically and horizontally
differentiated images. By blending the differential images with the original image, the
image can be smoothed.

The post-smoothed image reduces singular values but also exhibits a certain degree of
quality degradation. Therefore, image sharpening is required. Unsharp masking (USM) is
a commonly used image enhancement algorithm that sharpens the image by computing
the difference between the original image and its Gaussian blur, thus improving image
clarity. The mathematical formula for this algorithm is

USM(x, y) = (1 + k) · f (x, y)− k · ( f (x, y) ∗ g(x, y)) (9)

Here, USM(x, y) represents the enhanced pixel value of the image, f (x, y) represents
the pixel value of the original image, g(x, y) represents the pixel value of the Gaussian
blurred original image, and k represents the enhancement coefficient. The specific g(x, y)
can be expressed as follows:

g(x, y) =
1
K

N
2

∑
i=− N

2

N
2

∑
j=− N

2

wi,j · f (x + i, y + j) (10)

where N represents the size of the Gaussian blur, K represents the weight parameter, wi,j
represents the weight value of the Gaussian filter, calculated using the following formula:

wi,j =
1

2πσ2 exp
(
− i2 + j2

2σ2

)
(11)

Here, σ is the standard deviation of the Gaussian filter.

3.3. SE-Block and Attention

The SENet [24], which secured the championship in the 2017 ImageNet competition, is
a significant model in computer vision. It is formally known as the Squeeze-and-Excitation
Congestion Network, and its notable contribution lies in the incorporation of a channel
attention extraction module referred to as the Se-Block. This module possesses the flexibility
to be seamlessly integrated into various network architectures (showed in Figure 4).

The Se-Block comprises two integral components: first, the squeezing module, respon-
sible for condensing the initial 3D input data into a one-dimensional vector. This operation
is primarily achieved through global average pooling, facilitating the extraction of global
characteristics from each channel. Second, the excitation module employs a fully connected
layer to transform the output of the squeezing module into a predictive weighting sequence.
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This sequence is then applied as weights to all channels, effectively emphasizing crucial
channel features while downplaying less significant ones.

Figure 4. The structure of SE-block.

3.4. Autonomous Label Generation Model

A semantic segmentation neural network model was meticulously crafted and trained,
utilizing authentic data as the foundational source for automated label generation.

The architectural configuration of our model is elucidated in Figure 5, comprised of
both an encoder and a decoder, each comprising four layers akin to the U-Net architecture.
The data undergoes an initial denoising step before entering the encoder, where feature
extraction is performed. This is accomplished through the deployment of four parallel
feature extraction modules, with each module dedicated to processing one of the RGB
channels from the original input image.

3232 86
0

Conv+Conv+Relu+Pool
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1
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3232 86
0

Conv+Conv+Relu+Pool
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64 64 43
0

64 1*
1
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1

Se

256 256 10
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8
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0

86
0
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Figure 5. The structure of the semantic segmentation model.

Within each feature extraction module, there are four layers, and these layers encom-
pass two feature extraction modules each, incorporating a 7 × 7 convolution kernel size.
Notably, for the sake of maintaining image size through padding, conventional convolution
is replaced by depthwise (DW) convolution. The encoding blocks utilize 7 × 7 convolu-
tion kernels, again employing DW convolution to enhance computational efficiency while
preserving padding. The number of output channels for each layer is systematically set
at 32, 64, 128, and 256. Additionally, SE (Squeeze-and-Excitation) blocks are seamlessly
integrated into each layer, facilitating the prediction of channel weights.

Another distinct input pathway consists of the entire set of channels originating from
the original input image. In this scenario, each layer comprises two feature extraction
modules employing a 3 × 3 convolution kernel size, and conventional convolution is
utilized. The number of output channels for each layer mirrors the configuration of the
other three modules.

