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Abstract: Efficiently predicting high-resolution and accurate flow fields through networked au-
tonomous marine vehicles (AMVs) is crucial for diverse applications. Nonetheless, a research gap
exists in the seamless integration of data-driven flow modeling, real-time data assimilation from flow
sensing, and the optimization of AMVs’ sensing strategies, culminating in a closed-loop dynamic
data-driven application system (DDDAS). This article presents a novel DDDAS that systematically
integrates flow modeling, data assimilation, and adaptive flow sensing using networked AMVs.
It features a hybrid data-driven flow model, uniting a neural network for trend prediction and a
Gaussian process model for residual fitting. The neural network architecture is designed using
knowledge extracted from historic flow data through tidal harmonic analysis, enhancing its capa-
bility in flow prediction. The Kriged ensemble transform Kalman filter is introduced to assimilate
spatially correlated flow-sensing data from AMVs, enabling effective model learning and accurate
spatiotemporal flow prediction, while forming the basis for optimizing AMVs’ flow-sensing paths.
A receding horizon strategy is proposed to implement non-myopic optimal path planning, and a
distributed strategy of implementing Monte Carlo tree search is proposed to solve the resulting large-
scale tree searching-based optimization problem. Computer simulations, employing underwater
gliders as sensing networks, demonstrate the effectiveness of the proposed DDDAS in predicting
depth-averaged flow in nearshore ocean environments.

Keywords: dynamic data-driven application system; autonomous marine vehicles; flow field
prediction; data assimilation; adaptive sampling

1. Introduction

The advancement of affordable, long-range autonomous marine vehicle (AMV) tech-
nologies, including unmanned surface vehicles (USVs), autonomous underwater vehicles
(AUVs), underwater gliders, and wave gliders [1], has presented opportunities for the
deployment of persistent, robotic, and autonomous Lagrangian networks in ocean environ-
ment sensing. In contrast to conventional ocean observation networks such as the ARGO
array [2], the utilization of mobile and autonomous networks composed of a collection of
AMVs offers a distinctive technical capability: controllable maneuverability in complex and
dynamic ocean environments. Therefore, effectively leveraging their controllable maneu-
verability to enable the networks to acquire cost-effective and information-rich sensing data
within nonuniform and dynamic ocean environments, aligning with the requirements of
observation missions, is a key issue within the research community focused on autonomous
ocean sensing with AMV networks.

The tracking of dynamic ocean features to gather in situ data for characterizing and pre-
dicting the evolution of these features, such as thermoclines [3], plumes [4], and mesoscale
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eddies [5], is an aspect of applying AMV networks for ocean sensing. Besides feature track-
ing, a foundational application objective in utilizing AMV networks is to autonomously and
adaptively collect a variety of informative Lagrangian data streams, such as temperature,
salinity, and flow velocity of seawater, that can be assimilated into predictive ocean models.
The assimilation of these data streams can lead to significant improvement in the accuracy
of temporal predictions for spatial fields in ocean environments [6]. Consequently, the
real-time optimization of the data streams for assimilation using numerical ocean models
is crucial in maximizing model prediction performance, and it plays an essential role in
both research and practical applications of ocean sensing with AMV networks. One key
approach to addressing this optimization problem is through the utilization of feedback
control theory and the formulation of a sensor management technical framework [7]. This
framework establishes a closed-loop system by integrating a numerical ocean model with
an AMV sensing network [8] and uses iterative feedback and optimization processes to
continuously adapt the network’s sensing strategies and improve prediction performance.
Different from conventional feedback control of dynamic systems, the feedback control
in the closed-loop adaptive ocean sensing and prediction system involves cooperative
control of the sensing actions of the networked AMVs, taking into account the constraints
imposed by ocean environments. And the primary objective of this feedback control is to
collect informative sensing data of ocean environments, which can be utilized in ocean
models to improve prediction performance. The AOSN II and ASAP projects have made
significant contributions to the research on autonomous and adaptive ocean sensing with
AMV networks, particularly regarding the utilization of underwater gliders as part of the
sensing network [9,10]. These projects have laid an important foundation for the further
advancements in this field.

In the context of ocean sensing and prediction systems, predictive ocean models play
an important role. Alongside traditional methods based on numerically solving partial
differential equations of geophysical fluid dynamics, data-driven techniques have emerged
as powerful and complementary tools for ocean modeling and prediction. Leveraging
machine learning and statistical approaches, data-driven methods extract patterns and
relationships from observed data, enabling them to make high-resolution and accurate
predictions with reduced computational costs. Extensive research efforts have been dedi-
cated to developing and applying data-driven techniques for ocean modeling and spatial
and temporal predictions. Notable approaches include objective analysis (OA) [11,12],
Gaussian process (GP) [13], Kriging geostatistical prediction [14], compressive sensing [15],
radial basis functions (RBFs) [16], proper orthogonal decomposition [17,18], dynamic mode
decomposition (DMD) [19], and neural networks [20,21]. Compared to conventional ocean
models, data-driven techniques rely more heavily on the information content within the
data for their implementation. Building upon the aforementioned data-driven techniques,
researchers have devised methodologies to optimize sensing strategies for both Eulerian
and Lagrangian platforms, as demonstrated in [11–13,16–18]. These optimized strategies
enable the collection of informative data, leading to enhancements in data-driven prediction
performance. Through the integration of data-driven techniques and adaptive observation
strategies within the closed-loop system, the ocean sensing and prediction capabilities of
AMVs can be significantly improved. This approach holds great potential in achieving
high-resolution and accurate ocean prediction with AMV sensing networks.

High-resolution and accurate flow field prediction is a fundamental component in
ocean prediction. The spatiotemporal flow information not only offers insights into the
multi-scale dynamic behavior of ocean currents but also plays a crucial role in path
planning [22,23], navigation [24,25], feature prediction and tracking [26], and motion con-
trol for both individual and swarms of AMVs [11,27] implementing ocean sensing missions.
Many studies have been conducted on data-driven flow prediction [22,24,25,28–30], ad-
dressing flow prediction in diverse oceanic environments where tidal or non-tidal flow is
dominant. However, a research gap exists in the specific area of integrating data-driven
flow modeling, online data assimilation of flow sensing data into data-driven flow models,
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and optimizing AMVs’ flow sensing strategy, based on the closed-loop feedback ocean
prediction and adaptive sensing technical framework.

Based on the above review and discussions, as well as recognizing the significance
of high-resolution and accurate flow field prediction in ocean prediction and AMVs’ op-
erations, this article is dedicated to exploring this data-driven closed-loop approach and
systematically developing methods for data-driven flow modeling, data assimilation, and
optimizing AMVs’ observations. The systematic development establishes a dynamic data-
driven application system (DDDAS) [31] for flow prediction and sensing with AMVs. The
DDDAS seamlessly integrates data-driven modeling, data assimilation, and an optimal
decision-making process, as depicted in Figure 1, thereby enhancing high-resolution and
accurate flow field prediction capabilities and enabling adaptive and efficient flow sensing
using AMVs.
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The main contributions and novelties of this article are as follows: (1) Pioneering
closed-loop DDDAS development: This article represents an advancement by introducing
the first-ever closed-loop data-driven DDDAS designed for predicting flow fields. The
system seamlessly integrates data-driven flow modeling, data assimilation, and adaptive
sensing with AMVs. (2) A hybrid data-driven flow model: This article proposes an innova-
tive hybrid data-driven flow model that combines the predictive power of a neural network
with the statistical estimation of a Gaussian process model. Notably, the neural network
architecture is designed to incorporate prior knowledge of tidal components, contributing
to accurate flow predictions. This hybrid model not only captures flow trends accurately
but also effectively handles residuals. (3) The Kriged ensemble transform Kalman filter
(ETKF) data assimilation: This article introduces a pioneering application of the Kriged
ETKF method for assimilating spatially correlated flow-sensing data from AMVs. This
methodology demonstrates exceptional efficacy in model learning and spatiotemporal
flow prediction. It also enhances the optimization of AMVs’ sensing paths. (4) A reced-
ing horizon strategy for optimal path planning: Addressing the challenge of non-myopic
optimal path planning for a network of AMVs, this article introduces a strategic reced-
ing horizon approach. To tackle the resulting computational complexity of large-scale
tree-searching-based optimization, this article proposes a novel distributed Monte Carlo
Tree Search (MCTS) method. This innovative approach harnesses the collective compu-
tational capabilities of networked AMVs to explore the search space and derive effective
planning solutions.

