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Abstract: Digital rock physics (DRP) has been widely used as an effective approach for estimating
the permeability of porous media. However, conventional implementation of DRP requires the
reconstruction of three-dimensional (3D) pore networks, which suffer from intensive memory and
underlying uncertainties. Therefore, it is highly significant to develop an approach only based on
two-dimensional (2D) cross-sections of parent samples without 3D reconstruction. In this study, we
present a novel approach that combines the Kozeny–Carman equation with fractal theory to derive a
bridge function that links 2D cross-sectional images and 3D pore structures of parent samples in flow
equivalence. Using this bridge function, we predicted the physical properties of the parent samples,
including the permeability, bulk porosity, tortuosity, and pore fractal dimension. To validate our
model, we performed Lattice Boltzmann (LB) simulations on nine carbonate samples and compared
the LB simulation results with our model’s predictions. We also compared our predicted results with
available data on various porous materials, such as sandstone, glass beads, and carbonate, in the
literature. Our findings demonstrate that without reconstructing 3D pore networks, our method
provides a reliable estimation of sample permeability using 2D cross-sectional images. This approach
not only simplifies the determination of sample permeability in heterogeneous porous media but
also sheds new light on the inherent correlations between 2D cross-sectional information and 3D
pore structures of parent samples. Moreover, the derived model may be conducible to a better
understanding of flow in reservoirs during the extraction of unconventional onshore and offshore
oil/gas.

Keywords: porous media; 2D digital image; 3D pore structures; permeability; bridge function

1. Introduction

Permeability, as one of the most fundamental physical properties of porous material [1–5],
highly depends on the pore structure [6–9]. Estimating the permeability of porous material
from its pore structure has attracted much attention in various environmental and energy
applications, such as subsurface water management, geological CO2 sequestration, geother-
mal energy extraction, and unconventional onshore and offshore oil and gas recovery
processes [10–14].

Generally, there are three approaches for estimating the permeability of porous ma-
terial, including experimental measurement, empirical models, and digital rock physics
(DRP). Experimental measurement is time-consuming and expensive. Moreover, this ap-
proach is not repeatable due to its destructive feature. Instead, empirical models, including
the well-known Kozeny–Carman (KC) equation and its variations, have been proposed
by various researchers [7,10–12,15,16], of which permeability is related by several static
parameters, such as porosity, formation factor, specific surface, and other pore structure
parameters. Although these empirical models are efficient and cheap [17], they suffer from
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general applicability due to the requirement of fitting parameters, which are generally
rock-type-dependent [12,18].

As an alternative, digital rock physics (DRP) has been widely used [19–28]. However,
conventional implementations of DRP require the reconstruction of three-dimensional (3D)
pore networks, which suffer from intensive memory and underlying uncertainties. The
underlying uncertainties could include resolution loss, structure distortion, non-uniqueness,
etc. [26]. Moreover, high-fidelity numerical simulations performed on 3D pore networks
are computationally expensive, which limits the general applicability of DRP.

To alleviate such limitations, many efforts have been made to directly estimate perme-
ability from available 2D digital images by investigating the similarities between 2D pore
structures and corresponding 3D ones [17,25,26,29,30]. Berryman and Blair [31] predicted
the permeability of various porous materials by combining the pore information (porosity
and two-point spatial correction function) from 2D SEM images with a form of the KC
equation and validated their model with experimental data. However, experimental mea-
surements of the formation factor in their model are missing. Yu and Chen [29] derived
a fractal model by incorporating pore structure parameters (e.g., fractal dimension and
the pore radius) from 2D images. However, direct extraction pore information from 2D
images is different from 3D pore information of parent samples, which is supported by
Sisavath et al. [32] and Saxena et al. [26]. Thus, transforming 2D pore information into
3D is necessary. Saxena et al. [26] compared rock permeability in 3D and the permeability
computed directly from 2D slices and then proposed a bridge function between the 2D
results and the 3D permeability. However, there are two fitting parameters (i.e., the nor-
malized magnitude of variation in the pore radius and the “wavelength” of variation in
the pore radius) in their model, which are difficult to be obtained. Recently, by combining
the KC equation and Young–Laplace equation, Chen et al. [17] derived a bridge function
to link the 2D pore structure and 3D pore structure and predicted the capillary pressure
curve (CPC) of porous materials. It was found that their approach is useful to predict the
CPC of porous media with a 2D pore structure. However, as they suggested, it was of
great practical significance to propose other bridge functions to study the corresponding
physical properties (e.g., thermal conductivity coefficient, acoustic conductivity) of porous
media. To date, how to effectively transform 2D pore information from 2D digital images
into 3D pore information without 3D reconstruction and then predict the 3D permeability
of porous material still remains an open question and requires further investigation.

