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Abstract: Underwater images contain abundant information, but many challenges remain for under-
water object detection tasks. Various salient object detection methods may encounter low detection
precision, and the segmented map has an incomplete region of the target object. To deal with blurry
underwater scenes and vague detection problems, a novel fusion underwater salient object detection
algorithm (FUSOD) is proposed based on multi-scale saliency and spatial optimization. Firstly, an im-
proved underwater color restoration was utilized to restore the color information for afterward color
contrast saliency calculation. Secondly, a more accurate multi-scale fusion saliency map was obtained
by fully considering both the global and local feature contrast information. Finally, the fusion saliency
was optimized by the proposed spatial optimization method to enhance the spatial coherence. The
proposed FUSOD algorithm may process turbid and complex underwater scenes and preserve a
complete structure of the target object. Experimental results on the USOD dataset show that the
proposed FUSOD algorithm can segment the salient object with a comparatively higher detection
precision than the other traditional state-of-the-art algorithms. An ablation experiment showed that
the proposed spatial optimization method increases the detection precision by 0.0325 scores in the
F-Measure.

Keywords: multi-scale; spatial optimization; image processing; fusion underwater salient object
detection

1. Introduction

Underwater images contain copious information and have been an imperative source
of completely different, intriguing branches of technology and scientific research [1], such
as underwater image enhancement [2], underwater color restoration [3], and underwater
object detection [4]. However, the appropriateness of the nonexclusive classic models in
real-time underwater robotic vision has been constrained. Underwater imagery suffers
from poor visibility resulting from the attenuation of the propagated light, mainly due to
absorption and scattering effects [5]. The turbid underwater environment makes object
detection a challenging job. For decades, several attempts have been made to reestablish
and enhance the visibility of such corrupted images.

As the deterioration of underwater scenes corresponds to the combination of multi-
plicative and added substance processes, conventional enhancing strategies such as gamma
adjustment [6], histogram equalization [7], and color correction [8]. The existing underwater
restoration strategies have sprung up in recent years. Several foggy dehazing techniques [9]
have been introduced with great attention. However, underwater imagery is even more dif-
ficult to handle the extinction resulting from scattering depending on the light wavelength
on the color component. The absorption substantially reduces the color information in
underwater scenes which has the results of foggy object appearance contrast degradation.
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On the other hand, detecting the most valuable object in the underwater scene has
become an important and valuable subject of research. The human visual system has an
effective attention mechanism to find the most important information from the visual scene.
Computer vision aims to imitate the mechanism in two research branches: eye fixation
detection and salient object detection. Our work focuses on the second one, and aims at
detecting the most salient object in the underwater domain-specific field which may be
composited with several different characteristic regions.

Eye prediction models typically try to detect a small set of points that represent human
eye fixation, while salient object detection focuses on segmenting the whole extent of
the salient object. Complete and accurate salient object detection has been not only a
challenging job in underwater applications but also important for visual detection, scene
comprehension, visual recognition, and other computer vision tasks [10,11]. The research on
saliency measures may be classified into two groups according to the two human attention
mechanism branches. The first saliency computation model is defined by Itti [12] which
first brings the saliency biological model into the computer vision field. The model extracts
color, intensity, and orientation features to calculate the saliency contrast information
with visual biological mechanisms. After the biological model was proposed, a lot of
computational biological models sprang up which may be referred to as the bottom-up
models. Since bottom-up saliency methods largely depend on biological mechanisms and
only calculate the local feature contrast information, they can only detect the edge and
contour information without the complete whole body of the object. Liu [13] was the
first algorithm to deal with the bottom-up problem and bring salient object detection into
computer vision which may focus on detecting the whole region of the object. Liu computes
the multi-scale color contrast on the original image and fuses the local feature with the
global feature through CRF. Finally, the salient object is obtained by searching for the object
that meets the threshold of the region. Since the result mostly depends on the handcraft
threshold, detection performance varies from different scenes.

Traditional salient object detection often utilizes bottom-up saliency measures to make
the coarse detection. They search the saliency map by a greedy algorithm or use the grab-
cut segmentation algorithm to find the salient object while the region meets the handcraft
threshold of the object. To avoid the high exhibition of time caused by the greedy search
used before, Lampert [14] uses the ESS algorithm instead. Achanta [15] segments the
original image into pieces by mean-shift algorithm and then uses an adaptive threshold
method to find the region that has the double saliency value compared with the average
value of the whole image. The former methods largely depend on the handcraft threshold,
but neither of them gives a measure that can find the best searching threshold. To avoid
the problem of choosing the best handcraft threshold, Luo [16] computes the saliency
density of the image and then searches for the rectangle window which contains the max
saliency density. Shi [17] constructs a model that describes the detection of a region by
maximizing the saliency value among it. The final salient object is obtained by the iteration
of the ESS algorithm, and without handcrafted parameters become the privilege of the
method. However, the advanced searching method not only exhibits the amount of time
but also has no accordance with the human fixation mechanism. Cheng [18] defines a
color contrast calculation with sparse quantification and a smooth term to obtain a global
saliency. The model initializes the detection process by binarizing the saliency map, the
final object is obtained by iterating the grab-cut algorithm with the operation of corrosion
and expansion. As mentioned above, both the eye fixation methods and the salient object
detection methods encounter the spatial structure problem. In our work, a proposed spatial
coherence optimization algorithm is utilized instead of CRF and ESS algorithm to preserve
the spatial structure information.

