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Abstract: Mesoscale eddies are characterized by swirling currents spanning from tens to hundreds
of kilometers in diameter three-dimensional attributes holds paramount significance in driving
advancements in both oceanographic research and engineering applications. Nonetheless, a notable
absence of models capable of adeptly harnessing the scarcity of high-quality annotated marine
data, to efficiently discern the three-dimensional morphological attributes of mesoscale eddies, is
evident. To address this limitation, this paper constructs an innovative deep-learning-based model
termed 3D-EddyNet, tailored for the precise identification and visualization of mesoscale eddies.
In contrast to the prevailing 2D models that remain confined to surface-level data, 3D-EddyNet
takes full advantage of three-dimensional convolutions to capture the essential characteristics of
eddies. It is specifically tailored for recognizing spatial features within mesoscale eddies, including
parameters like position, radius, and depth. The combination of dynamic convolutions and residual
networks effectively enhances the model’s performance in a synergistic manner. The model employs
the PReLU activation function to tackle gradient vanishing issues and improve convergence rates. It
also addresses the challenge of foreground–background imbalance through cross-entropy functions.
Additionally, to fine-tune the model’s effectiveness during the training phase, techniques such as
random dropblock and batch normalization are skillfully incorporated. Furthermore, we created
a training dataset using HYCOM data specifically from the South China Sea region. This dataset
allowed for a comprehensive analysis of the spatial-temporal distribution and three-dimensional
morphology of the eddies, serving as an assessment of the model’s practical effectiveness. The
culmination of this analysis reveals an impressive 20% enhancement over 3D-UNet in detection
accuracy, coupled with expedited convergence speed. Notably, the results obtained through our
detection using empirical data align closely with those obtained by other scholars. The mesoscale
eddies within this specific region unveil a discernible northeast-to-southwest distribution pattern,
categorized into three principal morphological classifications: bowl-shaped, olive-shaped, and nearly
cylindrical, with the bowl-shaped eddies prominently dominating.

Keywords: mesoscale eddies identification; 3D-UNet; 3D structure of mesoscale eddies; deep learning

1. Introduction

The ocean, covering 71% of the Earth’s surface, stands as one of the largest ecosystems.
Ocean currents, as the primary form of seawater movement, play a crucial role in material
and energy transfer and climate change.

Mesoscale eddies, widely active in the ocean, are essentially a distinct type of oceanic
front, distributed throughout the world’s major oceans [1]. They exhibit a relatively closed
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circulation structure, with diameters ranging from tens to hundreds of kilometers. Based
on their direction and the temperature anomalies at their cores, mesoscale eddies are
commonly categorized as cold or warm eddies [2]. The first discovery of mesoscale eddies
dates back to 1970 when Soviet ocean scientists conducted ocean current observation
experiments in the northeast Atlantic. These eddies, with spatial scales of 100 km and
temporal scales of several months, exhibited flow velocities of around 10 cm/s. Since
then, scientists have been aware of the impact of mesoscale eddies on ocean circulation
and marine ecosystems [3]. These eddies have extensive movement distances and a broad
influence, significantly altering temperature and salinity distribution in the ocean and
playing a crucial role in material exchange and distribution [4]. Furthermore, mesoscale
eddies harbor substantial kinetic energy, accounting for over 80% to 90% of the total oceanic
circulation energy [5]. To gain a deeper understanding of the characteristics and impact of
mesoscale eddies on the ocean, marine scientists have conducted various explorations, and
such efforts heavily rely on eddy identification. Traditionally, identification methods can be
broadly categorized into Eulerian and Lagrangian approaches [6] depending on the type
of dataset used. However, these conventional methods often require manual supervision
and expert prior knowledge, making it challenging to simultaneously process and analyze
diverse formats of mesoscale eddy observational data.

In recent years, with the rapid development and maturation of machine learning,
and the widespread use of satellite observations, marine science has encountered new
opportunities. As observational data related to mesoscale eddies continue to increase,
identification methods have also evolved, with many scholars attempting deep-learning-
based approaches to enhance mesoscale eddy identification and enrich observational
capabilities. For instance, Lguensat et al. [7] developed EddyNet, a deep neural network
for the pixel-level classification of oceanic eddies. Although several researchers further
refined this method, including EddyNet_S and EddyResNet, the accuracy of this series of
methods falls short compared to traditional detection methods. Other studies, like that of
Xu et al. [8], employed a vector-geometry-based algorithm in conjunction with the PSPNet
model for intelligent eddy detection. Nevertheless, the limitation of this algorithm lies
in its insensitivity to the widely dominant asymmetrical eddy structures in the ocean [9].
Moschos et al. [10] introduced a novel method, DEEP-SST-EDDIES, which combines deep
learning with Sea Surface Temperature (SST) data to detect eddy features. However, these
methods often require substantial labeled datasets for training. To address this issue, Duo
et al. [11] proposed OEDNet, a method for mesoscale eddy detection that employs data
augmentation and target detection networks, mitigating the need for an abundance of
annotated data. Each detection and identification method serves different scenarios and
problems, providing systematic understanding and references for the advancement of
mesoscale eddy detection and recognition research.

Early studies of mesoscale eddies primarily relied on altimetry data to conduct statisti-
cal analysis on surface information. However, the changes in oceanic physical parameters
caused by mesoscale eddies are not solely evident on the sea surface but are also reflected in
the subsurface layer. Oceanic three-dimensional temperature, salinity, and sound field struc-
tures reveal distinct mesoscale eddy characteristics [12]. Although accumulated altimetry
data have provided considerable insights into mesoscale dynamics, they lack information
regarding subsurface eddy structures, making it challenging to gain comprehensive knowl-
edge of the three-dimensional morphology of mesoscale eddies. As discussed earlier, the
methods mainly focused on the ocean surface, and the use of deep learning for the identi-
fication of mesoscale eddy three-dimensional structures remains an unexplored domain.
In recent years, as marine observation platforms have been increasingly improved, and
more observation methods have emerged, such as the Array for Real-time Geostrophic
Oceanography (Argo) float system, Lagrangian drift floats, underwater gliders, satellite
synthetic aperture radar, numerical simulations, temperature and salinity profiling instru-
ments, and other advanced technologies [13], coupled with established satellite altimetry
observation platforms, researchers now possess the ability to observe mesoscale eddies
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from the surface to the deep sea. This provides the necessary data foundation to investigate
the overall structure of subsurface mesoscale eddies.