The rest of this paper is structured as follows. Section 2 presents the data-driven
hybrid flow model, including the neural network model and the Gaussian process model.
Section 3 elaborates on the state and observation models for data assimilation and the
implementation of the Kriged ETKF method for model learning and flow prediction.
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Section 4 presents the optimization of the AMVs’ paths for collecting informative flow-
sensing data to enhance flow prediction accuracy. Section 5 presents simulation studies to
demonstrate the performance of the DDDAS. Finally, Section 6 presents the conclusions.

2. Data-Driven Flow Prediction Model

The flow model serves as a fundamental component within the developed DDDAS.
The section introduces the developed hybrid data-driven model, which leverages the ma-
chine learning model of neural networks and the statical model of the Gaussian process.
Section 2.1 provides an overview of the hybrid model. Section 2.2 presents the utilization
of the tidal harmonic analysis method to extract essential prior knowledge of the flow, sup-
porting the design of the neural network model. Section 2.3 elaborates on the development
of the neural network model and Section 2.4 presents the Gaussian process model.

2.1. Model Overview

To enable the prediction of the flow speed at specific spatiotemporal locations x = (s, t),
where s ∈ R2 represents the spatial location and t ∈ R represents the time, a data-driven
spatiotemporal flow field model is established. This model comprises two submodels:

u(x) = µu(x) + ru(x) (1)

v(x) = µv(x) + rv(x) (2)

Equation (1) represents the submodel for the latitudinal flow speed u(x), and
Equation (2) represents the submodel for the longitudinal flow speed v(x), at the given
spatiotemporal locations x.

The flow model consists of two fundamental components: the mean component, and
the residual component. The mean component, denoted as µu(x) and µv(x), captures the
average or expected flow speeds, providing the trends in flow at the given spatiotemporal
location. In this article, a feedforward neural network is employed to approximate the
continuous and nonlinear function of µu(x) and µv(x). The choice is motivated by the
neural network’s universal approximation capabilities, which enable it to effectively learn
and represent the complex relationships between input parameters including longitude,
latitude, time, and the corresponding flow speed. To implement the flow model, a specific
neural network is designed, and its detailed architecture is described in Section 2.3. On the
other hand, the residual component, denoted as ru(x) and rv(x), accounts for variations
from the mean component. These residuals may arise due to unmodelled influences or other
factors affecting the flow speed. In this article, the Gaussian process is employed to model
ru(x) and rv(x), which will be described in detail in Section 2.4. The composition of the
flow prediction model, take u(x) for example, is depicted in Figure 2. By decomposing the
flow into mean and residual components, the spatiotemporal flow model could effectively
capture both the average behavior and the deviations from the average, which enhance the
accuracy and reliability of the predictions.
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Throughout the subsequent sections, the model for u(x) will be focused on as an
example for description and discussion. And to simplify expression and notation, the
subscript u in µu(x) and ru(x) will be omitted. It is important to note that both u(x) and
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v(x) share the same structural components and underlying principles. Therefore, the
descriptions, methodologies, and discussions related to u(x) can be directly applied to v(x).

2.2. Decomposition of Flow Using Tidal Harmonic Analysis

Driven by tidal forces, flow fields in nearshore ocean environments often exhibit
spatiotemporal periodic features, which can be characterized by the presence of multiple
periodic components. These components possess distinct frequencies and amplitudes,
playing significant roles in shaping the overall flow dynamics. Incorporating information
about the tidal components in the design of the neural network architecture allows for
capturing and learning about the relationships between the tidal components and the flow
speed more effectively. Therefore, this article implements this integration of knowledge of
tidal components into the neural network design, leveraging the periodic patterns present
in the flow field to enhance the accuracy of flow prediction.

Tidal harmonic analysis is an effective approach for decomposing the flow into dif-
ferent constituents, represented by trigonometric functions with distinct frequencies. It
processes the training data of a temporal sequence of flow fields to identify the domi-
nant tidal frequencies and their corresponding amplitudes. The tidal frequencies can be
calculated using methods such as least-squares harmonic estimation (LS-HE) [32] and mul-
tivariate LS-HE [33]. Once the frequencies are determined, the amplitudes and phases of
the corresponding trigonometric function for each tidal constituent can be calculated using
methods such as least-squares estimation. These constituents capture the fundamental
periodic components of the flow.

In this article, the tidal harmonic analysis is implemented to obtain the tidal con-
stituents. Each obtained tidal constituent corresponds to two orthogonal temporal basis
functions, given by:  ψi(t) = cos

(
2πt
Ti

)
ψi+Ntc(t) = sin

(
2πt
Ti

) i = 1, · · · , Ntc (3)

where Ti represents the period of the i-th tidal constituent, and Ntc represents the total
number of the chosen dominant constituents. These basis functions form a basis set that
captures the periodic variations in the flow over time.

For a specific spatial location s, the flow contributed by the i-th tidal constituent can
be expressed as follows:

µi(s, t) = βi(s)cos
(

2πt
Ti

)
+ βi+Ntc(s)sin

(
2πt
Ti

)
i = 1, · · · , Ntc (4)

where the coefficients βi(s) and βi+Ntc(s) represent the amplitudes of the basis functions
ψi(·) and ψi+Ntc(·) at location s, respectively. Considering the contributions of all tidal
constituents, the overall flow at the spatial location s can be expressed as:

µ(s, t) = β0(s) + ∑Ntc
i=1 µi(s, t)= βT(s)ψ(t) (5)

where β0(s) represents the non-tidal constant component of the flow at spatial
location s, β(·) = [β0(·), β1(·), · · · , β2Ntc(·)]

T varies with the locations, and
ψ(·) = [1, ψ1(·), · · · , ψ2Ntc(·)]

T .

2.3. Neural Network Model for the Mean Component

Based on the flow model in Equation (5), a feedforward neural network is designed to
model µ(x) in this article, and its architecture is depicted in Figure 3. The main objective
of the network is to learn about the relationship between µ(x) and x = (s, t), enabling the
prediction of the flow field.
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In the model, the neural network takes the latitudinal coordinate slat and the longi-
tudinal coordinate slon of the spatial location s, along with the time t as input parameters.
It then outputs the predicted flow speed µ(x) at x = (s, t). The neural network consists
of three hidden layers: the h-layer, the β-layer, and the ψ-layer. The h-layer consists of Nh
nodes that are fully connected to the model inputs slat and slon. The β-layer has 2Ntc + 1
nodes that are fully connected to the h-layer. And the ψ-layer is a hidden multiplicative
layer with 2Ntc nodes, which is connected to the model input t. The model output is
obtained by calculating the inner product of the outputs from the β-layer and the ψ-layer.
The parameters of the neural network are denoted as follows: the connection weight matrix
between the h-layer nodes and the input nodes is denoted as W1, and the bias vector of
the h-layer nodes is denoted as b1. Similarly, the connection weight matrix between the
β-layer nodes and the h-layer nodes is denoted as W2, and the bias vector of the β-layer
nodes is denoted as b2. Additionally, the connection weight between the node βi(·) and
the node hj(·) is denoted as w2,i,j, and the bias of the node βi(·) is denoted as b2,i, where i
ranges from 0 to 2Ntc, and j ranges from 1 to Nh.