With the population of deep learning, a lot of methods leverage the advantage of
convolutional neural network to calculate the segmentation task. Li [19] makes the early
trial with CNN to extract multi-scale deep features. Instead of using CRF to enhance the
spatial coherence, a super-pixel level saliency map is calculated. To adjust the obscure
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edge problem made by FCN, Hou [20] makes a deep supervised learning with the short
connection to obtain a more accurate saliency map with edge information. Luo [21] utilizes
CNN as a feature extraction measure which may extract both the global and local features.
Liu [22] proposes some pooling modules and makes a joint training with the edge detection.
Qin [23] makes a CNN module with both a feature extraction and refinement module to
adjust the final saliency map. Zhao [24] makes a multi-scale feature extraction with CNN
which is emphasized by spatial and channel attention. Since FCN methods lead to obscure
edge problems which may drop the detection precision, Zhou [25] extracts and fuses the
feature with two streams to integrate saliency maps, contour cues, and their correlation.
Pang [26] makes a multi-scale interactive network to enhance the performance of feature
fusion. Li [27] makes a joint training network for camouflaged object detection. The
fusion of side output from multi-scale deep learning features increases the segmentation
performance. Inspired by the multi-scale features used in deep learning, both the global and
local saliency contrast information are considered in our work to obtain a more accurate
salient object location.

The saliency map generated by traditional saliency measures is vague without an
accurate complete region of the salient object. Supervised measures largely depend on
a lot of prior knowledge and training tricks. To address the problems mentioned above,
a novel fusion underwater salient object detection (FUSOD) algorithm is proposed. An
improved color restoration algorithm are utilized to restore the original image and enhance
the detection precision. Both the global feature contrast information and the local eye
fixation feature are considered to calculate the multi-scale saliency which may increase the
object location accuracy. A novel spatial coherence optimization algorithm is proposed
to preserve the spatial structure information. The proposed FUSOD algorithm will detect
the most salient underwater object with a complete region not only the edge and corner
information in the complex underwater images.

Contributions for fusion underwater salient object detection are shown below:

(1) An improved color restoration method is utilized to compensate for the red color
channel and correct the turbid scene in underwater images which will improve the
performance of underwater salient object detection.

(2) A novel spatial optimization algorithm is proposed to enhance spatial coherence. The
algorithm may optimize the super-pixel level saliency and make the whole framework
preserve with more spatial structure information.

(3) A novel fusion underwater salient object detection algorithm is proposed which fully
utilizes the underwater scenes and comprehensively considers the global and local
contrast information in the underwater image. The proposed algorithm can detect the
underwater salient object completely and accurately. Experiment results on the USOD
dataset show that both the qualitative evaluation and the quantitative evaluation of
the proposed FUSOD algorithm have a comparatively higher performance than the
other traditional salient object detection algorithm.

The rest of the paper is organized as follows. In Section 2, the novel proposed fusion
algorithm is described in detail. In Section 3, simulation results are presented. Conclusions
are presented in Section 4.

2. The Proposed FUSOD Algorithm

As mentioned above, underwater imagery suffers from poor visibility resulting from
the attenuation of the propagated light. Traditional salient object detection methods may
only segment the object with edge or contour information while supervised measure largely
depends on prior knowledge and training tricks. To solve the problems mentioned above,
an improved underwater color restoration method is utilized to compensate for the red color
channel. Both the global contrast and local contrast feature are fully considered to obtain a
more accurate multi-scale fusion saliency map. Finally, the proposed spatial optimization
algorithm is utilized to smooth the saliency fusion map which may enhance the spatial
coherence information. The proposed algorithm detects underwater salient object with a
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complete region not only the edge and contour information. The algorithm is organized
into three parts, Section 2.1 demonstrates the color restoration algorithm for underwater
images, Section 2.2 describes the calculation of the multi-scale fusion saliency map and
Section 2.3 demonstrates the spatial optimization algorithm. The whole framework of the
proposed FUSOD algorithm is shown in Figure 1. The result of each step from the entire
framework can be seen in Figure 2.
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2.1. Underwater Color Restoration

The underwater scene is different from the common transmission medium, which
is mainly affected by the properties of the target objects and camera lens characteristics.
Research [5] shows that seawater assimilates gradually different wavelengths of light as the
complex circumstances of the sea and sunlight. Since red color is the longest wavelength, it
is the first to be absorbed. Followed by orange and yellow color. Evidence shows that the
green channel and blue channel are relatively well preserved in the underwater images.
This means the green channel and blue channel contain complementary color information
to compensate for the strong attenuation of the red channel.