In this paper, we developed a novel, robust, and effective approach to predict the 3D
permeability of porous materials from 2D images without 3D reconstruction. Previous
studies reveal that interspaces in porous media possess fractal characteristics [12,29,33–37].
Specifically speaking, many scholars [12,29,35,37] suggested that the pore fractal dimension
and tortuosity fractal dimension were two key parameters characterizing fluid flow in
porous media. Thus, in this paper, these two parameters were applied to characterize
the permeability of porous media. As the box-counting algorithm [38] and theoretical
models [29,35] can effectively predict the pore fractal dimension [12,39–41], in this paper,
the pore fractal dimension was estimated by the box-counting algorithm and theoretical
models. In 2015, Wei et al [42]. derived a tortuosity fractal dimension model for fractal
porous media that is related to porosity and the pore fractal dimension. As this model is
effective at determining the tortuosity fractal dimension [43,44], this model was also used
in this paper to model the tortuosity fractal dimension.

Recently, as a promising technique for modeling the fluid flow in porous media at the
pore scale, the lattice Boltzmann Method (LBM) has been widely applied by scholars to
predict properties (e.g., permeability and relative permeability) of porous media [45–49].
For example, Khodja et al. [46] stated that compared to the traditional methods of computa-
tional fluid dynamics, the LBM was ideally suited for massively parallel computation, and
it had the advantages of simplicity and flexibility in dealing with complicated geometry.
Thus, in this paper, the D3Q19 LBM model was applied to validate our derived model.



J. Mar. Sci. Eng. 2023, 11, 1614 3 of 25

In what follows, a new analytical model was derived to transform 2D pore information
into a 3D pore structure and give an estimation of the 3D permeability for porous media.
Compared with DRP, these models will skip huge workloads of reconstructing 3D pore
networks. Subsequently, lattice Boltzmann (LB) simulations were conducted on nine
carbonate samples to validate our derived model. In addition, the available experimental
data was applied to further validate the developed model and is followed by discussions
of this model. Finally, the conclusions are presented.

2. Methodology

In this section, based on the pore morphology of 2D cross-sectional images, an ana-
lytical permeability of 3D global matrix pore structure is presented. It should be noted
here that, for simplicity, all the 2D cross-sections are perpendicular to the flow direction;
thus, the micro-fractures in actual porous media are ignored. The specific steps are as
follows (Figure 1): Firstly, pore structure of 2D cross-sectional images will be characterized
using fractal theory, and the permeability of 2D pore structure K2D will be derived based
on the tube bundle model and fractal geometry [29,39,40]. In the capillary bundle model,
the capillary bundles are perpendicular to the images (i.e., capillary bundles run along y
direction). Then, by combining the KC equation and fractal geometry, 3D pore structure
of porous media in flow equivalence will be estimated, and the permeability of natural
samples (in 3D) K3D will be derived. Finally, a bridge function connecting K2D and K3D will
be proposed.
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Figure 1. Schematic of transforming the 2D pore information into 3D pore structure and predicting
3D permeability from 2D cross-sections.