Studying eddies using model data is an essential approach. Dong et al. [6] conducted
research based on high-resolution Regional Ocean Model System (ROMS) data, analyzing
the three-dimensional temperature and salinity structures of eddies in the South China
Sea and generating a large-scale mesoscale eddy three-dimensional dataset. Lin et al. [14]
further analyzed the three-dimensional temperature and salinity structures of eddies,
demonstrating that eddies in the South China Sea present three different forms: surface-
enhanced, middle-layer-enhanced, and bottom-layer-enhanced. Yang et al. [15] similarly
employed ROMS data to analyze nearly 50,000 mesoscale eddies detected from nineteen
years of Northwest Tropical Pacific sea level height records. They further explored the three-
dimensional eddy structures using a composite eddy flow chart. Zhang et al. [16] applied
eddy detection and tracking algorithms based on the Oceanic General Circulation Model
for the Earth Simulator (OFES) data, developed jointly by the Japan Agency for Marine-
Earth Science and Technology (JAMSTEC) and the National Oceanic and Atmospheric
Administration (NOAA). They synthesized identified cyclonic and anticyclonic eddies’
three-dimensional structures from the simulated horizontal velocity vector to obtain a
comprehensive understanding of mesoscale eddies in the Northwest Pacific.

However, model data are inevitably subject to errors due to the integration of vari-
ous ocean observation data, and as navigational capabilities improve and observational
instruments continue to update, along with the abundance of Argo profiles, researchers
can conduct more effective studies using observational data. Exploring the influence of
mesoscale eddies on vertical temperature and salinity structures has greatly contributed
to our understanding of their three-dimensional morphology. For example, Chaigneau
et al. [17] combined six years of Argo profiles into eddies, resulting in the average vertical
structure of eddies in the East and West Pacific. They found that the core depths of cyclonic
and anticyclonic eddies differ (approximately 150 m and 400 m, respectively). He et al. [18]
analyzed mesoscale eddy data in the South China Sea from 1993 to 2015, updating the
statistical data of surface eddy characteristics in the South China Sea. By placing more than
7000 historical Argo profiles in the center coordinate system of eddies, they revealed the
composite average three-dimensional structure of eddies. Prants et al. [19] traced eddy
trajectories and important events during the eddy lifecycle, discussing and analyzing the
vertical structure and hydrological characteristics derived from the shipborne and profile
data of Argo floats.

With the rapid development of deep learning, researchers have recently begun apply-
ing it to underwater scenarios. Md. Moniruzzaman et al. [20] systematically described the
application of deep learning in underwater image analysis, classifying analysis methods
based on the objects being detected, and focusing on the deep learning architectures used.
To handle three-dimensional data, Cicek et al. [21] extended the U-Net architecture to
3D data, creating the 3D-UNet network. Although initially applied to medical image
segmentation, the similarity in data properties between 3D-UNet and mesoscale eddies
presents an inspiring method for identifying their three-dimensional features. V-Net (Mil-
letari et al. [22]) is another method that replaces 2D convolutions with 3D convolutions
in U-Net and introduces short skip connections, optimizing the model’s performance to
better suit three-dimensional data. Furthermore, Haoyu et al. [23] introduced a double
attention mechanism to the 3D-UNet segmentation model, incorporating spatial attention
modules and channel attention modules in both the upsampling and downsampling pro-
cesses. This enables end-to-end training for 3D-UNet. In this paper, taking advantage of the
continuous accumulation and updates of marine data and the ongoing progress in neural
network models across various fields, we will employ deep learning methods to explore
the three-dimensional structure of mesoscale eddies.
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2. 3D-EddyNet Model or Methods

Ocean satellite remote sensing, such as sea surface height images and ocean model
data, offers high spatial resolution, providing a solid data foundation for employing neural
network methods. However, the complexity of mesoscale eddy data poses significant
challenges for detecting algorithms. Ensuring that the trained deep learning model can
effectively identify mesoscale eddies remains a challenge. While deep learning has achieved
certain successes in mesoscale eddy identification and prediction, existing methods are
limited to the ocean surface, failing to provide information on subsurface eddy structures
and impeding progress in three-dimensional structure research.

Some scholars have initiated preliminary explorations of the three-dimensional struc-
tures of mesoscale eddies based on Argo observational data and ocean model data. How-
ever, these methods require human involvement and rely heavily on prior knowledge, mak-
ing them difficult to generalize. Research on using deep learning for the three-dimensional
morphological feature identification of mesoscale eddies is still in its infancy, offering vast
potential for further exploration.

2.1. 3D Convolutional

To establish a network model for identifying the three-dimensional morphological
features of mesoscale eddies, a necessary condition is to extract three-dimensional spatial
information through convolutional layers.

The convolutional layer is a key operation in CNN, typically in the form of two-
dimensional convolution, with the following calculation formula:

xl+1
j = f (∑i∈Mj

xl
i × wl+1

ij + bl+1
j ) (1)

In neural networks, neurons are organized into layers, where each neuron receives
input from neurons in the previous layer and provides output to neurons in the next
layer. xl+1

j represents the value of the jth neuron in layer l + 1, and xl
i represents the

value of the ith neuron in layer l. The connection between the ith and jth neurons is
represented by the weight Wl+1

ij , and the output is influenced by the bias bl+1
j . An activation

function f is applied to the weighted sum of inputs. Figure 1 illustrates the main steps of
the convolutional operation. After obtaining the features through convolution, pooling
operation aggregates local features in the image through statistical operations, further
extracting features and improving the network’s computational efficiency.

Figure 1. Convolution calculation process.

In the current field of computer vision, there is an increasing demand for 3D data pro-
cessing techniques. 3D convolution can extract voxel-related features in three-dimensional
space, enabling the end-to-end mapping of 3D volume data, making it a crucial technique
for processing 3D data. Compared to 2D convolution, 3D convolution can better capture
spatial features along the depth dimension, thus having an advantage when dealing with
data that require a consideration of temporal or spatial depth. For instance, 3D convolution
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is better suited for handling three-dimensional ocean images with spatial depth, exploring
the spatial correlations in the data and addressing the limitation of 2D convolution in
capturing vertical features.