The green channel and the blue channel are utilized to compensate for the red channel
Irc(x) for each pixel. Firstly, the mean color value Imean(x) of the whole color channels is
calculated, where Ir(x), Ig(x) and Ib(x) refer to the mean value of the red channel, green
channel, and blue channel, respectively:

Imean(x) =
Ir(x) + Ig(x) + Ib(x)

3
(1)

Irc(x) =
{

Ir(x) + ∂
∣∣Ig(x)− Imean(x)

∣∣ Ig(x) > Ib(x)
Ir(x) + ∂

∣∣Ib(x)− Imean(x)
∣∣ Ig(x) < Ib(x)

(2)

Then the red color is compensated depending on the value of the blue channel and
green channel. Where Ig(x), Ib(x) and Ir(x) represent the green, the blue color, and the
red channel of the image I. Irc(x) is defined as the compensated red color channel. ∂ is a
constant parameter appropriate for various illumination conditions and acquisition settings.

Finally, the comprehensive compensated color information of the underwater image is
obtained, which is described as IRGB(x):

IRGB(x) = Irc(x) + Ig(x) + Ib(x) (3)
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After the red channel attenuation has been compensated, the Gray-World algorithm W
is utilized to estimate and compensate the illuminant color cast. Finally, a gamma correction
filter is utilized to enhance the underwater image color contrast.

IRGB
′(x) = Fgamma(W(IRGB(x))) (4)

where Fgamma means the gamma filter and IRGB
′(x) refers to the final pixel level restored

underwater image. The white balance algorithm makes the restored underwater image
a brighter scene. In addition, gamma correction makes much of the color located on the
bright side.

The result of each step from the improved underwater color restoration is shown in
Figure 3. The underwater color restoration makes the color brighter, which is beneficial
for the color contrast saliency calculation afterward, and improves the performance of
underwater salient object detection.
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2.2. Multi-Scale Fusion Saliency

To obtain a more accurate saliency map, both the global and local contrast information
of the underwater image are fully considered. The global contrast saliency calculates the
color contrast by the specific pixel with each quantified pixel from the whole image. Finally,
the saliency extent of each pixel is obtained, which is the global saliency. Local contrast
saliency imitates the human eye fixation mechanism which searches the whole image with
a local color contrast calculation window. The saliency extent of each pixel is calculated by
the specific pixel with its surrounding sample pixels. With the linear aggregation, the final
multi-scale fusion saliency map is obtained.

2.2.1. Global Contrast Saliency

Inspired by the assumption [18] that not all color in the image is useful to the detection
task and the color quantification is conducted in the restored underwater image IRGB

′(x),
the color attribute is obtained after the quantification, where CRGB represents the quantified
RGB color field, cj responds to the jth color, and N means the number of colors in the
quantified RGB color field.

CRGB = ∑N
j=1 cj (5)

The pixel xi that has a low frequency of occurrence during the quantification process
may adopt a similar color to the adjacent pixel xj which has a high frequency of occur-
rence. The similar color may be defined by color distance DRGB

(
xi, xj

)
calculation between

each pixel:

DRGB
(
xi, xj

)
=

√(
xr

i − xr
j

)2
+
(

xg
i − xg

j

)2
+
(

xb
i − xb

j

)2
(6)

where xr
i represents the red color channel of the pixel xi. The same meaning is to xg

i and xb
i .

Then the sparsity f j of each color is calculated after the color quantification.

f j =

∣∣cj
∣∣

|cRGB|
(7)
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Then, each pixel xi has its corresponding color attribute by the color distance calcu-
lation DRGB

(
xi, xj

)
. In addition, each pixel has its own color sparsity fi through the color

sparsity calculation.
Since the CIELab area can best simulate human perception, the global contrast saliency

is defined by calculating the color contrast of each pixel with others from the whole image
in the CIELab area, which is defined as:

CLab = {(l1, a1, b1), (l2, a2, b2), . . . , (lN , aN , bN)} (8)

Dist(xi) = ∑N
j=1

√(
li − lj

)2
+
(
ai − aj

)2
+
(
bi − bj

)2 (9)

Then, a Min–Max normalization of Dist(xi) is calculated to obtain the normalized
color contrast Dist(xi)

′.

Dist(xi)
′ =

Dist(xi)−min(Dist(xi))

max(Dist(xi))−min(Dist(xi))
(10)

The color quantification and sparsity calculation will not affect the detection precision
while reducing the computation of the global color contrast. With the multiplication of
each pixel color sparsity fi, the final global contrast saliency map is obtained, which is
GloSal(xi). The heat map of global contrast saliency is shown in Figure 4.