Permeability of 2D cross-section: In general, based on 2D imaging (thin section,
back scatter electron, micro-CT scanning, scanning electron microscope, scanning electron
microscopy, and electron probes, etc.) and digital image processing techniques, pore
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structure parameters (areal porosity, pore size distribution, average pore radius, pore
perimeter, specific surface area, pore fractal dimension, coordination number, and shape
factor, etc.) of 2D cross-sections can be determined [26,31,50,51]. For instance, pore fractal
dimension of 2D cross-section can be obtained by using the box-counting algorithm [38].
In addition, areal porosity of 2D cross-section can be obtained by thin section analysis
or digital image processing techniques. Moreover, by using digital image processing
techniques, various pore structure parameters (pore size distribution, the maximum pore
size, minimum pore size, average pore radius, pore perimeter, and specific surface area)
of 2D cross-sectional images can be easily determined [27,36,46,52,53]. For example, for a
given 2D digital image, parameters (rmax, rmin, and ϕ2D) can be determined by using the
Avizo software, which can effectively determine pore space morphology and extract pore
networks [25].

It is well-known that, affected by complex sedimentary and diagenetic processes, pore
structure of natural porous media is complicated with obvious heterogeneity, which is diffi-
cult to be characterized. Specifically, many scholars suggested that Euclidean mathematics
are not suitable to characterize a complex pore structure [29,33,34,54]. With the concept
of “Fractal geometry” first proposed by Mandelbrot [33], the problem was well-solved. A
large number of studies (experimental and theoretical studies) show that pore structure of
most of the sedimentary rocks has obvious fractal phenomena. According to Equation (A4),
by combining determined pore structure parameters (e.g., pore radius r, areal porosity ϕ2D,
pore fractal dimension df) from 2D imaging and fractal theory, permeability of 2D cross-
section (i.e., 2D composite permeated with tortuous capillary tubes that are perpendicular
to the 2D cross-section, Figure 1) K2D is given by [12,29,37,40,55]:

K2D =
πdfr

df
max

(
r3−df+dt

max − r3−df+dt
min

)
24−dt

√
A1+dt(3− df + dt)

, (1)

where the subscripts max and min denote the maximum and minimum, respectively. More
details about Equation (1) can be found in Appendix A. In Equation (1), dt is tortuosity
fractal dimension in 2D space, which is [42]:

dt = (2− df + 1) + (2− df)
log(df)− log(df − 1)

log(ϕ2D)
. (2)

Generally speaking, tortuosity fractal dimension dt ranges from 1 to 2 in 2D space.
When the matrix plane is filled with so highly tortuous capillary tubes, dt is equal to 2;
however, for straight capillary tubes, dt is equal to 1, and on this condition, Equation (1)
can be simplified as:

K2D =
πdfr

df
max

(
r4−df

max − r4−df
min

)
8A(4− df)

, (3)

Furthermore, A in Equations (1) and (3) is the cross-sectional area of the representative
elementary volume (REV) in 2D space, which can be calculated by Equation (A3) as:

A =
πdfr

df
max

(
r2−df

max − r2−df
min

)
ϕ2D(2− df)

=
πdfr2

max
ϕ2D(2− df)

(
1−

r2−df
min

r2−df
max

)
. (4)

Physically, df in Equation (1) is the pore fractal dimension, which ranges from unity
to 2 (1< df < 2) in 2D pore space. Mathematically, df can be determined by box-counting
algorithm [38] or by the following equation [29,35]:

df = de −
ln(ϕ2D)

ln(rmin/rmax)
, (5)
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wherein the Euclidean dimension de is 2 in 2D pore space. Equation (5) reveals that, under
a given ratio rmin/rmax, df increases with an increasing of areal porosity ϕ2D. In addition,
by fitting the experimental data, Chen et al. [56] also found a positive correlation between
df and ϕ2D and suggested df could be estimated by df = 0.974ϕ0.173

2D . Equations (1) through
(5) form the basis for analysis of K2D, which were utilized to estimate permeability of 3D
parent porous media in flow equivalence.