The dimension of the convolutional kernel refers to the dimension in which the sliding
window operation is performed, not involving the channel dimension. Regardless of the
number of channels, they share the same sliding window position. Although the weights of
the convolutional kernels on each channel are independent in 2D multi-channel convolution,
the sliding window position is shared. Therefore, when discussing the dimension of the
convolutional kernel, the number of channels is not taken into account.

For a single-channel input, with input size (1, height, width), and a kernel size of
(1, kh, kw), the convolutional kernel slides over the input image, performing the convolution
operation between the sliding window and the values inside the kernel. In recent times,
the correlation operation is commonly used instead of convolution, resulting in one value
in the output image. The illustration in Figure 1 shows a 2D single-channel convolution
with input data of size 3 × 4, a kernel size of 2 × 2, and a stride of 1.

In the context of multi-channel scenarios, when the input image has three channels,
denoted as (3, height, width), and the kernel size is (3, kh, kw), the convolutional operation
occurs in both dimensions (height and width) of the input. At each step, the kernel slides
over the entire window of all channels in the input, performing the operation. Then, the
information from all channels is aggregated to form a single output channel, resulting in
the complete compression of multi-channel information.

The process of 2D multi-channel convolution is as follows: each kernel is applied to
the input channels of the previous layer to generate one output channel. This process is
repeated for all kernels to generate multiple channels, as shown in Figure 2.

Figure 2. 2D multi-channel convolution.
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This process can be seen as sliding a 3D filter matrix over the input layer. The number
of channels in the input layer is the same as the number of kernels in the filter. The 3D
filter moves only in the height and width directions of the image. At each sliding position,
element-wise multiplication and addition are performed, resulting in a single number.

In Figure 3, sliding is performed at three positions horizontally and three positions
vertically (3 = 5 − 3 + 1). After element-wise addition in the depth direction, one output
channel is obtained.

Figure 3. 2D multi-channel convolutional single output channel.

Transformation is carried out between layers with different depths. Suppose the input
layer has n channels, and the desired output layer has m channels. In this case, m windows
need to be applied to the input layer, with each window having n kernels and providing
one output channel. After applying m windows, there will be m channels, which are then
stacked together to form the complete output layer. The m channels in the output layer are
also referred to as m feature maps, so the number of output feature maps is the same as the
number of convolution filters.

Although convolution is performed on 3D data (height × width × number of channels),
it is still referred to as 2D convolution because the convolutional kernel moves only in the
height and width directions. One filter and one image convolution can generate only one
channel of output data, so the result is still in two dimensions.

The data used in 3D convolution typically involve multiple 2D images stacked to form
a 3D image, establishing spatial connections in the image.

Figure 4 illustrates the 3D convolution process. On the left is the input layer, where
the convolutional kernel can move freely in three directions. The convolution is performed
on each layer between two cubes, followed by element-wise addition in the depth direction,
resulting in one datum and forming a plane. The convolutional kernel then moves in the
depth direction, continuing the convolution, which outputs a 3D feature map.

Figure 4. 3D single-channel convolution.
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The final output is a stack of green cubes, forming three channels of feature maps.
Each feature map is no longer a plane but a three-dimensional cube. Here, we can observe
that the number of output feature maps in the 3D convolution is still related to the number
of convolutional kernels, but it should be referred to as the number of groups rather than
individual kernels, as each group may contain multiple filters, and each group’s filter count
equals the input’s number of channels.

2.2. Dynamic Convolution

However, 3D segmentation faces the challenge of higher computational resource
consumption than 2D segmentation. Therefore, 3D segmentation algorithms usually down-
sample the input data [24]. This process can increase the network’s width, extracting
richer details.

To cope with the constantly growing massive datasets, many researchers have at-
tempted to improve model performance by increasing model complexity while maintain-
ing stability to achieve higher accuracy. However, in 3D convolution, increasing model
complexity significantly escalates computational costs. Dynamic convolution proposes a
solution [25] by incorporating an attention mechanism in the convolutional kernel, enabling
the network to adaptively generate different convolutional kernel parameters based on
various input data. This balance between network performance and computational load
enhances model robustness and accuracy.

Dynamic convolution achieves adaptability to different inputs by applying weights
to the convolutional kernel. This is particularly important for inputting mesoscale eddy
data, as such data exhibits diversity, including various information such as temperature,
salinity, density, and velocity, which may influence the detection results. Combining tem-
perature and salinity data with dynamic convolution helps mitigate network performance
fluctuations caused by input data transformation.

Traditional convolutional layer designs usually employ static convolutional kernels.
To enhance performance, model depth or width can be increased. Model depth can be
increased by adding convolutional layers, fully connected layers, and activation function
layers, while model width can be increased by enlarging the convolutional kernel size or
input–output channel numbers. Although both methods can enhance model complexity
and performance, they also consume more space and computational resources. Compared
to traditional convolutional layers, dynamic convolution can adaptively generate convolu-
tional kernel parameters, avoiding the limitation of fixed convolutional kernels, and better
exploring features related to temperature, salinity, and other parameters in mesoscale eddy
data. Additionally, dynamic convolution considers computational costs and spatial capacity
during design. As a result, dynamic convolution not only improves model performance
but also flexibly adapts to different task requirements while maintaining computational
efficiency and space utilization.

In Figure 5, the parameters conv1 to convk are the convolutional kernel parameters
obtained after the model’s initialization, and π1 to πk are weighted coefficients learned
through training, the ‘*’ means calculate. Different input data pass through pooling layers,
fully connected layers, and PReLU activation function layers to generate weights, which are
then multiplied and added to the convolutional kernel parameters to produce convolutional
kernels suitable for static convolution. This design also takes into account computational
costs and spatial capacity, allowing dynamic convolution to not only enhance model
performance but also adapt flexibly to the demands of identifying three-dimensional
morphological features of mesoscale eddies in the ocean while maintaining computational
efficiency and space occupancy.

2.3. Residual Module

In the field of machine learning, enhancing the feature extraction capability of neural
networks is crucial. One direct approach is to increase the depth of convolutional neural
networks to enhance the model’s expressive power and classification performance. How-
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ever, excessively deep networks can make training difficult and even lead to performance
degradation. To address these issues, this paper introduces residual modules into the
improved network model, effectively enhancing the model’s performance.

Figure 5. Dynamic convolution method.