GloSal(xi) = fi × Dist(xi)
′ (11)
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2.2.2. Local Contrast Saliency

There is a lot of evidence showing that human eye fixation will always be on the
center of the visual scene while ignoring the surrounding areas. The phenomenon is
called the center–surround principle. The local contrast saliency is estimated by a center–
surround approach [28,29], which may calculate the location of the target object accurately.
A rectangle window is established which is jointly divided into a center window H0 and a
surround window H1. Then, the window is slid in the whole image to calculate the local
contrast saliency. The local contrast saliency calculation can be conducted as a Bayesian
center–surround model which computes the saliency of each pixel xi under certain feature
whether salient or not.

p(xsal | f ) =
p(xsal)p( f |xsal , H0)

p(xsal)p( f |xsal , H0) + (1− p(xsal))p( f |xsal , H1)
(12)

While the sample pixel is salient, the pixel is defined as xsal . p( f |xsal , H0) refers to
the likelihood calculation of the sample salient pixel in the center window. p( f |xsal , H1)
refers to the likelihood calculation in the surround window. f responds to the color feature
utilized to calculate the contrast saliency information.

The color contrast in the CIELab color area is calculated by a local Gaussian filter [29].
The center window H0 is squeezed to a pixel to sparse the sample of pixels and reduce
the operation. Finally, the calculation of center window likelihood p( f |xsal , H0) can be
expanded as:

p( f |xsal , H0) =
1

m
√

2πδ
∑m

i=1 exp

(
−
‖ f − f H0

i ‖
2δ2

)
(13)



J. Mar. Sci. Eng. 2023, 11, 1757 7 of 18

where m is the number of sample pixels in the center window and δ is a standard deviation.
f H0
i refers to the ith feature of the sample pixel in the center window H0.

The calculation of surround window likelihood p( f |xsal , H1) can be expanded as:

p( f |xsal , H1) =
1

n
√

2πδ
∑n

i=1 exp

(
−
‖ f − f H1

i ‖
2δ2

)
(14)

where n refers to the number of sample pixels and f H1
i describes the ith feature of the

sample pixel in the surround window H1. The squeezed circle module [29] is obtained to
filter and calculate the likelihood of the surround window p( f |xsal , H1) of the image. The
assumption that saliency is objective to each pixel is adopted and the probability density
function p(xsal) is made a constant [28]. Finally, with Bayesian integration of prior and
likelihood information, the local contrast saliency LocSal(xi) can be obtained. The heat
map of local contrast saliency is shown in Figure 5.

LocSal(xi) = p(xsal | f ) (15)
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2.2.3. Saliency Fusion

Following the aggregation algorithm proposed by A. Borji [11], the multi-scale saliency
is fused by linear aggregation. Given a set of m saliency maps {Si|1 ≤ j ≤ m} computed from
an image I, the aggregated saliency value S(xi) at pixel xi of I is modeled as the probability:

S(xi) = P(yxi = 1|S1(xi), S2(xi), . . . , Sm(xi))
∝ 1

Z ∑m
j=1 `

(
Sj(xi)

) (16)

where Sj(p) represents the saliency value of the pixel xi in the saliency map Sj, yxi is a
binary random variable taking the value 1 if xi is a salient pixel and 0 otherwise, and Z is a
constant. The paper [11] implemented three different options for the function `

(
Sj(xi)

)
in

Equation (16).
For effective calculation, a modified fusion strategy of the global and local contrast

saliency F(xi) is conducted by linear aggregation with weighting parameter ∂:

F(xi) = ∂GloSal(xi) + (1− ∂)LocSal(xi) (17)

where ∂ is a trade-off parameter for balancing the global and local contrast saliency. The ∂
is set as 0.3 to the underwater domain-specific field by an amount of trial.

2.3. Spatial Coherence Optimization

Traditional salient object detection methods often detect the object with vague edge
points or corner information without a complete whole body of the salient object. The
super-pixel segmentation is utilized to preserve the spatial coherence information and
energy minimization function to optimize the super-pixel region between each other.

With the assumption that human vision intends to view similar perceptual parts of
the scene as a whole, the super-pixel information used in this paper is considered as the
whole perceptual part not only imitates the human eye mechanism but also preserves the
image spatial coherence information. The SLIC algorithm is utilized to segment images
into multiple pieces which is spi, and each super-pixel contains the complete edge and
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spatial coherence information. Meanwhile, the pixel among the super-pixel has the union
compatibility feature which means the pixel inside each super-pixel can be represented as a
linear or affine combination of all the other points. Since the pixel in the super-pixel has a
distinctive attraction towards the human eye fixation, the mean saliency value is obtained
by averaging the pixel-level saliency inside each super-pixel which is the super-pixel level
saliency sal(spi):

sal(spi) =
1
|R|∑xj∈R F

(
xj
)

(18)

R represents the super-pixel region, xj demonstrates the specific point in the super-
pixel region.