To introduce nonlinearity into the neural network, the S-type hyperbolic tan-
gent function gh(·) is selected as the activation function for the h-layer, i.e., h(s) =[
h1(s), · · · , hNh (s)

]T
= gh(W1s + b1) = tanh(W1s + b1). For the β-layer, the linear acti-

vation function gβ(·) is chosen, i.e., β(s) = [β0(s), · · · , β2Ntc (s)]
T = gβ(W2h(s) + b2) =

W2h(s) + b2. The temporal basis functions are chosen as the corresponding activation
functions for the ψ-layer.

For the offline learning of the network parameters using the data of flow and its learned
tidal constituents, the Levenberg–Marquardt backpropagation optimization method is
employed. This optimization technique efficiently adjusts the connection weights and
biases of the neural network to minimize the mean squared error function, which is chosen
as the objective function. Once the network is trained, it can effectively predict the flow
field at new spatiotemporal locations using the learned relationships from the training data.

2.4. Gaussian Process Model for the Residual Component

In this article, the residual component r(x) of the flow model is modeled using a Gaus-
sian process model. GPs, renowned in machine learning and statistics, prove invaluable
for representing complex data relationships and providing predictions along with uncer-
tainty estimations. In this article, the Gaussian process model adopts a zero mean and an
assumption is made that in the model the residuals do not exhibit temporal dependencies,
meaning that they are temporally uncorrelated, thus r(x)∼GP

(
0,k

(
(si, tk),

(
sj, tk

)))
. This

assumption allows the model to capture the spatial correlation between flow measurements
at different spatial locations.
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In the model, the kernel function k
(
(si, tk),

(
sj, tk

))
= E

[
(r(si, tk))

(
r
(
sj, tk

))]
quan-

tifies the covariance between the spatiotemporal locations (si, tk) and
(
sj, tk

)
, thereby

measuring the similarity or dissimilarity between the flow at different spatiotemporal
locations. Here, E[·] represents the expectation operator. In this article, the anisotropic
squared exponential kernel function is selected to describe the spatial correlation of the
residual component of the model at time tk:

k
(
(si, tk),

(
sj, tk

))
= COV

(
r(si, tk), r

(
sj, tk

))
= θ2

k,0exp

{
− 1

2
(
si − sj

)T
[

θ2
k,1 0
0 θ2

k,2

](
si − sj

)} (6)

Here, θk,0, θk,1, and θk,2 are the model hyper-parameters at time tk, where θ2
k,0 is the

overall variance, θk,1 is the latitudinal length scale, and θk,2 is the longitudinal length scale.
And θk = [θk,0, θk,1, θk,2]

T represents the vector of the model hyper-parameters.
The accuracy of the hyper-parameters θk significantly impacts the prediction accu-

racy of the model. To estimate the model hyper-parameters θk, the maximum likelihood
estimation method is employed. This estimation method uses the available data at time tk
to find the hyper-parameters that maximize the likelihood of the observed residuals. The
implementation details of this estimation process are provided in Section 3.5.

It should be noted that the modeling performance can be further enhanced by employ-
ing more advanced and sophisticated kernel functions. This article, however, focuses on
the widely used anisotropic squared exponential kernel function. Comparisons involving
different kernel functions fall beyond the scope of this article.

3. Data Assimilation with the Kriged ETKF

To achieve accurate predictions of flow speeds using the presented flow model, it is
essential to accurately estimate the model parameters, including the weights and biases in
the neural network model, as well as the hyper-parameters in the residual model. While
the parameters of the flow model can be learned from historical data, there are limitations
and uncertainties associated with the data used for training. These challenges include
data sparsity, noise, and discrepancies in the actual flow conditions that the model aims to
predict. To address these issues and improve the accuracy of flow predictions, this article
implements online real-time learning of the parameters of the model using in situ sensing
data of flow speeds provided by AMVs, employing the sequential Bayesian filtering method.
This real-time learning enables the model to adapt to changing conditions to closely align
with the actual flow conditions and to refine its predictions based on the most recent
observations, thereby leading to more accurate and reliable predictions of flow in nearshore
ocean environments.

This section delves into the implementation of data assimilation, a crucial aspect
of the developed DDDAS. Sections 3.1 and 3.2 provide the state model and observation
model, respectively, which serve as the foundation for the subsequent implementation of
the sequential data assimilation process. Section 3.3 presents the learning of the neural
network model using the ETKF method, and Section 3.4 presents the flow field prediction
using contributions from both the learned neural network model and the Gaussian process
model. Finally, Section 3.5 addresses the estimation of the hyper-parameters within the
Gaussian process model, thereby completing the comprehensive data assimilation process
with the Kriged ETKF method.

3.1. State Model

For the neural network model, all the connection weights
{

w2,i,j
∣∣i = 0, · · · , 2Ntc;

j = 1, · · · , Nh}, as well as all the biases {b2,i|i = 0, · · · , 2Ntc}, play a crucial role in estab-
lishing the nonlinear regression relationship between β(s) and s for the spatiotemporal
flow field model. These model parameters are selected as model state variables. And
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the model state vector, denoted as α, consists of all model state variables, represented
as follows:

α =
[
w2,0,1, · · · , w2,2Ntc ,Nh , b2,0, · · · , b2,2Ntc

]T (7)

And the temporal state evolution is assumed to be driven by white noise, and it
conforms to the following equation:

α
f
k = αa

k−1 + ηk (8)

In this equation, αa
k−1 represents the posterior analysis state at the previous time step

tk−1, which is the estimated state based on the available observations up to time step tk−1,
α

f
k represents the forecast state at time step tk based on αa

k−1, and ηk represents the Gaussian
white process noise at time step tk.

3.2. Observation Model

This section describes the observation model for the implementation of the online
learning with the sequential Bayesian filtering method, which establishes the relationship
between the observed flow speeds from AMVs and the underlying state variables.

Assuming that there are Ns flow speed observations
{

y1, · · · , yNs

}
at Ns spatial loca-

tions {s1, · · · , sNs} by Ns AMVs, and the Ns-dimensional observation vector

yk =
[
y1, · · · , yNs

]T
at time tk for all the Ns spatial locations is given by:

yk = uk + εk (9)

where uk = [u(s1, tk), · · · , u(sNs , tk)]
T is the true flow speed at time tk for all Ns spatial

locations, and εk is the observation noise at tk. εk follows a Gaussian distribution with
zero-mean vector and covariance matrix σ2

ε I, where σ2
ε is the observation noise variance,

and I is the Ns-dimensional identity matrix.
In Equation (9), the mean component µk of uk can be expressed as follows:

µk = Hkαk (10)

where Hk is the observation matrix. The observation matrix maps the flow from the model
state space to the observation space at tk for all Ns spatial observation locations and is
defined based on the architecture of the neural network as follows:

Hk =

 h(s1) H1(s1, tk) · · · H2Ntc(s1, tk) ψT(tk)
...

...
. . .