The residual learning module is a fundamental component of the ResNet network,
consisting of a residual path and an identity path, as shown in Figure 6. It optimizes
the training process with shortcut connections to prevent gradient vanishing and model
degradation. The residual path comprises two sets of convolutional layers and a ReLU
activation function, which are replaced with PReLU activation functions in this study.

Figure 6. The residual module.

The residual unit introduces skip connections, directly adding the input and output
to complement the feature information lost during the convolution process. The output
of the residual module is obtained by adding the residual path and the identity path,
which helps prevent gradient vanishing and model degradation. This structure exhibits
better optimization performance, as the shortcut connection structure does not increase
computational complexity. Additionally, during the backpropagation process, the gradient
is propagated to shallower layers through the skip connection structure, optimizing the
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training process. The network encoder of the residual structure consists of four groups of
identical encoding blocks, each group including two convolutional layers and an activation
function. One convolutional layer is responsible for computing the residual, while the other
convolutional layer is responsible for extracting image features.

In the 3D-EddyNet network, the purpose of introducing residual modules is to learn
new features while preserving the original ones. This enhances the feature extraction
capability of the network without increasing computational complexity. This effectively
addresses the problem of learning stagnation due to deep networks and ensures that the
model does not suffer from performance degradation, thereby improving the network’s
overall performance.

2.4. 3D-EddyNet

This research proposes a 3D-EddyNet model based on EddyNet and an improved
U-Net network for three-dimensional mesoscale eddy recognition. To adapt to the three-
dimensional recognition scenario, the model uses 3D convolutions instead of 2D convolu-
tions to capture more spatial information. To address the challenges of increased computa-
tion and model complexity resulting from 3D convolutions, optimization strategies like
the residual structure are introduced into the model. Additionally, dynamic convolution is
incorporated to cater to multi-parameter inputs. These optimization strategies effectively
alleviate network overfitting and gradient descent issues, leading to improved model
accuracy and convergence speed.

The Rectified Linear Unit (ReLU) activation function addressed the issue of vanishing
gradients that could occur with sigmoid-based activation functions. Its design, based
on neuron sparsity, ensured stable gradients, which benefited model training and im-
proved convergence speed. However, ReLU had the drawback that weights could not
autonomously update when the input was less than 0, potentially leading to gradient
vanishing, reduced learning rates, and even the inability to learn meaningful features.

To alleviate this ReLU limitation, Maas et al. [26] introduced the Leaky Rectified
Linear Unit (LReLU) as an alternative solution. However, LReLU’s performance strongly
depended on the set slope parameter α, making it challenging for practical applications. To
address the issue of setting α, He et al. [27] proposed the Parametric Rectified Linear Unit
(PReLU) method. PReLU generated the hyperparameter α using a Gaussian distribution
and automatically adjusted it during testing. The various activation functions are shown
in Figure 7, demonstrating that PReLU significantly enhanced the training efficiency and
accuracy of CNN.

Figure 7. ReLU series activation function.

Based on the aforementioned reasons, both the convolutional and hidden layers of
the 3D-EddyNet model adopted PReLU activation functions. This choice not only fully
utilized PReLU’s advantages in addressing the vanishing gradient problem and improving
convergence speed but also circumvented the limitations faced by ReLU and LReLU,
such as the inability to update weights when the input is less than 0. By using PReLU
activation functions, the model could better learn meaningful features during the training
process, thereby improving its performance. Furthermore, PReLU’s adaptive adjustment
of the hyperparameter α provided the model with increased flexibility and robustness in
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real-world applications. As a result, the application of PReLU in our model ensured the
improvement of training efficiency and the ability to handle complex problems.

In the 3D-UNet and V-Net models, the commonly used Dice loss function was utilized,
which can mitigate the negative impact of foreground–background imbalance by focusing
more on foreground regions and ensuring a lower false negative rate (FN). However, when
dealing with scenarios with many small targets, the training process might suffer from
oscillations. Furthermore, Dice loss is based on similarity comparison, making it unsuitable
for the detection of mesoscale eddies.

In contrast, this study employed the cross-entropy loss function. This is a combination
of softmax and cross-entropy loss functions. The smaller the cross-entropy value, the better
the model’s performance, and its formula is shown in Equation (2):

H(p, q) = −∑n
i=1 p(xi) log (q(xi)) (2)

where p(x) represents the occurrence probability of time x, which is the true distribution of
the samples, and q(x) is the predicted distribution.

Taking all factors into consideration, a network structure suitable for oceanic mesoscale
eddy segmentation is constructed.

As shown in Figure 8, the 3D-EddyNet oceanic mesoscale eddy segmentation network
structure consists of two parts: an encoder and a decoder, each containing convolutional
layers and activation functions. The entire network structure fully considers the character-
istics and challenges of oceanic mesoscale eddy recognition tasks. By introducing a series
of optimization strategies and innovative designs, the model’s performance is enhanced,
providing an effective solution for the automatic recognition of oceanic mesoscale eddies.

Figure 8. 3D single-channel convolution.

2.5. Training Optimization Strategy

In the context of the limited availability of mesoscale eddy datasets, overfitting is a
common concern. To address this issue, Dropout [28] is often introduced as a regularization
technique to suppress certain feature co-adaptations and improve the network’s general-
ization ability. However, in three-dimensional convolutions, as the dimension of similar
information increases, not only horizontal but also vertical correlations in the mesoscale
eddy dataset cannot be ignored. Relying solely on Dropout may not achieve a satisfactory
effect in mitigating overfitting. Therefore, this study employs the DropBlock module, which
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randomly deactivates specific regions to achieve information suppression and enhance
network robustness, preventing overfitting.

DropBlock is an extension of Dropout to the convolutional layer. Its principle is simple,
but it differs significantly from Dropout in that it masks a continuous block region, as
shown in Figure 9.

Figure 9. Dropout vs. DropBlock.

DropBlock has two main parameters: block_size and γ. The block_size represents
the side length of the block region, set uniformly for all feature maps regardless of their
resolution. When block_size = 1, DropBlock approximates Dropout.