Since the persistence of vision on an image varies from person to person, the generated
saliency map can only demonstrate some kind of prior information about the salient object.
It cannot describe the whole body of the salient object. We smooth the super-pixel saliency
value, which is calculated before approaching the complete region of salient object by
energy minimization function Es

(
sps

i
)
. With the hypothesis that the saliency values of two

adjacent super-pixels will not vary too much if they have a similar color feature. The super-
pixel saliency map is optimized by the smooth terms in the energy minimization function.
The compactness restriction of the smooth term in RGB area will make the foreground of
the saliency map more outstanding than the background. In addition, the saliency gradient
of each adjacent super-pixel will not change too much.

Es(sps
i ) = ∑i(sps

i − sal(spi))
2
+ ∑i,j∈ε

ωi,j
(
sal(spi)− sal

(
spj
))2 (19)

ωi,j = exp
(
−DRGB

(
spc

i , spc
j

))
(20)

Es
(
sps

i
)

represents the energy minimization function. sal(spi) demonstrates the mean
saliency value of each super-pixel calculated before. ε means the small set which contains
the two adjacent super-pixels spi and spj. spc

i and spc
j respond to the mean RGB value of

the two adjacent super-pixels. DRGB

(
spc

i , spc
j

)
calculates the color value distance between

the two specific adjacent super-pixel regions mentioned before. Weight ωi,j is bigger if the
color attribute of the two adjacent super-pixels is similar.

Finally, the saliency map of the fusion underwater salient object detection algorithm
is obtained by iteration of the energy minimization function. The final fusion underwater
saliency map optimized by the energy minimization function has better performance than
the traditional salient object detection method. The saliency gradient between two adjacent
super-pixels will not change too much, and the foreground of the object inside the final
saliency map is more outstanding than the background. The spatial coherence optimization
algorithm of the fusion salient object detection algorithm will make the final detection
more accurate. The result of each step from the proposed FUSOD algorithm is shown
in Figure 6. The heat map of each step from the entire framework shows that the final
segmented object will preserve spatial structure information benefited from the proposed
spatial optimization algorithm.
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3. Results

In this section, we first briefly describe the experiment implementation details, in-
troduction to the benchmark datasets, and evaluation metrics. Then, experiments on the
publicly available datasets are conducted to evaluate and analysis the performance of the
proposed fusion underwater salient object detection algorithm. Both qualitative and quan-
titative evaluation experiments are conducted to verify the proposed FUSOD algorithm.
The proposed underwater color restoration algorithm and spatial coherence optimization
algorithm may be a plug-in module for any marine optical detection task. Evaluation of
underwater color restoration and spatial optimization is analyzed by ablation experiments.
Experiments will also be conducted to analysis the effect of the hyper-parameter ∂ set in
the underwater color restoration and the multi-scale fusion saliency algorithm.

Implementation details

The proposed and compared saliency methods are experimented with an Intel i5 8400
CPU with matlab2020b. Following the official hyper-parameters set in the benchmark [11],
experiment results on the specific dataset are credible.

Dataset

USOD [30] is a challenging dataset to evaluate underwater SOD methods. The dataset
combines the subset of three underwater datasets which is USR-248 [31], UIEB [32], and
EUVP [33]. It contains 300 natural underwater images which are exhaustively compiled to
ensure diversity in the object categories, waterbody, optical distortions, and aspect ratio of
the salient objects. The combination of underwater datasets may make the USOD dataset
more complex and difficult for underwater salient object detection tasks. The dataset pro-
vides binary segmentation images as ground truth for the evaluation of segmentation tasks.

Evaluation criteria

The quantitative evaluation of the salient object detection algorithm with other tradi-
tional saliency methods are conducted based on the widely used evaluation criteria:

(1) Precision-Recall (PR): PR is a standard performance metric and is complementary to
mean absolute error. It is evaluated by binarizing the predicted saliency maps with
a threshold sliding from 0 to 255 and then performing a bin-wise comparison with
the ground truth values. A saliency map S(x, y) is first converted to a binary mask M
with the ground truth G:

Precision =
|M ∩ G|
|M| (21)

Recall =
|M ∩ G|
|G| (22)

Achanta [15] proposes the image-dependent adaptive threshold for binarizing S(x, y),
which is computed as twice as the mean saliency of S(x, y):

Tα =
2

W × H ∑W
x=1 ∑H

y=1 S(x, y) (23)

(2) F-measure: F-measure is an overall performance measurement that is computed by
the weighted harmonic mean of the precision and recall, where the parameter β is
often set to 0.3:

Fβ =

(
1 + β2)× Precision× Recall

β2 × Precision× Recall
(24)

Larger F-measure score indicates better performance.
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(3) MAE: MAE is defined as the average pixel-wise absolute error between the prediction
saliency map S(x, y) and the binary ground truth G(x, y), both normalized in the
range [0, 1]. The smaller MAE indicates better performance.

MAE =
1

H ×W ∑H
y=1 ∑W

x=1|S(x, y)− G(x, y)| (25)

where H and W refer to the height and width of the saliency map, respectively.