...
...

h(sNs) H1(sNs , tk) · · · H2Ntc(sNs , tk) ψT(tk)

 (11)

where h(si) =
[
h1(si), · · · , hNh(si)

]
, and H j(si, tk) = h(si)ψj(tk), in which i = 1, · · · , Ns

and j = 1, · · · , 2Ntc.
Based on the above equations, the measurement equation can be expressed as follows:

yk = Hkαk + rk + εk (12)

3.3. Filtering with ETKF

Based on the structure of the presented flow model and the need for model learning
and flow prediction using flow speed data from AMVs, this article employs the Kriged
Kalman filter method [34] to implement the data assimilation and flow prediction. The
Kriged Kalman Filter integrates Kriging’s spatial interpolation capabilities and the Kalman
filter’s optimal state estimation to effectively combine spatial correlations and temporal
dynamics. In the DDDAS system, the data assimilation process not only improves flow
predictions but also supports the optimization of AMVs’ observation strategies. To achieve
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this, the Kriged ETKF is introduced. The implementation of the Kriged ETKF is detailed
as follows, and the optimization strategy which further enhances the model’s predictive
capabilities will be elaborated on in Section 4.

In the ensemble-based filtering approach, a total of Nem ensemble members are con-
sidered. The initial model state vector is perturbed to generate the initial ensemble of the
model state vectors

{
α
(i)
0

∣∣∣i = 1, · · · , Nem

}
. These perturbations introduce variability and

diversity in the initial state estimates, which is crucial for robust data assimilation. The
forecast equation then drives the evolution of each ensemble member over time as follows:

α
f ,(i)
k = α

a,(i)
k−1 + η

(i)
k i = 1, · · · , Nem (13)

where
{

α
f ,(i)
k

∣∣∣i = 1, · · · , Nem

}
represents the forecast ensemble at tk,

{
α

a,(i)
k−1

∣∣∣i = 1, · · · , Nem

}
is the perturbed posterior analysis ensemble at tk−1, and

{
η
(i)
k ∼NNα(0, τ)

∣∣∣i = 1, · · · , Nem

}
is the ensemble of forecast noise at tk, where Nα = (2Ntc + 1)× (Nh + 1) is the total number
of model state variables. This noise follows a Gaussian distribution with a zero-mean vector
and a covariance matrix τ.

By subtracting the forecast ensemble mean from each ensemble member, the forecast
ensemble perturbations matrix at tk can be obtained as follows [35]:

Z f
k =

1√
Nem − 1

[
α

f ,(1)
k − α

f
k , · · · , α

f ,(Nem)
k − α

f
k

]
(14)

where α
f
k is the mean forecast state at tk, which is defined as the ensemble mean of the

forecast state as follows:
α

f
k =

1
Nem

∑Nem
i=1 α

f ,(i)
k (15)

The forecast error covariance matrix at tk can be obtained as follows:

P f
k = 1

Nem−1 ∑Nem
i=1

(
α

f ,(i)
k − α

f
k

)(
α

f ,(i)
k − α

f
k

)T

= Z f
k Z f T

k

(16)

where P f
k represents the forecast error covariance matrix at time tk, and Z f

k is the forecast
ensemble perturbations matrix as defined in Equation (14). The forecast error covari-
ance matrix provides a measure of uncertainty in the forecast state, which is essential for
accurately estimating the flow field and making reliable predictions.

The mean posterior analysis state at time tk can be obtained as follows:

αa
k = α

f
k + Kk

(
yk −Hkα

f
k

)
(17)

where Kk represents the Kalman gain matrix at time tk as follows:

Kk = P f
k HT

k

(
HkP f

k HT
k + Σk

)−1
(18)

and Σk is the observation error covariance matrix at time tk given by:

Σk = COV(rk, rk) + σ2
ε I (19)

where rk = [r(s1, tk), · · · , r(sNs , tk)]
T is the residual vector at time tk, and I is the Ns-

dimensional identity matrix.
The ETKF [35] introduces a transformation matrix that efficiently transforms the fore-

cast ensemble perturbations into the posterior analysis ensemble perturbations, thereby
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reducing the complexity of the posterior analysis state calculation. At time tk, the transfor-
mation matrix is given by:

Tk = Ck(Γk + I)−1/2 (20)

where Ck is a matrix containing all the orthogonal eigenvectors of the matrix Z f T
k HT

k Σ−1
k HkZ f

k ,
Γk is a diagonal matrix with all corresponding eigenvalues as its main diagonal elements,
and I is the Nem-dimensional identity matrix. This transformation matrix plays a crucial role
in the data assimilation process by efficiently adjusting the forecast ensemble perturbations
to be consistent with the observations, leading to more accurate and reliable posterior
analysis state estimates.

The posterior analysis ensemble perturbations matrix at time tk can be obtained by
applying the transformation matrix Tk as follows [35]:

Za
k = Z f

k Tk (21)

By adding the mean posterior analysis state to each column of the posterior analysis
ensemble perturbation matrix Za

k, the perturbed posterior analysis ensemble at time tk can
be obtained as follows:{

α
a,(i)
k = αa

k +
√

Nem − 1Za,(i)
k

∣∣∣i = 1, · · · , Nem

}
(22)

The posterior analysis error covariance matrix at tk can be obtained as follows:

Pa
k = 1

Nem−1 ∑Nem
i=1

(
α

a,(i)
k − αa

k

)(
α

a,(i)
k − αa

k

)T

= Za
kZaT

k

(23)

Based on the above calculations, the posterior analysis of the flow and the correspond-
ing uncertainty for observed spatial locations under given observations at time tk can be
obtained, respectively, as follows:

ua
k = Hkαa

k (24)

COV(ua
k|yk) = HkPa

kHT
k + Σk (25)

3.4. Flow Prediction

After obtaining the posterior analysis state by assimilating the sensing data of flow
speeds, the Kriging method is employed to further estimate the flow speeds at
unobserved locations.

Let
{

s∗i
∣∣i = 1, · · · , Ns∗

}
represent the collection of spatial locations without sensing

data, and r∗k =
[
r
(
s∗1 , tk

)
, · · · , r

(
s∗Ns∗

, tk

)]T
be the corresponding residual components of

the model at time tk, where Ns∗ is the total number of unobserved locations considered
for flow prediction. Define Σ∗k = COV

(
rk, r∗k

)
as the Ns × Ns∗ -dimensional matrix of

covariances of residual components of the model evaluated at all pairs of spatial observed
and unobserved locations at tk, and Σ∗∗k = COV

(
r∗k , r∗k

)
as the Ns∗ × Ns∗ -dimensional

matrix of covariances of residual components of the model evaluated at all pairs of spatial
unobserved locations at time tk. The observation matrix at time tk for all spatial unobserved
locations is defined as follows:

H∗k =


h
(
s∗1
)

H1
(
s∗1 , tk

)
· · · H2Ntc

(
s∗1 , tk

)
ψT(tk)

...
...

. . .
...

...
h
(

s∗Ns∗

)
H1

(
s∗Ns∗

, tk

)
· · · H2Ntc

(
s∗Ns∗

, tk

)
ψT(tk)

 (26)
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Based on the abovementioned definition, the posterior analysis of the flow and the
corresponding covariance for all unobserved spatial locations under given observations at
time tk can be obtained, respectively, as follows [34]:

u∗,ak = H∗k αa
k + Σ∗Tk Σ−1

k (yk −Hkαa
k) (27)

COV
(
u∗,ak

∣∣yk
)
= Σ∗∗k − Σ∗Tk Σ−1

k Σ∗k + ΦkPa
kΦT

k (28)

where u*
k =

[
u
(
s*

1, tk
)
, · · · , u

(
s*

Ns*
, tk

)]T
, and Φk = H*

k − Σ*T
k Σ−1

k Hk.

3.5. Estimation of Hyper-Parameters

To achieve flow prediction, it is essential to estimate the hyper-parameters in the
residual model at each data assimilation time. In this article, the maximum likelihood
estimation method is employed to estimate the model hyper-parameters using the flow
speed data collected by the AMVs at time tk.