3D pore structure in flow equivalence: As 2D cross-sections come from 3D parent
samples, various studies show that pore structure information (pore morphology) of 2D
slice is identical to that of 3D matrix system [17,30,57]. For example, Chen et al. [17]
suggested that areal porosity of 2D cross-sections ϕ2D should be similar to bulk porosity
of 3D matrix ϕ3D. In addition, to estimate permeability in 3D from 2D images, Saxena
et al. [26] also assumed that ϕ2D was similar to ϕ3D. Figure 2a compares bulk porosity of
3D parent samples versus areal porosity of 2D cross-sections [17,26,31,36,46,53]. Taking the
data from Saxena et al. [26], for example, Saxena et al. conducted modeling on 4 samples
(i.e., a Fontainebleau sandstone, a Berea sandstone, a Bituminous sand sample, and a
Grosmont carbonate). Based on digital rock technology, the bulk porosity ϕ3D for each
sample was determined. Then, multiple 2D cross-sections (lying perpendicular to the flow
direction) of a parent cube sample were sampled, and the corresponding areal porosity
of each slice was measured using digital image process technology. Similarly, for 3D
samples with bulk porosity determined, Wu et al. [36,53] divided the original sample into
various layers along vertical direction using low- and high-resolution X-ray CT scanning
technologies. Then, areal porosities in each layer of low- and high-resolution digital rock
images were measured. Besides digital rock technology, thin section analysis was used
by Berryman and Blair [31] and Chen et al. [17] to measure areal porosity of 2D thin. As
shown in Figure 2a, porosity of 3D sample ϕ3D is approximately in the middle between
the maximum and minimum values of areal porosities of 2D cross-sections. Specifically,
for a 3D porous media with bulk porosity ϕ3D, most of the areal porosity data ϕ2D for 2D
sectional sections are in the range of 0.9ϕ3D and 1.1ϕ3D. Figure 2b compares bulk porosity
of 3D samples versus average porosity of 2D cross-sections. Results suggest that porosity
of 3D sample is quite consistent with the average areal porosity of 2D slices. Specifically,
the slope of the fitting line is 1.009, which is close to unity. And the intercept of the fitting
line is close to 3.38 × 10−4, which is quite close to 0. As a result, for simplicity of the model,
areal porosity of 2D cross-sections ϕ2D is assumed to be identical to bulk porosity of 3D
matrix (parent samples) ϕ3D, i.e.,

ϕ3D = ϕ2D. (6)
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In general, for actual pore structure in 3D space, capillary tube is not straight and
tortuosity τ (or tortuosity fractal dimension DT) is larger than unity. Based on KC equation,
Chen et al. [17] developed a bridge function connecting capillary radius in 2D space to that
in 3D space. As stated by Chen et al. [17], for a given capillary with pore radius r in 2D
space, the corresponding pore radius r3D in 3D space is:

r3D =
r

τ4(r3D)
. (7)

As tortuosity τ is larger than unity, Equation (7) reveals that pore radius r3D in 3D
space is less than that in 2D space, and the ratio of r to r3D is tortuosity to the fourth power,
i.e., τ4. With the same method as Chen et al. [17], but assuming that the ratio of specific
surface in 3D space to that in 2D space is 3/2 and not the tortuosity, Saxena et al. [26]
suggested that the ratio of r to r3D is 9τ2/4. To some extent, 9τ2/4 can be considered a
special case of τ4 (e.g., when τ is assigned as 3/2, 9τ2/4 equals τ4), so, in this paper, to
make our model more general, Equation (7) was used to correlate r and r3D.

According to fractal theory, tortuosity τ of pore radius r3D is [29]:

τ(r3D) =

(
3
√

V
2r3D

)DT−1

, (8)

where V is the bulk volume of the REV. In light of Equation (A10), V can be determined on
basis of pore fractal dimension Df in 3D space as:

V =

{
πDfr

3−DT
3D,max

4ϕ3D(3− DT − Df)

[
1−

(
r3D,min

r3D,max

)3−DT−Df
]} 3

3−DT

. (9)