Nomenclature of the abbreviations

To improve the readability of the paper, a nomenclature table of the abbreviations
utilized in the algorithm is presented below in Table 1. Each line describes the abbreviation
which is used in the afterward experiments.

Table 1. The nomenclature of the abbreviations in the experiment.

Abbreviations Signature

FUSOD The proposed fusion underwater salient object detection algorithm.

FUSOD-p
The pixel-level fusion underwater salient object detection algorithm
which means the FUSOD algorithm without the proposed spatial
optimization module.

FUSOD-sp
The super-pixel level fusion underwater salient object detection
algorithm which means the FUSOD algorithm without the proposed
energy minimization optimization module.

FUSOD-ucr The FUSOD algorithm without underwater color restoration process.

3.1. Experiment of Fusion Underwater Salient Object Detection Algorithm

Eight traditional saliency methods are chosen from the state-of-the-art benchmark.
The eight methods are CA [34], COV [35], FES [29], SEG [28], SeR [36], SIM [37], SUN [38]
and SWD [39] measure. Details of qualitative evaluation and quantitative evaluation are
shown below:

3.1.1. Qualitative Evaluation

The proposed fusion underwater salient object detection algorithm (FUSOD) and the
eight compared salient object detection measures are evaluated on different underwater
scenes to imitate the complex underwater natural environment and evaluate the robustness
performance of the algorithm. Several representative results are shown below to analyze
the detection problem of the traditional SOD. Qualitative experiment results can be found
in Figure 7.

As mentioned before, vague foreground and incomplete detection results are the
drawbacks to traditional SOD algorithms. From the qualitative results above, there is only
edge and contour information detected by the traditional bottom-up saliency methods of
CA without a complete whole body of the salient object. COV and FES methods focus
on locating the object with a vague object detection result. However, the coarse location
information may be utilized as a prior knowledge of many computer vision tasks. SEG
use CRF to preserve spatial coherence information with a low detection result on some
image which may detect the non-salient background information. SeR and SIM segment a
blurry foreground with a lot of background information. SUN method utilizes bottom-up
saliency to predict human eye fixation incorporated with top-down information. However,
the result contains a lot of points from background statistics distribution. SWD method
also focuses on predicting human eye fixation while missing the complete target object. It
utilizes biological mechanisms and evaluates the spatial-weight dissimilarity. From the
results above, the detection result focuses on the center of the view. The proposed fusion
underwater salient object detection algorithm (FUSOD) can generate a better saliency
map that benefits from the color restoration algorithm, the multi-scale contrast calculation,
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and the spatial coherence optimization algorithm. The saliency map generated from the
proposed algorithm shows that both the location and the complete shape of the object can
be detected accurately.
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USOD dataset. (a) The original image, (b) CA method, (c) COV method, (d) FES methods (e) SEG
method, (f) SeR method, (g) SIM method, (h) SUN method, (i) SWD method, (j) proposed FUSOD
method, (k) ground truth.

3.1.2. Quantitative Evaluation

Standard evaluations, such as PR curve, F-measure, and MAE are utilized to evaluate
the quantitative performance of the SOD algorithm in the underwater domain-specific field.
Quantitative evaluation results may be found in Figures 8 and 9, and Table 2. Experiment
results show that SIM, SUN, and SeR have a comparatively low performance because
they only use local saliency information and without an optimization refinement process.
From the qualitative result above, SIM may detect a lot of background information which
may increase the MAE score indicating fault detection. The FES method may have a
comparatively high location capability but still with a lot of error information. CA combines
local feature and global feature to detect the most salient eye fixation point but lost spatial
information of the target object. The combination of multi-scale fusion saliency and spatial
coherence optimization can make the proposed FUSOD algorithm not only preserve the
complete region of the object body but also result in a high detection precision performance.
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Table 2. F-measure and MAE score of different saliency algorithms.

Methods F-Measure MAE

CA 0.5433 0.260618
COV 0.5525 0.205216
FES 0.5848 0.314445
SEG 0.5718 0.331153
SeR 0.5167 0.320286
SIM 0.4890 0.381647
SUN 0.5304 0.340639
SWD 0.5902 0.287874

FUSOD 0.6282 0.195531

3.2. Ablation Study of Underwater Color Restoration
3.2.1. Qualitative and Quantitative Analysis of Underwater Color Restoration

The proposed fusion underwater salient object detection algorithm aims at segmenting
the most salient object in a domain-specific area with a complete whole body accurately.
The preprocessing of the turbid image is important for afterward color contrast calcu-
lation. So, we set an ablation experiment to analyze the effect of the color restoration
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algorithm on the proposed FUSOD algorithm. The details of experiment results are shown
in Figures 10 and 11, and Table 3.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 9. PR curve of different algorithms on USOD dataset, which include FUSOD, SeR, SIM, SUN 
and SWD method. 