According to Equation (12), the observed flow speed vector yk follows a multivariate
normal distribution, i.e., yk ∼NNs

(
Hkαk, HkPkHT

k + Σk
)
. The likelihood function, denoted

as L(·), with respect to the model hyper-parameters θk at tk is expressed as follows:

L
(

θk

∣∣∣yk, α
f
k , P f

k

)
= p

(
yk

∣∣∣θk, α
f
k , P f

k

)
= 1

(2π)Ns/2|Dk |1/2 exp
{
− 1

2 ξT
k D−1

k ξk

} (29)

where Dk = HkP f
k HT

k + Σk, ξk = yk −Hkα
f
k , and p(·) is the probability density function

of the observations. The likelihood function L
(

θk

∣∣∣yk, α
f
k , P f

k

)
quantifies the likelihood of

observing the data yk given the model hyper-parameters θk, the mean forecast state α
f
k ,

and the forecast error covariance matrix P f
k . By maximizing this likelihood function, the

optimal values for the model hyper-parameters θk could be obtained. The logarithmic
likelihood function, denoted as lnL, is commonly used for numerical optimization to solve
the optimal values of θk, as follows:

lnL = −1
2

ln|Dk| −
1
2

ξT
k D−1

k ξk −
Ns

2
ln(2π) (30)

To find the numerical solution for the model hyper-parameters θk, the genetic algo-
rithm is employed to solve the following objective function:

θk = arg min
θk∈R3

(
−lnL

(
θk

∣∣∣yk, α
f
k , P f

k

))
(31)

By using the genetic algorithm, the numerical solution for the model hyper-parameters
θk can be efficiently obtained, enabling accurate estimation of the model parameters and
improving the flow prediction performance.

4. Optimization of AMVs’ Sensing Paths

In the context of the DDDAS for flow prediction, the effective optimization of the
AMVs’ sensing paths is of utmost importance. The assimilation of the informative flow-
sensing data streams from AMVs enables improved estimation of model parameters,
leading to enhanced accuracy in flow prediction. The neural network model serves as
the backbone of the flow model, and this section focuses on the optimization of AMVs
sensing paths to improve the estimation of the neural network parameters. Through this
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optimization process, the developed DDDAS is completed, enabling adaptive flow sensing
using AMVs.

In the Kriged ETKF data assimilation, the ETKF method provides an effective means
to quantify the reduction in error variance of the forecast state variables and to access
the impact of different observation schemes. In the article, the optimization is built upon
the ETKF method, and two optimization scenarios are investigated. In the first scenario,
the optimization focuses on finding optimal AMVs’ sensing locations for improving the
estimation performance only in the subsequent data assimilation time step. This strategy
is relatively straightforward to implement. However, it has a myopic nature, as it only
considers the immediate impact on the subsequent time step. On the other hand, the second
scenario investigated extends the optimization to consider multiple data-assimilation time
steps over future time horizon. Compared to the greedy optimization in the first scenario,
the non-myopic optimization problem in the second scenario presents more complexities.
This article places a greater emphasis on non-myopic optimization.

This section elaborates on the optimization. Section 4.1 states the optimization prob-
lems for the two scenarios. Section 4.2 presents the strategies for solving the optimization
problems, with a particular emphasis on the proposed receding horizon strategy for the non-
myopic optimization scenario. And Section 4.3 presents a proposed distributed strategy for
implementing the MCTS method to solve the receding horizon optimization.

4.1. Problem Statement

In the Kriged ETKF data assimilation described in Section 3, the signal covariance
matrix at time tk, denoted as Sk and defined in Equation (32), as follows [35]

Sk = P f
k − Pa

k = Z f
k CkΓk(Γk + I)−1CT

k Z f T
k (32)

provides a means to assess the impact of assimilating observational information from
various observation schemes Hk(Sk) at time tk on the reduction in error variance of the
forecast state variables and posterior analysis, where Sk = {s1, · · · , sNs} represents the
spatial locations of Ns AMVs. This difference represents the information gained from the
observations, which leads to an improvement in state estimation.

The trace of Sk, denoted as tr{Sk}, serves as a measure of the improvement in the

model’s state estimation when assimilating the flow-sensing data yk =
[
y1, · · · , yNs

]T

obtained at Sk. A larger value of Sk indicates a more significant reduction in error vari-
ance, suggesting that the assimilated flow-sensing data have a substantial positive impact
on enhancing the accuracy of the model estimation. Therefore, in this article, the opti-
mization of the AMVs’ flow-sensing paths is based on maximizing the trace of the signal
covariance matrix.

For the first scenario of greedy optimization performed at time tk, the optimization of
AMVs’ sensing locations to be reached at time tk+1 is expressed as follows:

S∗LO = arg max
SLO∈RSk+1(Sk)

tr(Sk+1) (33)

In this expression, S∗LO represents the optimized locations, and RSk+1(Sk) represents
the set of possible sensing locations for the AMVs at time tk+1, which are constrained to be
within the reachable region determined by the previous sensing locations Sk at time tk. The
objective of the optimization is to find S∗LO to maximize the data assimilation performance
at time tk+1. By implementing the optimization continuously at each data assimilation
time step, the DDDAS forms the optimal paths of AMVs that consistently improve the data
assimilation performance.

For the second scenario of non-myopic optimization performed at time tk, the objective
is to find the optimal paths of AMVs, covering multiple time steps from time tk+1 to time
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tk+NT , with the aim to enhance the data assimilation performance during the time step tk+1
to a user-defined future time step tk+NT . The optimization problem is expressed as follows:

S∗PA = arg max
SPA∈RSk+NT

(Sk)
∑NT

i=1 tr(wk+iSk+i) (34)

In this expression, S∗PA represents the optimized paths from time tk+1 to time tk+NT ,
where NT is the number of time steps in the optimization horizon. The weight wk+i reflects
the user’s preference for each time step from tk+1 to tk+NT . RSk+NT (Sk) represents the
set of possible sensing paths for the AMVs from time tk+1 to time tk+NT . These paths are
constrained to be within the reachable region determined by the sensing locations Sk at
time tk.

In the optimization process of AMVs’ sensing paths, Sk+1 may consist of two com-
ponents, one for the latitudinal direction and the other for the longitudinal direction,
calculated using the two submodels. This can be expressed as Sk+1 = wlatS

lat
k+1 + wlonSlon

k+1,
where wlat and wlon are user-defined weights with the constraint that wlat + wlon = 1. The
choice of these weights depends on the specific objectives and requirements of the mission.

4.2. Strategies for Solving the Optimization Problems

In the implementation of the optimization in this article, the AMVs are assumed
to navigate at a constant speed relative to the sea bottom, and the optimization focuses
on finding the optimal commanded heading angles for the AMVs, i.e., the commanded
heading angles are selected as the decision variables. With the optimized commanded
heading angles, the AMVs could navigate to desired flow-sensing locations using guidance
and control algorithms [36]. To solve the optimization problems, the commanded heading
angle of an AMV is discretized by dividing the range of heading angles into NH equal
parts. The heading angle i× 360◦/NH is selected as one of the possible decision choices,
where i ranges from 1 to NH . The user defined constant value of NH determines the level
of discretization. Selecting a higher value will achieve fine-grained exploration of heading
angle options, with an increase in computational costs.

For the optimization problem in Equation (33), the optimal solution can be obtained
by evaluating the objective function for each combination of the discretized heading an-
gles of AMVs and selecting the one that maximizes the tr(Sk+1). For a small number of
possible combinations, an exhaustive search could be performed. For a large number
of possible combinations, an exhaustive search becomes computationally expensive and
time-consuming. In such cases, this article employs the genetic algorithm to efficiently
implement the optimization.