When moving forward, the decoder phase commences by taking the 512-channel
heatmap output generated by the bottleneck module, which is subsequently reduced to
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256 channels via upsampling. These channels are then concatenated with the data derived
from the fourth module, a process facilitated by the application of small convolution kernels,
resulting in the acquisition of a 512-channel feature map. This process iterates four times,
culminating in the final segmentation outcome achieved through a fully convolutional layer.

4. Experiment and Analysis

The experiments were conducted on a computing system comprising an Intel Core i9-
10900F CPU running at a clock speed of 2.8 GHz (20 cores), 64 GB of RAM, an NVidia Geforce
3090 GPU with 24 GB of video memory, and utilizing CUDA Toolkit 11.3, CUDNN V8.2.1,
Python 3.6, and PyTorch-GPU 1.10.1, all running on the Ubuntu 18.04 operating system.

4.1. Dataset Collection

In the course of our experimental investigation within the Jiande Lake District, located
in Hangzhou, China, we utilized the Hydro 3060 dual-frequency sidescan sonar to acquire
crucial sonar data. The original images obtained sequentially in a frame-by-frame fashion,
possessed dimensions of 960 × 960 pixels, as depicted in Figure 6, serving as an illustration
of their quality.

Figure 6. The original sonar image (each sonar image is cropped down the middle into two images).

When mounted onto an autonomous underwater vehicle (AUV), as depicted in
Figure 7, the sidescan sonar emits acoustic waves in lateral directions while the vehi-
cle is in motion. This process involves the reception of echoes from submerged objects,
enabling the construction of an imagery representation. Within the resulting imagery, the
regions characterized by strong echoes, such as rocks and metallic objects, manifest as
bright areas, whereas the regions devoid of echoes, such as bodies of water and obstructed
sections, appear darkened.

Our model is rooted in supervised learning, necessitating the availability of meticu-
lously annotated and accurate data labels for training. Data annotation was conducted
using the open-source software LabelMe, which was implemented by using the Ubuntu
platform. The entire dataset was categorized into five distinct classes (although not every
image encompassed labels from all five categories): (1) Water; (2) Mountainous regions;
(3) Land areas; (4) Shaded portions; (5) Unmarked regions (background). The designation
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of “unmarked area” primarily pertains to the residual debris regions remaining after the
initial labeling of the first four image types. A visual representation of a labeled image is
presented in Figure 8.

Figure 7. Self-developed AUV for data collection.

Figure 8. (a) Original image; (b) label.

4.2. Data Augmentation

As previously mentioned, the acquisition of sidescan sonar data poses challenges,
resulting in a relatively limited dataset. In order to address this limitation and enhance
training efficacy, we employed data augmentation techniques as follows:

Image Flipping: The conventional approach involves horizontally flipping the images
at various angles. This augmentation method not only increases the dataset size but also
disrupts location-based correlations, promoting a more generalized network.

Image Translation: Another standard technique entails controlled image translations
in four directions using random adjustments, albeit within reasonable bounds. Excessive
translations are avoided to prevent the distortion of image feature structures.

Random Cropping: Data augmentation was further facilitated by randomly cropping
sections from the original images. This reduces the image size while expanding the dataset
and expedites training.

Notably, for sonar images, the emphasis is placed on color features rather than shape
characteristics; hence, color-based data augmentation was not pursued. The original sonar
data had dimensions of 960 × 960 pixels and consisted of approximately 300 samples. Fol-
lowing data augmentation, the data were resized to 860 × 860 pixels, effectively increasing
the dataset size by a factor of approximately four. For training purposes, a random selection
comprising 60 percent of the augmented data was allocated as the training set, whereas the
remaining 20 percent each constituted the validation and test sets.

4.3. Data Generation

About 80 percentof the real sonar images were used as training data for training the
GAN network. The loss during the training process using the Wasserstein loss function is
shown below. After 10,000 steps, the network has converged (the training process is shown
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in Figure 9). Around 500 images were generated using the trained generator, from which
around 200 images with better results were selected as an expanded dataset (as shown in
Figure 10).