Table 2. F-measure and MAE score of different saliency algorithms. 

Methods F-Measure MAE 
CA 0.5433 0.260618 

COV 0.5525 0.205216 
FES 0.5848 0.314445 
SEG 0.5718 0.331153 
SeR 0.5167 0.320286 
SIM 0.4890 0.381647 
SUN 0.5304 0.340639 
SWD 0.5902 0.287874 

FUSOD 0.6282 0.195531 

3.2. Ablation Study of Underwater Color Restoration 
3.2.1. Qualitative and Quantitative Analysis of Underwater Color Restoration 

The proposed fusion underwater salient object detection algorithm aims at seg-
menting the most salient object in a domain-specific area with a complete whole body 
accurately. The preprocessing of the turbid image is important for afterward color con-
trast calculation. So, we set an ablation experiment to analyze the effect of the color res-
toration algorithm on the proposed FUSOD algorithm. The details of experiment results 
are shown in Figures 10 and 11, and Table 3. 

    

(a) (b) (c) (d) 

Figure 10. Comparison of the underwater image before and after color restoration algorithm. (a) 
Original image, (b) color histogram of the original image, (c) restored image, (d) color histogram 
of the restored image. 

Figure 10. Comparison of the underwater image before and after color restoration algorithm. (a) Orig-
inal image, (b) color histogram of the original image, (c) restored image, (d) color histogram of the
restored image.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 14 of 19 
 

 

The qualitative experiment result above shows that the restored underwater image 
may be a bit brighter than the original view. The corrected color may move towards the 
bright side which may benefit afterwards color contrast calculation.  

 
Figure 11. PR curve of the underwater color restoration ablation experiment. 

Table 3. F-measure and MAE score of the underwater color restoration ablation experiment. 

Methods F-Measure MAE 
FUSOD 0.6282 0.195531 

FUSOD-ucr 0.6089 0.213947 

The red plot (FUSOD) represents the proposed fusion underwater salient object de-
tection algorithm with the color restoration preprocess step. While the blue one 
(FUSOD-ucr) means the fusion underwater SOD algorithm without underwater color 
restoration preprocess. From the quantitative evaluation results, the detection precision 
will be a bit lower if the color restoration preprocess algorithm is emitted from the whole 
framework. The color feature is conducted in the whole detection process, such as global 
contrast calculation, local contrast calculation, and spatial coherence optimization. The 
underwater images are distinctive from common images and color attenuation may have 
an important effect on optical-based applications and research. The color restoration al-
gorithm will not hugely enhance the detection performance, but the color compensation 
and correction will benefit the amount of afterward tasks.  

3.2.2. Experiment of Hyper-Parameter in Underwater Color Restoration 
To find the best ∂  in Equation (2), an experiment is set with different values of ∂ . 

From the PR curve and F-measure score in Figure 12 and Table 4, the best ∂  may be set 
as 0.2. Experiment results demonstrate that the detection performance will have a minor 
change while the hyper parameter ∂  changes from 0.1 to 0.5. Evidence [5] shows that 
∂  equals to 0.1 may have a better color restoration result. We set ∂  as 0.2 according to 
the experiment and the underwater domain-specific field. 
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Table 3. F-measure and MAE score of the underwater color restoration ablation experiment.

Methods F-Measure MAE

FUSOD 0.6282 0.195531
FUSOD-ucr 0.6089 0.213947

The qualitative experiment result above shows that the restored underwater image
may be a bit brighter than the original view. The corrected color may move towards the
bright side which may benefit afterwards color contrast calculation.

The red plot (FUSOD) represents the proposed fusion underwater salient object detec-
tion algorithm with the color restoration preprocess step. While the blue one (FUSOD-ucr)
means the fusion underwater SOD algorithm without underwater color restoration prepro-
cess. From the quantitative evaluation results, the detection precision will be a bit lower if
the color restoration preprocess algorithm is emitted from the whole framework. The color
feature is conducted in the whole detection process, such as global contrast calculation,
local contrast calculation, and spatial coherence optimization. The underwater images are
distinctive from common images and color attenuation may have an important effect on
optical-based applications and research. The color restoration algorithm will not hugely
enhance the detection performance, but the color compensation and correction will benefit
the amount of afterward tasks.
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3.2.2. Experiment of Hyper-Parameter in Underwater Color Restoration

To find the best ∂ in Equation (2), an experiment is set with different values of ∂. From
the PR curve and F-measure score in Figure 12 and Table 4, the best ∂ may be set as 0.2.
Experiment results demonstrate that the detection performance will have a minor change
while the hyper parameter ∂ changes from 0.1 to 0.5. Evidence [5] shows that ∂ equals to
0.1 may have a better color restoration result. We set ∂ as 0.2 according to the experiment
and the underwater domain-specific field.
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Table 4. F-measure and MAE score of the different ∂ in the underwater color restoration method.