For the optimization problem in Equation (34), the objective is to find the optimal
sequences of commanded heading angles for the AMVs, which will determine the paths of
the AMVs over multiple time steps. The temporal sequence of the possible combinations of
commanded heading angles of AMVs forms a tree structure, where each node in a layer
represents a possible combination of commanded heading angles of the AMVs at a specific
time step. The tree expands from one time step to the next, representing the different
possibilities for AMVs’ paths over the optimization horizon. To efficiently search for the
optimal solution in the tree structure, this article employs the MCTS method [37]. MCTS is
a heuristic search method commonly used in decision-making problems, particularly in
scenarios with large search spaces. It is suitable for the optimization problem addressed in
this article.

Considering the presence of uncertainties in the flow model, real flow conditions, and
the AMVs’ navigation and control, this article employs the receding horizon optimization
to implement the path planning considering multiple time steps. In this strategy, the opti-
mization is performed at time tk using the MCTS method, and the computed commanded
heading angles for time tk+1 are provided to the AMVs for implementation. This approach
implements the optimization process repeatedly at each time step tk. By this approach, the
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AMVs continuously update their paths based on the most recent information, making the
flow sensing and prediction capabilities more adaptive and robust.

It should be noted that the receding horizon strategy could be implemented in two
different ways to achieve continuous AMV paths and optimize the data assimilation
performance over a future time window, based on different mission requirements. In the
first approach, the process involves repeating the optimization with the same time horizon
at each data assimilation–optimization time step, i.e., at each time tk, the optimization of
S∗PA in Equation (34) is implemented. This results in continuous AMV paths, where the
AMVs’ locations at each time step are chosen to be optimal for the future NT time steps.
In contrast, in the second approach, the paths of the AMVs are optimized for a fixed user-
defined time window, and at each time step the optimization only considers the remaining
time steps within the window. Specifically, at one time tk, the optimization of maximization
of ∑NT

i=1 tr(wk+iSk+i) is implemented, whereas at the subsequent time tk+1, the optimization
of ∑NT

i=2 tr(wk+iSk+i) is implemented, which considers the optimization of the remaining
time steps from tk+2 to tk+NT . This optimization process terminates at tk+NT−1, resulting in
continuous AMVs paths terminated at tk+NT . And the AMVs’ locations at each time step
are chosen to be optimal for the future remaining time steps within the time window.

4.3. A Distributed Strategy for Implementing MCTS

When implementing MCTS on a single processor with limited computational capa-
bility to solve large search problems within a constrained decision-making time frame,
obtaining an optimal solution may be difficult or impractical. To tackle this issue, and
considering the operation scenario of the DDDAS where the computation is implemented
on all Ns AMVs without the support of onshore stations, this article proposes a distributed
strategy to implement the optimization process. This strategy involves partitioning the
search tree into subtrees and assigning each subtree to a different computing device on
AMVs for simultaneous exploration. By conducting parallel searches on individual sub-
trees simultaneously and combining their results, the strategy can leverage the collective
computational power of multiple devices of the networked AMVs, facilitating an efficient
and optimal decision-making process.

The proposed distributed strategy partitions the original search tree into Ns subtrees.
Each subtree is then assigned to an AMV for independent execution. The final result is
obtained by combining the Ns outcomes of all subtrees. The initial state of the root nodes
nodeisub of the subtrees, i = 1, 2, · · · , Ns, is the same as that of the root node noder in the
original tree. The number of child nodes for each nodeisub is equal to Na/Ns, where Na

denotes the number of child nodes of each node in the original search tree.
After splitting the tree, all subtrees are executed simultaneously on the corresponding

computing devices. Once all the subtree searches are completed, the final optimal decision
is determined by selecting the decision with the highest quality among the best child nodes
of each subtree, as follows:

a∗ = arg max
ai∗

qi
∗

i = 1, 2, · · · , Ns (35)

where ai∗ represents the decision of the best child of nodeisub, and qi
∗

represents the quality
of that child.

Existing distributed MCTS methods often necessitate frequent information interactions
between multiple threads [38,39], and thus may not be suitable for scenarios like distributed
AMV networks with wireless communication, where frequent communication among
network nodes is unfavorable or impractical. The proposed distributed strategy in this
article requires minimal communication between devices, limited to allocating subtrees and
collecting results for determining the final optimal decision. With low data transmission
needs, it is well-suited for scenarios with limited wireless communication capabilities, such
as the AMV networks studied in this article.
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In the implementation of the MCTS, to balance exploitation and exploration in the
search process, nodes are selected based on the UCB1 (upper confidence bound 1)
method [40] commonly used in MCTS. By using the UCB1, the MCTS method ensures a bal-
ance between exploring promising nodes and exploiting nodes with high estimated quality.

5. Simulation Results

In this article, a comprehensive simulation study is conducted to validate and evaluate
the performance of the developed DDDAS, which is presented in this section.

Section 5.1 describes the simulation scenario, where four autonomous underwater
gliders are utilized to predict the depth-averaged flow in nearshore ocean environments
with tidal features. These gliders serve as the flow-sensing network, and their paths are
optimized to collect informative flow-sensing data. Section 5.2 presents a comparison of
three flow prediction approaches: (1) using the neural network alone; (2) incorporating
the data assimilation into the neural network; and (3) further incorporating the Gaussian
process. This comparison enables an assessment of the improvement in flow prediction
accuracy with each successive approach. Section 5.3 focuses on comparing three glider
sensing strategies: virtually moored at fixed locations, random motion, and optimized
motion. The accuracy of flow prediction is evaluated under each strategy, revealing the
impact of gliders’ flow-sensing locations on the performance of flow prediction. Lastly,
in Section 5.4, the results of implementing the receding horizon optimization with the
distributed MCTS are presented, comparing the results of greedy optimization and non-
myopic optimization and demonstrating the utilization of multiple AMVs’ computational
power for decision-making, when the computation of the DDDAS is implemented on the
AMVs without support from onshore stations.

5.1. Simulation Scenario

Underwater gliders are highly valuable autonomous mobile platforms for large-scale
and long-term ocean observation. Driven by buoyancy engines, gliders commonly navigate
at relatively slow speeds, thus their motion can be significantly influenced by ocean flow.
Therefore, accurate depth-averaged flow prediction information is crucial for navigation
and control of underwater gliders. In the simulation study of the developed DDDAS in
this article, the underwater gliders are employed as the sensing network, and their paths
are optimized to collect flow-sensing data for predicting the depth-averaged flow in the
nearshore ocean environment.

In the simulation, a designated region of 1◦ × 1◦ in the South China Sea is chosen as
the operational area. Within this operational area, four underwater gliders are deployed to
navigate and perform the sensing mission. For the simulation, the depth-averaged flow
data predicted by a numerical ocean model of POM (Princeton Ocean Model) during March
and June 2019 are employed as the true flow. This flow dataset serves as the basis for
supporting the glider sensing and acts as the ground truth for comparison and evaluation.
The flow data have a temporal resolution of 1 h and a horizontal spatial resolution of 1/15◦

in both the latitudinal and longitudinal directions. In Figure 4a, the flow field at 31 March
2019, 18:00 (UTC + 08:00) is depicted, where the flow is predicted on the 16 (latitudinal
direction) ×16 (longitudinal direction) = 256 uniformly distributed grid points. For the
initialization of the neural network model, the flow data covering the time range from
1 March 2019, 00:00 to 31 March 2019, 23:00 (UTC + 08:00) is utilized. The tidal analysis
method is then applied to this dataset to extract the tidal constituents and a total of primary
Ntc = 29 tidal constituents are selected, resulting in 2Ntc = 58 temporal basis functions
and 59 corresponding coefficients taking into account the non-tidal component for the
mean flow. Based on these tidal constituents, the neural network model is constructed,
with Nh = 7 nodes in the hidden layer, leading to a total number of Nα = 472 model state
variables. It should be noted that the flow data used for the tidal initialization of the neural
network with the gradient descent method is subsampled, with a spatial resolution of 0.2◦,
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as shown in Figure 4b. This approach aims to demonstrate the capability of predicting
high-resolution flow fields using a model taught with relatively sparse training data.
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In the simulation, four underwater gliders are deployed in the operational area, i.e.,
Ns = 4. The gliders are set to navigate at a constant speed of 0.7 kn relative to the sea bottom,
and the influence of the flow on the motion of the glider is not considered. Each glider
completes one saw-tooth dive cycle in one hour and reports its sensed depth-averaged
flow speed upon surfacing. The sensed depth-averaged flow is calculated by linearly
interpolating the four predicted flow values around the glider’s surfacing location, with
the addition of sensing noise having a variance of σ2