The parameter γ controls the probability during the drop process, determining the
number of blocked features and following a Bernoulli distribution. If the desired probability
of keeping each activation unit is keep_prob, γ can be calculated as follows:

γ =
(1− keepratio)× f eature_size2

(block_size2 × ( f eat_size− block_size + 1)2)
(3)

The number of neurons to be dropped using DropBlock is given by the following:

(1− keepratio)× f eature_size2 (4)

To ensure that DropBlock operates on the feature map, the block_size center needs to
be at a certain distance from the feature map’s edge, which is (block_size)/2. Therefore, the
area where the block_size center is satisfied is as follows:

f eature_size− block_size + 1 (5)

Thus, the probability of DropBlock is

γ× block_size2 (6)

The effective area for DropBlock is

( f eat_size− block_size + 1)2 (7)

Finally, the number of elements to be dropped is

γ ∗ block_size2 × ( f eat_size− block_size + 1)2 (8)

To address the complexity and slow training speed of 3D-EddyNet, the Batch Normal-
ization (BN) algorithm [29] was introduced to individually whiten each layer’s input in
the neural network, transforming the image pixel values to a standard normal distribution
with mean 0 and variance 1. This approach resolves issues related to uneven distribution
and accuracy dispersion during training. Specifically, the BN operation is applied after the
convolutional layer, normalizing the network responses for all data samples, and thereby
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mitigating the negative effects caused by uneven distributions and accelerating the training
speed of the model, while simultaneously enhancing its precision and robustness.

Within 3D-EddyNet, each hidden layer’s output of a sample involves three dimensions.
Therefore, the BN algorithm performs normalization for each dimension of every sample
within 3D-EddyNet. This approach effectively improves the training performance of
the neural network, expedites the convergence rate, enhances training efficiency, avoids
overfitting, and maintains the network’s stability. By normalizing the network outputs, the
BN algorithm aids in speeding up the convergence process, mitigating gradient vanishing
or exploding issues during training, making the model easier to optimize, and improving
the model’s adaptability to various inputs in real-world applications.

The model employs the PReLU non-linear activation function, which reduces the
reliance on parameter initialization methods. However, suboptimal initialization can still
negatively impact the training process. He et al. [27] proposed a novel parameter initializa-
tion strategy specifically optimized for ReLU activation functions and its variants, such
as Leaky ReLU and PReLU. The main objective is to maintain appropriate signal magni-
tudes at each layer of the neural network during both forward and backward propagation,
effectively alleviating the issues of vanishing or exploding gradients.

The concept behind this approach is that, in a PReLU network, half of the neurons
in each layer are assumed to have a value of 0, while the other half are activated neurons.
To ensure a stable variance, the method builds upon the Xavier initialization technique
and divides the left-hand side of the variance derivation equation by 2. The weights of
each layer are initialized from a Gaussian distribution with an expected value of 0 and a

standard deviation of
√

2
nl

, where n_l represents the number of neurons in the lth layer.
The He initialization method for PReLU is shown in Equation (9), where “a” is the tuning
coefficient of PReLU.

W ∼ N

[
0,

√
2

(1 + a2)nl)

]
(9)

In summary, 3D-EddyNet employs the He parameter initialization strategy to address
the mentioned concerns effectively.

3. Data Sources and Dataset Construction
3.1. Data Selection

Mesoscale eddies in the ocean play a crucial role in absorbing energy from the larger
background circulation and serve as significant peaks in the oceanic motion energy spec-
trum. Their kinetic energy profoundly influences temperature, salinity, and biogeochemical
processes. However, accurately determining the three-dimensional morphology of these
eddies presents challenges. Ocean altimeter satellites, including the French National Space
Studies Center (AVISO), offer essential data support for large-scale and mesoscale eddy
identification, particularly through sea surface anomaly height data. However, for studying
subsurface structures, altimeter data alone is insufficient, necessitating the inclusion of
sub-surface ocean temperature and salinity data.

The Argo program has been employed as an alternative approach, but its sparse and
uncontrollable distribution of data points makes it challenging to fully represent the marine
environment continuously. To address this, many research institutions grid and interpolate
Argo data to create continuous oceanographic parameter data in the form of gridded Argo
products, offering a more comprehensive understanding of the ocean’s state and variations.

Despite the benefits of gridded products, their spatiotemporal resolution often falls
short of the requirements for mesoscale eddy identification. Their horizontal resolution
is much greater than the average radius of these eddies, rendering them unsuitable. To
overcome this limitation, high-resolution ocean model data, such as HYCOM, ROMS, and
FVCOM, are employed, providing a satisfactory resolution for mesoscale eddy research.
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HYCOM, in particular, is widely used due to its global coverage, versatility, and
realistic representation of various ocean environments. Its hybrid vertical coordinate
system allows for flexible stratification, making it well-suited for large open oceans with
significant layering effects. FVCOM excels in nearshore regions, while the accuracy of
vertical simulation results of ROMS is lower than that of HYCOM.

For this study, the GOFS 3.1 dataset (Global Ocean Forecast System 3.1) is adopted,
representing one of the most advanced and high-resolution global volume grid systems in
HYCOM. Compared to traditional grids, the volume grid system captures complex vertical
structures more accurately, enabling better ocean forecasts and simulations. This dataset
offers 41 layers of HYCOM and NCODA global spatial resolution of 1/12° and temporal
resolution of 3 h, facilitating a comprehensive understanding of global ocean circulation,
temperature, and salinity. The hybrid vertical coordinate system of HYCOM allows for
a more precise representation of ocean features at different depths, including mesoscale
eddies, enabling a better simulation of vertical movements and a more accurate capture of
their three-dimensional structure.

The main purpose of this dataset is to understand and simulate global ocean circulation,
temperature, and salinity. Helber et al. [30] employed an improved synthetic ocean profile
to project surface information into the water column, resulting in global gridded high-
resolution ocean data. HYCOM’s hybrid vertical coordinate system can more accurately
represent ocean features at different depths, such as mesoscale eddies. This enhances the
model’s ability to simulate vertical movements and better captures the three-dimensional
structure of eddies.

The experimental area was selected as the South China Sea. Compared to open oceans,
the South China Sea’s coastal currents are affected by the intrusion of the Kuroshio Current,
complex seabed topography, monsoons, and other factors, resulting in more active and
complex mesoscale eddy motion in the region; the surface circulation of the South China
Sea exhibits rotational eddies [31].

The South China Sea is one of the largest semi-enclosed marginal seas in the western
Pacific, with a complex ocean current system, and it exhibits a wealth of mesoscale eddy
phenomena [32]. Figure 10, respectively, illustrates the sea surface temperature of HYCOM
data at different times and depths.