Figure 9. (a) Discriminator training curve for generated data(blue represents the smoothed result);
(b) discriminator training curve for real data; (c) generator training curve.

Figure 10. Generated sidescan sonar data; the generated data also includeswater bodies, shadows,
and rocky areas, but the generation effect of the ground is relatively average.

The evaluation employed the FID (Fréchet inception distance) metric to quantify the
dissimilarities between the generated images and authentic images. The FID algorithm
is a measure utilized for assessing image similarity, which amalgamates deep learning
models with statistical characteristics to gauge the disparities between generated and
genuine images.

The FID algorithm is based on two key components: the inception model and the
Fréchet distance. First, the pre-trained inception model is used to extract the feature vectors
of real images and generated images. These feature vectors encode the high-level semantic
information of the image. Then, these feature vectors are used to calculate the Fréchet
distance between the two distributions.

Fréchet distance is a statistical indicator that measures the difference between two
probability distributions. The FID algorithm is used to compare the distribution of feature
vectors in real images with the distribution of feature vectors in generated images. If the
two distributions are more similar, the lower the FID value, the better the image quality
generated. The following formula is used:

FID(x, g) = ||µx − µg||22 + Tr(σx + σg − 2(σxσg)
0.5) (12)

In the formula, Tr represents the sum of diagonal elements of a matrix, which is known
as the trace in matrix theory. x and g represent the real and generated images, respectively.
µ represents the mean, and σ is the covariance matrix.

4.4. Post-Processing

The processed images after applying the Laplacian pyramid and USM (unsharp
masking) algorithms are shown in the figure, and significant improvements can be observed
compared to the raw generated images. The algorithm mainly optimizes the generated
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noise (represented as green speckles in the image), enhances texture contrast, and sharpens
edge contours. The processed result is shown in Figure 11.

Figure 11. (a) Processed image after algorithmic processing; (b) original image generated by the
generator. It can be observed that the texture is noticeably clearer, and most of the noise and artifacts
have been smoothed out.

Subsequent to the generation and post-processing of the images, a computation of
pertinent Fréchet inception distance (FID) metrics was conducted. These metrics served
to assess the degree of similarity between the generated images and the authentic dataset.
Specifically, this assessment involved four distinct comparisons: initially, a comparison
between two sets of genuine data, followed by a comparison between entirely unrelated
images and the authentic dataset; subsequently, a comparison between the generated
data and the authentic dataset; finally, a comparison between the data (subsequent to data
enhancement) and the authentic dataset was employed. The outcomes of these comparative
analyses are presented in Table 1.

In this study, an analysis was conducted to compute three distinct metrics, namely
the structural similarity index (SSIM), mean squared error (MSE), and mean absolute error
(MAE), independently for real images, generated images, and unrelated images. These
metrics were separately computed for three pairs: real images compared to real images,
real images compared to unrelated images, and real images compared to generated images.
The results of these metrics are provided in Table 2.

Table 1. FID indicators between different data.

Dataset FID

real and real 112.05
real and non-realative 862.09

real and generated 209.56
real and generated (post-processing) 195.72

Table 2. SSIM & MSE & MAE.

Dataset SSIM MSE MAE

real and real 0.11137 95.9724 110.2452
real and non-realative 0.1202 114.2312 125.7654

real and generated 0.1135 98.6045 112.0465
real and generated (post-processing) 0.1136 96.6045 112.0123

Tables 1 and 2 reveal that the generated images exhibit FID, MAE, and MSE metrics
that are comparable to those of real images, while significantly surpassing the metrics
calculated between real images and unrelated images. However, the SSIM metric does
not exhibit a similar pattern; in fact, the SSIM metric between the real images and unrelated
images is even higher than that between the real images themselves. This phenomenon
may be attributed to the lack of structural consistency in the sonar scan results within the
experimental region, resulting in pronounced structural disparities among the sonar images.
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4.5. Label Generation

The initial phase involved the training of the semantic segmentation network using
authentic data, as depicted in the figure. After 150 episodes, the training process essentially
reached convergence, as illustrated in Figure 12.