ε = 10−4. The model assimilates the
sensing data from the four gliders every hour. During the assimilation, the perturbation
covariance matrix of the initial ensemble of the model state vector is set as 10−6I, and the
total number of ensemble members is set as Nem = 100.

For the optimization of the gliders’ paths, both Slat
k+1 and Slon

k+1 are considered, and
the weights wlat and wlon are both set as 0.5, implying an equal contribution from both
components in determining the optimized sensing paths. And two sets of heading angles
of {0, 45, 90, 135, 180, 225, 270, 325} and {0, 90, 180, 270} are used as the decision choices for
the greedy and the non-myopic optimization, respectively. In the simulation, the gliders’
motion is constrained within the operational area. If a heading angle leads a glider out of
the operational area, that specific heading angle is not considered during the optimization
process, and the optimal heading angle is selected from the remaining feasible choices to
ensure that the glider’s navigation remains within the operational area.

During the simulation, the flow prediction, data assimilation, and adaptive sampling
processes are conducted for a total of 129 consecutive hours, specifically from 1 June
2019, 00:00 to 6 June 2019, 08:00 (UTC + 08:00). To simplify the description, the time
steps are labeled starting from 0 h, which corresponds to the 1 June 2019, 00:00, and each
subsequent time step represents one hour of the simulation. The predicted flow values
from the DDDAS are then compared with the true flow values at the 256 grid points in the
designated operational area, as shown in Figure 4a. To evaluate the prediction performance,
the root mean squared error (RMSE) is calculated for the 256 grid points at each hour,
as follows:

RMSE(t) =

√
1

256∑256
i=1(u

pre(si, t)− utrue(si, t))2 (36)
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where upre(·) represents the model’s prediction of the flow speed, and utrue(·) represents
the corresponding true flow speed from the POM dataset at the same spatiotemporal
location. The RMSE serves as a metric to measure the accuracy of the flow field prediction.

5.2. Comparision of Three Flow Prediction Approaches

In the comparison study described in this section, the paths of the gliders are optimized
using the greedy optimization strategy. Over the 129 consecutive hours, continuous paths of
the gliders are formed, and these trajectories will be depicted in Section 5.3. By assimilating
the optimized sensing data at each time step, the flow field is predicted and updated at
each time step. Figure 5 presents examples of the predicted flow field at the 1st hour
and the 9th hour, along with the corresponding variance of the predicted flow speeds in
both the latitudinal and longitudinal directions. The variance information is important for
many tasks such as the robust path planning or motion control of AMVs. Thanks to the
capabilities of the data-driven flow model, flow field predictions could be obtained with
any desired level of spatial resolution.
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Figure 5. (a) Predicted flow field at the 1st hour. (b) Predicted flow field at the 9th hour. (c) Variance
of predicted flow speed along the latitudinal direction at the 9th hour. (d) Variance of predicted flow
speed along the longitudinal direction at the 9th hour.

To demonstrate the performance of the hybrid data-driven flow model and the data
assimilation, the RMSE is compared for the results predicted by the three approaches:
(1) using the neural network alone; (2) incorporating the data assimilation into the neural
network; and (3) further incorporating the Gaussian process. Figure 6 demonstrates the
variations in RMSE over the 129 time steps, where NN, NN + DA, and NN + GP + DA
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represent the three flow prediction approaches, respectively (NN: neural network alone,
NN + DA: neural network with data assimilation, NN + GP + DA: neural network with
Gaussian process and data assimilation). Figure 6a presents the RMSE results of the flow
speed component in the latitudinal direction, and Figure 6b presents the corresponding
RMSE results for the flow speed component in the longitudinal direction. The unit of
measurement is meters per second (m/s).
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Figure 6. RMSE of the flow field prediction using three different flow prediction approaches.
(a) RMSE results of the flow speed component along the latitude direction. (b) RMSE Results of the
flow speed component along the longitude direction.

Table 1 shows the maximum, the minimum, and the maximum and the mean reduction
(compared with the NN approach) values of the RMSE shown in Figure 6 for each respective
flow prediction approach.

Table 1. Performance of RMSE for three flow prediction approaches, corresponding to Figure 6.

Approach Direction Maximum Value Minimum Value Max Reduction
Value

Mean Reduction
Value

NN
Latitudinal 0.143 0.026 NA NA

Longitudinal 0.139 0.027 NA NA

NN + DA
Latitudinal 0.112 0.013 0.037 0.016

Longitudinal 0.124 0.015 0.028 0.013

NN + GP + DA
Latitudinal 0.043 0.009 0.128 0.042

Longitudinal 0.046 0.010 0.121 0.048

The results presented in Figure 6 and Table 1 highlight the significant impact of data
assimilation and the Gaussian process on improving flow field predictions. When compared
to the predictions without data assimilation, the inclusion of data assimilation leads to a
notable reduction in RMSE for both latitudinal and longitudinal flow field predictions. This
reduction indicates that data assimilation effectively incorporates observed data from the
gliders into the model. Furthermore, the integration of the residual component Gaussian
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process model with data assimilation yields more accurate predictions. The combination
of these techniques contributes to a substantial reduction in RMSE and enhances the
model’s ability to achieve accurate flow predictions. This study suggests that the hybrid
data-driven modeling approach, together with data assimilation, provides an effective
framework for obtaining high-resolution and accurate flow field predictions in nearshore
ocean environments.

5.3. Comparision of Three Flow Sensing Strategies

In this section, three glider sensing strategies are compared to evaluate their performance
in flow prediction. The first strategy involves virtually mooring the gliders at fixed locations
to sense the temporal variations in the flow. In the second strategy, the commanded heading
angle of each glider is randomly selected from the set of {0, 45, 90, 135, 180, 225, 270, 325} at
each time step, representing a more exploratory approach. In contrast, the third strategy
optimizes the paths of gliders using the greedy optimization method, allowing for adaptive
and optimized sampling based on the current situations. In Figure 7, the paths of the
gliders generated by the second (random heading angles) and the third (optimized paths)
sensing strategies are depicted. The starting locations of the optimized paths are set as the
same locations where the gliders are virtually moored for the first sensing strategy.
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Figure 7. Paths of underwater gliders for the three sensing strategies. The circles represent the start
locations, and the rectangles represent the end locations of the glider paths.

The data collected along these paths from the three sensing strategies are then assim-
ilated into the hybrid data-driven flow model, enabling flow field predictions for each
strategy at every time step. Figure 8 illustrates the variations in RMSE over the course of
129 consecutive hours, with “static”, “random”, and “optimized” representing the three
sensing strategies, respectively. Specifically, Figure 8a plots the RMSE results of the flow
component in the latitudinal direction, while Figure 8b plots the RMSE results of the
flow component in the longitudinal direction. The unit of measurement is meters per
second (m/s).