Methods F-Measure MAE

∂ = 0.1 0.6250 0.196534
∂ = 0.2 0.6282 0.195531
∂ = 0.3 0.6242 0.196529
∂ = 0.4 0.6191 0.196657
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3.3. Experiment of Hyper-Parameter in Multi-Scale Saliency Fusion

The constant parameter ∂ in Equation (17) is a trade-off parameter to balance the
multi-scale contrast saliency. The heat map of each step in the entire framework shows
that the local contrast saliency may provide more location information than global contrast
saliency. The PR curve and F-measure in Figure 13 and Table 5 demonstrate that ∂ may be
set as 0.3 to obtain the best performance.

Table 5. F-measure and MAE score of the different ∂ in the multi-scale fusion saliency method.

Methods F-Measure MAE

∂ = 0.1 0.6240 0.197521
∂ = 0.2 0.6202 0.196540
∂ = 0.3 0.6282 0.195531
∂ = 0.4 0.6159 0.201530
∂ = 0.5 0.6031 0.204571



J. Mar. Sci. Eng. 2023, 11, 1757 15 of 18

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 12. Experiments of hyper-parameter in underwater color restoration. 

Table 4. F-measure and MAE score of the different ∂  in the underwater color restoration method. 

Methods F-Measure MAE 𝜕 = 0.1 0.6250 0.196534 𝜕 = 0.2 0.6282 0.195531 𝜕 = 0.3 0.6242 0.196529 𝜕 = 0.4 0.6191 0.196657 𝜕 = 0.5 0.6180 0.198521 

3.3. Experiment of Hyper-Parameter in Multi-Scale Saliency Fusion  
The constant parameter ∂  in Equation (17) is a trade-off parameter to balance the 

multi-scale contrast saliency. The heat map of each step in the entire framework shows 
that the local contrast saliency may provide more location information than global con-
trast saliency. The PR curve and F-measure in Figure 13 and Table 5 demonstrate that ∂  
may be set as 0.3 to obtain the best performance.  

 
Figure 13. Experiments of hyper-parameter in multi-scale fusion saliency method. 

  

Figure 13. Experiments of hyper-parameter in multi-scale fusion saliency method.

3.4. Ablation Study of Spatial Coherence Optimization

The proposed spatial optimization algorithm is calculated with super-pixel segmenta-
tion and energy minimization function to optimize the coarse multi-scale fusion saliency.
The method may enhance the spatial coherence and make the final saliency map segmented
with a complete body of the salient object. It meets the physical rule that the whole sys-
tem is stable while the value of the energy function is the lowest. So, the final FUSOD is
optimized by iteration of energy minimization. We set an ablation experiment to evaluate
the performance between the coarse pixel level multi-scale fusion saliency, super-pixel
level saliency without energy minimization, and the final optimized FUSOD algorithm.
Experiment results can be found in Figures 14 and 15, and Table 6.

Table 6. F-measure and MAE of the spatial optimization ablation experiment.

Methods F-Measure MAE

FUSOD 0.6282 0.195531
FUSOD-p 0.5957 0.282547
FUSOD-sp 0.6049 0.312752

The FUSOD refers to the final optimized fusion underwater salient object detection
algorithm. The FUSOD-p means the pixel-level coarse multi-scale fusion saliency map. The
FUSOD-sp represents the super-pixel level saliency methods without energy minimization
optimization. From the qualitative evaluation results presented in Figure 14, the coarse
multi-scale fusion saliency may segment the salient object with global contrast information
and local eye fixation features. The coarse saliency map is calculated by pixel from the image.
The foreground segmentation may be the full extent of the salient object than the traditional
bottom-up saliency methods, which means the fixation points and region information are
both detected from the image. The super-pixel level saliency map preserves the spatial
coherence information. However, both of the former saliency maps have a lot of fault
background detection results which will result in a low precision and comparatively high
MAE score. Finally, the saliency map segmented by the FUSOD algorithm may segment
the foreground outstanding than the background with the help of energy minimization
optimization. Both the foreground and background regions are smooth inside.

The quantitative evaluation results above show that the coarse multi-scale fusion
saliency map (FUSOD-p) may have a low performance compared with the other two
methods. The MAE column shows that the super-pixel level saliency segmentation (FUSOD-
sp) may have a comparatively high F-measure but retain a lot of fault detection. The
optimized FUSOD algorithm may have a high detection precision with a low MAE score.
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4. Conclusions

In this paper, a novel fusion underwater salient object detection method for underwa-
ter domain-specific fields has been studied. The improved color restoration method shows
that the compensation for the red channel and color correction may be beneficial for color
contrast calculation and increase the underwater object detection accuracy. The multi-scale
fusion saliency algorithm may obtain a more accurate object location in the complex under-
water scene. The proposed spatial optimization method makes the segmented area preserve
a complete object structure with the edge and contour information, which is beneficial for
increasing detection precision in underwater turbid images. Various underwater scenes
will be studied to increase the generalizability of the findings in the future.
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