Figure 10. Schematic diagram of HYCOM temperature data at different periods in the South China
Sea, with depths of 0 m, 100 m, 300 m, and 500 m for (a–d). Clear temperature anomalies can be
observed in the red box.
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3.2. Dataset Construction

The HYCOM model data cover global ocean regions. To reduce the data volume in
the horizontal distribution, the South China Sea area is selected. However, in the vertical
distribution, before the significant depth of 1000 m, there are six different intervals: 2 m, 5 m,
10 m, 25 m, 50 m, and 100 m. This uneven distribution hinders continuous identification.
To improve the data content and make it more suitable for model detection, some data are
discarded, and an interpolation algorithm is used to transform it into uniformly distributed
input data at 50 m intervals. This interpolation process transforms the irregular mesh into
a regular grid, facilitating model computations.

There are trilinear interpolation, inverse distance weighting, and kriging interpolation
methods for comparison. Using HYCOM salt data from 2013 as the target dataset, we
interpolated the data and compared them with the actual values to calculate the mean
absolute error, relative error, and standard deviation. This allowed us to compare different
interpolation methods. The results exhibited a slight advantage in terms of absolute error,
relative error, and standard error, as shown in Table 1. However, this involves complex
computations, taking into account not only the distance to the target point but also the
spatial distribution and data points and considering the spatial correlation of variables. In
scenarios with a large extent, Trilinear interpolation is a more effective choice.

Table 1. Average error statistics of interpolation method.

Methodical Error Trilinear IDW Kriging

Absolute error 0.48 0.81 0.43
Relative error 1.61 2.72 1.46
Standard error 0.75 0.99 0.72

Trilinear interpolation is an extension of bilinear interpolation into three-dimensional
space, essentially summing the weighted values of surrounding points for a specific point.
Figure 11 illustrates the concept of the trilinear interpolation algorithm.

Figure 11. Trilinear interpolation, green dot is the point to be interpolated.

Given the green point P that requires interpolation, linear interpolation is used to
obtain Q_11, Q_12, Q_21, and Q_22, which represent four neighboring pixel points, denoted
as the lerp function. Assuming the differences between directions C001 and C000 are xd,
the differences between C010 and C000 are yd, and the differences between C100 and C000
are zd, the values of the unknown function at these points are denoted as Value (x, y, z).

Q_11 = Value(C000)× (1− xd) + Value(C001)× xd
Q_12 = Value(C100)× (1− xd) + Value(C101)× xd
Q_21 = Value(C010)× (1− xd) + Value(C011)× xd
Q_22 = Value(C110)× (1− xd) + Value(C111)× xd

(10)
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After obtaining these four values, subsequent problems can be treated as classical
bilinear interpolation. Combining with the initial dimension reduction process, the formula
for calculating the value of point P is:

Value(P) =

Value(C000)(1− xd)(1− yd)(1− zd) + Value(C111)xdydzd
+Value(C001)xd(1− yd)(1− zd) + Value(C011)xdyd(1− zd)
+Value(C010)(1− xd)yd(1− zd) + Value(C110)(1− xd)ydzd
+Value(C100)(1− xd)(1− yd)zd + Value(C101)xd(1− yd)zd

 (11)

The result of linear interpolation is independent of the interpolation sequence. The
post-interpolation result is shown in Figure 12.

Figure 12. Interpolated HYCOM temperature and salinity, The red and blue colorbar represent
temperature levels, while the blue and yellow colorbar represent salinity levels.

After the interpolation, data from each depth layer are averaged, and the temperature
and salinity anomalies are processed separately. The specific method involves calculating
the average temperature and salinity at different depths and then subtracting the average
values from the corresponding image pixels to obtain the anomaly data.

The Oceanographic Numerical Modeling and Observation Laboratory at Nanjing
University of Information Science & Technology’s dataset is used as the two-dimensional
labels for this study. This dataset is based on SLA (Sea Level Anomaly) data to detect the
spatial distribution of mesoscale eddies in global ocean regions using the closed contour
method of SLA anomalies. It also assigns attributes of −1 and 1 to distinguish between
warm and cold eddies, as visualized in Figure 13 for different time periods.

During the neural network model training, data augmentation techniques are used
to improve the feature extraction capability of the 3D-EddyNet. Data augmentation,
originally proposed by Dempster et al. [33], is a data expansion technique that aims to
create as many useful data as possible from a limited set of mesoscale eddy data. Given
the nature of neural network learning, it is crucial to maximize the volume of relevant
data in the augmented dataset by leveraging the existing data. Supervised classification
data augmentation involves applying predefined data transformation rules to augment
existing data. This includes both single-sample data augmentation and multi-sample
data augmentation. Due to the specific characteristics of HYCOM data, multi-sample
data augmentation or color transformations are not suitable for this dataset; geometric
transformations like mirroring and rotation are simple yet effective techniques within the
single-sample data augmentation category. This enhances the quality of features extracted
and avoids overfitting during the 3D-EddyNet training process, as shown in Figure 14; the
validation set without data augmentation showed significant overfitting after 40 rounds.
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Figure 13. Mesoscale eddy labels in the South China Sea for different time periods.

Figure 14. The validation and training set loss curves of 3D-EddyNet during training, before and
after data augmentation.

Moreover, the dataset may lead to the poor generalization of new data; the dataset is
partitioned into training, validation, and testing subsets based on their respective purposes.
In this study, the data span from 1 January 1994 to 31 December 2012, with a spatial
resolution of 1/12° and a weekly temporal resolution, covering a total of 19 years. Two data
points per week, corresponding to the same dates as the label dataset, at 9 AM and 6 PM,
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are selected, and occasional missing data are supplemented with data from the preceding
three hours, resulting in a total of 2086 HYCOM images. The dataset is divided into two
categories: temperature and salinity. Data augmentation techniques, such as rotation and
transposition, are employed to double the number of images. The dataset includes 15 years
of data (1994–2008) as the training set, 2009 and 2010 as the validation set, and 2011 and
2012 as the test set. The training set contains HYCOM images with three-dimensional
features of mesoscale eddies, while the label set provides information about the positions
and categories of mesoscale eddies in each image.