Table 2 shows the maximum, the minimum, and the maximum and the mean reduction
(compared with the “static” strategy) values of the RMSE shown in Figure 8 for each
respective flow sensing strategy.
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Table 2. Performance of RMSE for three flow prediction approaches, corresponding to Figure 8.

Strategy Direction Maximum Value Minimum Value Max Reduction Value Mean Reduction Value

Static
Latitudinal 0.086 0.030 NA NA

Longitudinal 0.101 0.027 NA NA

Random
Latitudinal 0.052 0.020 0.043 0.019

Longitudinal 0.056 0.019 0.066 0.023

Optimized Latitudinal 0.043 0.009 0.067 0.034
Longitudinal 0.046 0.010 0.081 0.037

The results above highlight the significant impact of using mobile and optimized
observations in the flow prediction process. When compared to the fixed observation
locations, the RMSE of the prediction results using observations from different spatiotem-
poral locations is notably reduced. More notably, the accuracy of the prediction results
corresponding to the optimal observation locations selected by the optimization method is
the most promising.

By optimizing data collection locations, more relevant and informative flow-speed data
are provided for the data assimilation process, which, in turn, accelerates the optimization
of model state variables and enhances the accuracy of continuous flow field predictions.
The simulation study validates the utility of the adaptive sensing approach, demonstrating
its potential to improve the overall performance of the hybrid data-driven flow model in
predicting flow fields.

5.4. Non-Myopic Optimization with Distributed MCTS

In certain applications of the DDDAS, the main objective may be to provide flow
information solely for the AMVs themselves to facilitate tasks such as path planning and
cooperative control in dynamic flow fields. These scenarios may not involve onshore
stations or external infrastructures for support, and as a result, the DDDAS is directly
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integrated into the networked AMVs. When implementing the DDDAS on AMVs, the
optimization considering multi-step information gain using the MCTS approach on a single
AMV can become time-consuming. To achieve timely decision-making, this article proposes
a distributed strategy to leverage the collective computational power of AMVs to reduce
tree-searching time. This section conducts a simulation study on non-myopic optimization
using the distributed MCTS approach.

In the simulation, three underwater gliders (Ns = 3) are deployed, and the data
assimilation–optimization process occurs at a time step of 6 h. The optimization process
involves planning gliders’ paths within a fixed time window of 18 h, i.e., 3 time steps, with
each step aiming to maximize the weighted sum of predicted information gain for future
remaining time steps within the fixed time window. This setup corresponds to the second
approach discussed in Section 4.2. Specifically, at time tk, the optimization aims to maximize
the weighted sum of 1/6× tr(Sk+6) + 2/6× tr(Sk+12) + 3/6× tr(Sk+18), prioritizing flow
prediction accuracy at time tk+18. Subsequently, at the time tk+6, the optimization shifts to
1/3× tr(Sk+12) + 2/3× tr(Sk+18), and at time tk+12, the optimization considers tr(Sk+18).
The weights are set accordingly to prioritize improving flow prediction accuracy at the
targeted time tk+18. At each time step, the distributed MCTS is utilized to solve for the
optimal solution, where three subtrees are allocated to the three gliders. Then the receding
horizon strategy is implemented, and this optimization process concludes at time tk+18.
This process results in continuous paths over 18 h, facilitating the accurate flow field
prediction at time tk+18. Figure 9 shows the simulation result of the paths of three gliders
from a simulation run.
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Figure 9. The paths of three underwater gliders correspond to the ID #1 simulation run in Table 3.
The circles represent the start locations, the solid dots represent the locations of gliders at the second
and the third data assimilation time steps, and the rectangles represent the end locations of paths.

In this simulation, ten simulation runs are performed, each starting from the time t0.
The initial starting locations of the three gliders are randomly set within the operational
area. For each run, both the non-myopic optimization and the greedy optimization are
performed with the same simulation setup. Figure 9 also shows the simulation result
of the paths of three gliders from a greedy optimization. After each simulation run, the
tr
(
Pa

0 − Pa
18
)

is calculated for both the cases of optimization considering greedy and non-
myopic information gain. The results are presented in Table 3. Additionally, in the last
column of Table 3, the percentage improvement in tr

(
Pa

0 − Pa
18
)

achieved through the
non-myopic optimization compared to the greedy optimization is also provided.
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Table 3. The tr
(
Pa

0 − Pa
18
)

values calculated in ten simulation runs.

ID of Runs Greedy (×10−5) Non-Myopic (×10−5) Improvement

1 5.714 6.519 14.1%
2 5.939 6.751 13.7%
3 4.904 5.378 9.7%
4 5.772 6.346 9.9%
5 4.396 4.835 10.0%
6 4.864 5.391 10.8%
7 4.551 5.074 11.5%
8 4.661 5.059 8.5%
9 4.654 5.198 11.7%
10 5.835 6.759 15.8%

Upon analysis of the results, it can be observed that the non-myopic optimization
consistently yields higher tr

(
Pa

0 − Pa
18
)

values compared to the greedy optimization for
all ten simulation runs. The improvement percentages range from approximately 9.7%
to 15.8%, with an average improvement of around 11.6% across the ten simulation runs.
By considering information gains from future time steps, the gliders can better plan their
paths and collect more informative data, leading to more accurate flow field predictions at
a future targeted time.

The results also validate the effectiveness of the distributed strategy for implementing
MCTS, enabling effective decision-making with about 1/3 of computation time compared
to the implementation of the MCTS on a single vehicle. This reduction in computation
time is crucial for the real-time decision-making of AMVs. It is worth noting that while the
distributed MCTS method has demonstrated promising results in this simulation study,
there is great potential for further performance improvement. One area of future research
work for the authors is to explore adaptively allocating computational budgets to the
subtrees, to further enhance the capability of distributed MCTS in obtaining optimal and
reliable decisions.

Overall, the consideration of multiple future time steps, the receding horizon optimiza-
tion, and the distributed MCTS demonstrate a promising approach to optimize the non-myopic
paths of AMVs and achieve more accurate flow field predictions for a targeted time.

6. Conclusions

This research article presents a novel data-driven closed-loop dynamic data-driven
application system that effectively addresses the challenge of high-resolution and accurate
flow field prediction in ocean environments. The DDDAS leverages a hybrid data-driven
flow model for trend prediction, along with a Gaussian process model for residual fit-
ting. The assimilation of spatially correlated flow-sensing data from AMVs using the
Kriged ETKF further enhances model online learning and achieves accurate spatiotem-
poral flow prediction. The proposed receding horizon strategy and distributed strategy
of implementing Monte Carlo tree search is demonstrated to be effective in optimizing
AMVs’ coordinated flow-sensing paths, enabling non-myopic path planning, and solving
large-scale tree searching-based optimization problems in a timely manner. The proposed
DDDAS offers a comprehensive and effective solution for achieving high-resolution and
accurate flow field prediction in ocean environments using AMV networks.

As future research directions, several potential avenues can be explored. Firstly, inves-
tigating the integration of other machine learning models, such as deep neural networks,
and data-driven techniques into the DDDAS may lead to further improvements in com-
putational efficiency and prediction accuracy of complex oceanic processes. Additionally,
the application of the DDDAS can be extended to incorporate a wider range of ocean data,
such as ocean temperature and salinity, to achieve a more comprehensive prediction of
ocean environments. Furthermore, optimizing the number of AMVs for environmental
sensing is crucial, as it can lead to ocean prediction with the required level of accuracy
with a minimum number of AMVs needed. This optimization has the potential to reduce
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costs and resource requirements for the system, considering the high costs associated with
deploying and operating AMVs in ocean environments.
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