Figure 12. Training curve of segmentation model (bright lines are the result of smoothing).

Subsequently, the trained network model was used to autonomously generate labels
on the generated images, as shown in the following figure. Blue represents the water body,
yellow represents the shaded area, green represents the rock area, red represents the ground
area, and black represents the unclassified area. It can be seen that there is still a certain gap
between the autonomous labels of the network model and the real ground truth due to the
fact that some generated images do not have a water body part, which affects the accuracy
of water area division. In terms of image quality, it is still difficult to accurately divide
the ground and rock parts. However, the overall effect has been able to reach a usable
level after a small amount of manual modification. The results of autonomous labeling are
shown in Figure 13.
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Figure 13. (a) Ground truth; (b); labeled by segmentation model; (c) image. The automatically
generated labels still show differences from the ground truth, but they are generally similar. Only
minor adjustments are needed to reach an acceptable level.

Subsequently, a sequence of interconnected experiments was conducted. Initially, the
model’s proficiency in semantic segmentation was assessed using authentic data. Subse-
quently, during the autonomous labeling process of the generated images, the model’s
semantic segmentation capabilities for the generated data were examined. Lastly, the man-
ually refined labeled generated data were incorporated into the original authentic dataset
to augment the dataset volume. After retraining, an evaluation of the model’s semantic
segmentation performance with respect to authentic data was carried out. This compre-
hensive assessment considered three key evaluation metrics: the mean intersection over
union (MIOU), overall accuracy (OA), and F1-score. The outcomes of these assessments are
presented in Table 3.

Table 3. Semantic segmentation index parameters for three experiments.

Num OA MIoU F1-Score

1 0.872229 0.677754 0.722321
2 0.657958 0.478563 0.50256
3 0.897265 0.692736 0.723228

It can be observed that the second metrics have decreased significantly, indicating a
considerable difference in their distributions. However, after minor manual modifications,
they can already be utilized as an expanded dataset. Through data augmentation using the
generated network, the performance indicators of the semantic segmentation network have
improved to some extent (third experiment), demonstrating the usability and effectiveness
of the data. It can be seen that the performance indicators of the semantic segmentation
network have been improved to a certain extent through the data amplification of the
generated network, proving data availability and effectiveness.

5. Conclusions

This article proposes a sidescan sonar image generation model based on a GAN
network. This model adopts the design concept of WGAN gp, using trained generators
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and discriminators to generate and filter data. In response to the noise and clarity issues in
the generated images, enhancement algorithms, including the Laplace pyramid and USM
algorithm, were used to enhance their signal-to-noise ratio and data adaptability. Through
the calculation of metrics such as FID and MSE, it was observed that the generated sonar
data closely matched the real data. Furthermore, after undergoing data processing, its
level of match was further enhanced. Finally, the designed semantic segmentation model
was used to perform preliminary autonomous labeling on the generated data, and the
obtained preliminary labels can be put into use after only a rough manual correction. By
incorporating the labeled-generated data into the dataset and training the system based on
it, it can be observed that the performance of the sidescan sonar semantic segmentation
model had improved; the semantic segmentation performance metrics, namely MIOU
and F1-score, improved from their original values of 0.677754 and 0.722321 to 0.692736
and 0.723228, respectively. With the inclusion of the augmented sonar data generated,
the model’s robustness and generalization capabilities have both shown improvement. In
addition, our model also has high portability. Many researchers have proposed large-scale
neural network models with poor real-time performance on AUVs. After loading our
model into the AUV control terminal, we are still able to complete tasks and have a low
dependence on high-performance computers, which is also an important advantage. In the
future, we will consider further enhancing the quality of generated sonar data.
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