4. Results & Discussions
4.1. 3D-EddyNet Model Ablation Experiment

The processed dataset has dimensions of 512 × 512 × 20. The original images are
directly input into the network, and a process prediction is performed with a stride of
10. The output is then edge-processed, divided by four slices, and expanded outward by
five pixels as a boundary processing method. Finally, the images are stitched together to
form complete predictions.

The network model has 4 encoding stages, and the deepest layer has 32 channels.
The input 3D data has dimensions of 512 × 512 for each layer, with a total of 20 layers.
Due to the large memory usage of the original 3D input data, the neural network requires
significant memory for feature extraction at each step. Memory is occupied by convolution
layers, fully connected layers, BN layers, and other parameters, whereas activation function
layers, Dropblock layers, and others do not have parameters.

In the HYCOM data product, mesoscale eddies are usually represented by closed
contour lines. During the recognition process, the temperature and salinity anomaly isolines
of connected regions are determined based on the network’s calculation results to identify
the range of mesoscale eddies.

The evaluation of the results is done by comparing the output sea surface layer slice
with the validation set pixel points. For the pixel points representing mesoscale eddies
in the validation set, if the output result matches the segmentation ground truth, it is
considered a true positive (TP); otherwise, it is a false positive (FP). For non-mesoscale
eddy pixel points, if the output result matches the ground truth, it is considered a true
negative (TN); otherwise, it is a false negative (FN).

Common segmentation metrics are used to evaluate the experimental results, including
Accuracy, Precision, Recall, and F1-Score. Compared with the 3D-UNet model, the proposed
model in this study shows higher values in all evaluation metrics on both the training
and validation datasets, as well as outperforming network models without the addition of
optimization modules. However, the classification results show a difference of over 10%
compared to the validation set, indicating a relatively large error. This may be due to the
type of data in the label dataset, which are MSLA sea level anomaly data that inherently
carry some errors when compared to the HYCOM data used in this experiment. The specific
parameters are listed in Table 2.

Table 2. Comparison of model segmentation effects.

Model Dataset Accuracy Precision Recall F1-Score

3D-UNet Training set 89.93 89.06 89.71 89.38
Validation set 86.05 87.54 86.30 86.94

3D-UNet+
Residual module

Training set 91.21 90.76 90.51 90.63
Validation set 88.22 88.11 88.28 88.19

3D-UNet+
Dynamic convolution

Training set 90.93 91.06 90.72 90.88
Validation set 87.65 87.54 88.30 87.92

3D-EddyNet Training set 93.47 92.53 91.84 92.18
Validation set 89.82 89.14 90.03 89.57
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Furthermore, the loss accuracy curves of the two models are analyzed. When using
the 3D-UNet network for comparison training, the training loss gradually decreases, and
the learning rate also decreases continuously. The final loss values converge to around 0.2.
The training set generally stabilizes around 60 epochs out of 80, while the validation set’s
loss continues to decrease, but with some oscillations.

After incorporating the neural network training optimization strategy mentioned
earlier, the training loss changes, as shown in Figure 15. Generally, faster convergence
speed, smaller oscillations, and lower loss values indicate better network performance.
The proposed model in this study achieves significantly lower loss values compared to the
3D-UNet model and converges faster, stabilizing around 50 epochs.

Figure 15. Validation & training set loss curves during 3D-UNet and 3D-EddyNet training processes.

In the early stages, the training set experiences relatively intense fluctuations, which
gradually decrease over time, and later, the network parameters are optimized, and the
learning rate decreases, leading to overall stability in the curve. By comparing the results,
it is evident that the optimization module improves training effectiveness, resulting in
improvements in model accuracy and speed, surpassing the 3D-UNet model.

Therefore, a comprehensive analysis of segmentation performance, detection accuracy,
convergence speed, and other factors reveals that the proposed network in this study demon-
strates superior performance and exhibits better mesoscale eddy detection effectiveness.

4.2. Temporal and Spatial Distribution Characteristics of Mesoscale Eddies

Between 1994 and 2012, the South China Sea experienced a varying number, size, and
three-dimensional morphology of mesoscale eddies. On average, there were 35.2 ± 2.5 eddies
in the region per image, with approximately 52% being Cyclonic Eddies (CE), characterized
by clockwise rotation in the southern hemisphere (high-pressure center) and counterclock-
wise rotation in the northern hemisphere (low-pressure center). The remaining 48% were
Anticyclonic Eddies (AE), exhibiting the opposite rotation pattern.

Spatially, mesoscale eddies were widespread in the South China Sea, exhibiting a
general northeast–southwest distribution. Regions with higher eddy occurrence were
observed near the southwestern part of Taiwan, southwestern part of Luzon Island, and
northeastern part of Natuna Island, especially in the area from southern Taiwan to the
northern Philippines (Luzon Island). In this region, the volume of mesoscale eddies was
significantly larger than in other areas, likely due to its unique geographic location and
topographical conditions. Overall, the western South China Sea was a region with high
eddy occurrence, where approximately 28% of the eddies were observed west of 113° E,
while only 13% were located east of 116° E. The distribution of CE and AE was similar in
most areas, with a tendency towards AE in many regions. Notably, areas near the Luzon
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Strait showed higher eddy occurrence and exhibited specific eddy shapes, suggesting a
possible relationship between mesoscale eddy formation and seafloor topography.

In terms of temporal distribution, mesoscale eddies were present throughout the
year, but the total number varied significantly among different months, showing a close
correlation with seasonal changes. In spring and autumn, mesoscale eddies were more
abundant than in summer and winter. During spring, AE predominated in the eastern
waters of Taiwan near the equator, as well as in the vicinity of the Luzon Strait. This was
related to the active spring monsoon, enhancing the presence of AE in these regions. In
summer, due to the influence of the summer monsoon, AE was mainly observed in the
western waters of Luzon Island, while CE was distributed in the northeastern part of the
South China Sea, where eddy activity was more apparent. In autumn, a small number
of CE appeared in the eastern waters of the Philippine archipelago, while AE, similar to
spring, was widely distributed in the Luzon Strait and its adjacent areas, showing a distinct
regularity. During winter, a higher number of CE was generated in the northeastern waters
of Natuna Island and the vicinity of the Luzon Strait, while AE was mainly distributed in
the eastern part of Luzon Island, the central basin of the South China Sea, and the central
waters of the Philippines.

The variation in the number and distribution of mesoscale eddies throughout the year
is significantly influenced by the monsoons, which introduce periodicity in the regions
with intense eddy activity.

In 2012, the average number of mesoscale eddies detected per month was analyzed
and presented in Figure 16, showing the monthly variations.

Figure 16. Changes in the number of mesoscale eddies in 2012.

Regarding the three-dimensional morphology of the eddies, a statistical analysis was
performed, revealing that most of the eddies were located above 800 m (85.4%), with the
core situated above 600 m (78.1%). Approximately 69% of the eddies had radii smaller
than 50 km, and the average horizontal radius was less than 40 km. Above 100 m, AE had
slightly larger total pixel area and average radius than CE, while below 300 m, the situation
reversed, with CE having larger pixel area and average radius. The spatial distribution of
eddy pixel values indicated that larger eddies were more prevalent in the northeastern and
western parts of the South China Sea. The depth of 600 m acted as a turning point, with
CE’s dominance exceeding AE’s in numbers above this depth. This further confirmed the
dominance of CE at various vertical levels.

Regarding the eddy radii statistics, to eliminate seasonal effects, weekly images from
2012 were taken, and statistical analyses of the eddy radii and vertical depths were per-
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formed. The relationship between the core position and the number of eddies with depth
is shown in Figure 17. The results demonstrated that eddy cores were mainly located at
depths between 100 and 300 m, while eddies were generally observed at depths exceeding
1000 m. The eddy radii gradually decreased with depth, with AE exhibiting higher numbers
and larger average radii than CE above 200 m, while below 200 m, CE had more signifi-
cant numbers and larger average radii than AE, consistent with the previously described
patterns. This aligns with the findings of Lin [14] in their statistical analysis of mesoscale
eddy data in the South China Sea. The number of CE and AE in different depth ranges
showed a particular trend: CE dominated above 350 m, while below 350 m, AE became
more prevalent.

Figure 17. Statistical analysis of the vertical depth distribution of mesoscale eddies in the South
China Sea.

4.3. Three-Dimensional Shape Analysis of Mesoscale Eddies

Regarding the three-dimensional morphology analysis, the temperature and salinity
anomalies in the dataset were combined and processed to obtain the composite average
temperature and salinity anomalies of eddies with depth. The results showed that the
temperature anomaly peaked at 110 m in the center of the composite CE and at 100 m in the
center of the composite AE. The temperature anomalies for CE and AE were approximately
−1.6 °C and 1.5 °C, respectively, while the salinity anomalies were approximately 0.15 psu
and −0.17 psu. The structures of temperature and salinity anomalies exhibited differences,
with temperature anomalies often vertically extending between 300 and 500 m, while
salinity anomalies were primarily confined to the upper 200 m, with a counter-directional
movement near 300 m.

The identification results are in line with He’s conclusions [18], showcasing that
eddies exhibit elongated conical shapes within the range of 60 m to 90 m. Temperature
and salinity anomalies also attain their peaks at the core of eddies, measuring 1.5 °C and
0.15 psu, respectively, in cyclonic eddies, and 1.4 °C and 0.16 psu in anticyclonic eddies.
Temperature and density anomalies extend vertically to the depth of 400–500 m, while
salinity anomalies are discernible only within the upper 150 m, further substantiating the
effectiveness of 3D-EddyNet, as is shown in Figure 18.
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Figure 18. Synthetic South China Sea mean temperature and salt anomaly profile.

The salinity anomaly profiles and cross-sections exhibited distinct differences from
the temperature anomaly profiles and cross-sections, as shown in Figure 19.

Figure 19. Schematic diagram of meridional profile of temperature and salinity.

To visualize the results, the mesoscale eddies in the South China Sea were categorized
into three main forms based on their vertical depths: top-enhanced bowl-shaped eddies,
middle-enhanced olive-shaped eddies, and bottom-enhanced near-cylindrical eddies, as
shown in Figure 20.

Figure 20. Typical three-dimensional shape diagram of mesoscale eddy in the South China Sea,
(a) is top-enhanced bowl-shaped, (b) is middle-enhanced olive-shaped, (c) is and bottom-enhanced
near-cylindrical.
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However, there are discrepancies between the identification results and the actual
ocean conditions. These discrepancies arise because the model data may differ from real
ocean data, and the current data label set is still two-dimensional, affecting the accuracy of
three-dimensional feature recognition and potentially overlooking sub-surface eddies. As a
result, the size and vertical extent of eddies cannot be fully captured, leading to significant
differences from the real situation.

In the realm of oceanography, a multitude of complex phenomena intricately influence
marine dynamics. These phenomena include internal waves, ENSO, and mode waters.
3D-EddyNet observed the impacts of these phenomena on the mesoscale characteristics of
the ocean to varying degrees, aiding in the exploration of interrelationships among various
phenomena. Furthermore, if efficient and accurate methods for excluding the impact of
specific phenomena on observational results can be identified, it would further enhance
the practicality of our model.

5. Conclusions

In this study, we propose a 3D-EddyNet model based on a three-dimensional neural
network, which effectively addresses training issues related to recognition efficiency, accu-
racy, and gradient degradation, enabling efficient and accurate identification of mid-scale
eddy morphology.

3D-EddyNet overcomes the limitation of previous deep learning methods in rec-
ognizing mid-scale eddies, as it can extract features beyond the sea surface. By filling
the gap in deep learning approaches for identifying three-dimensional morphological
features of mid-scale eddies, this model enhances our understanding of the ocean and
provides a fundamental basis for studying material transport patterns in ocean dynamics
and safeguarding the marine environment.

The discrepancies between real ocean and data affect the identification results of
eddies, thereby impacting the overall research negatively. To improve the accuracy of
the validation method, it is essential to wait for more comprehensive data and introduce
three-dimensional standards for validating and analyzing the results, ensuring that the con-
clusions drawn are closer to the actual conditions and enhancing the reliability and accuracy
of the research.This article primarily centers on introducing the methodological research.

Furthermore, the identification method primarily relies on detecting anomalies to
determine the shape, depth, radius, and other features of abnormal regions, but it cannot
explore the internal details and structure of eddies. Therefore, it is hoped that researchers
will use more suitable datasets and incorporate physical ocean knowledge and other
parameters to analyze the internal structure of eddies in future studies.
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