By combining Equations (7) through (9), we have:
r3D,max = rmax[

3√V/(2rmax)
] 4DT−4

5−4DT

;
r3D,min = rmin[

3√V/(2rmin)
] 4DT−4

5−4DT
;

r3D,max
r3D,min

=
(

rmax
rmin

) 1
5−4DT ,

(10)

where the subscripts 3D,max and 3D,min denote the maximum and minimum in 3D space,
respectively. In what follows, subscript 3D presents in 3D space. Physically, r3D,max should
be larger than r3D,min, which means DT in Equation (10) should be less than 1.25. Based on
fractal theory, in 3D pore space, DT is [42]:

DT = (3− Df + 1) + (3− Df)
log(Df)− log(Df − 1)

log(ϕ3D)
, (11)

wherein Df is pore fractal dimension in 3D space, which can be also determined by [29,35]:

Df = 3− ln(ϕ3D)

ln(r3D,min/r3D,max)
. (12)

More details about Equation (11) can be found in Equation (A8). By substituting
Equation (10) into Equation (12), Df can be rewritten as:

Df = 3− (5− 4DT) ln(ϕ3D)

ln(rmin/rmax)
. (13)
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By combining Equations (11) and (13), we have:

DT =
[
(5−4DT) ln(ϕ3D)

ln(rmin/rmax)
+ 1
]

+ 〈 (5−4DT) ln(ϕ3D)
ln(rmin/rmax)

·


log
[

3− (5−4DT) ln(ϕ3D)
ln(rmin/rmax)

]
log(ϕ3D)

−
log
[

2− (5−4DT) ln(ϕ3D)
ln(rmin/rmax)

]
log(ϕ3D)

〉.
(14)

By solving Equation (14), parameter DT can be determined. Then, based on
Equation (13), Df can be determined. By substituting Equation (10) into Equation (9),
we have:

V =

πDfr
3−DT
max (2rmax)

(4DT−4)(3−DT)
5−4DT

4ϕ3D(3− DT − Df)

1−
(

rmin

rmax

) 3−DT−Df
5−4DT


3(5−4DT)

3−DT

. (15)

By substituting Equation (15) into Equation (10), r3D,max and r3D,min can be deter-
mined. Then, according to Equation (A11), 3D permeability K3D of porous media in flow
equivalence can be given by:

K3D =
πDf2DT rDf

3D,max

(
r3−Df+DT

3D,max − r3−Df+DT
3D,min

)
16V

1+DT
3 (3− Df + DT)

. (16)

Figure 3 shows the flow chart for the 3D permeability determination. In light of our
derived model, the methodology workflow is summarized as follows:
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Step 1: Determine 2D pore structure parameters (e.g., rmax, rmin, ϕ2D, and df) from 2D
digital image. Specifically, for a given 2D digital image, parameters (rmax, rmin, and ϕ2D)
can be determined by using the Avizo software [25]. In addition, df can be determined
with box-counting algorithm [38] or with Equation (5). Subsequently, parameter ϕ3D can
be calculated using Equation (6).

Step 2: Determine parameter DT by solving Equation (14). Then, determine Df by
using Equation (13). In addition, determine parameter V by using Equation (15). Then,
r3D,max and r3D,min can be determined by using Equation (10).

Step 3: Determine K3D and τav of the corresponding parent sample using
Equations (16) and (A12). In addition, the bridge function (i.e., the ratio of K2D to K3D) can
be determined by combining Equations (1) and (16). Moreover, other 3D pore structure
parameters of the parent sample in flow equivalence can be further estimated.

3. Model Validation

Sampling and Experiments: 3 carbonate core plugs (labeled sample 1, sample 2, sample 3)
with a diameter of 25 mm and thickness of 6 mm in the Middle East were selected. For these
samples, multiple cubical sites were semi-randomly selected and then used in micro-CT
X-ray imaging with the Versa XRM-500 X-ray micro-CT scanner and in simulation with
the lattice Boltzmann method (D3Q19 model) to determine the permeability in 3D. Taking
sample 1, for example, two cubical sites (site A and site B) were semi-randomly selected to
avoid vugs. For site A with a bulk porosity ϕ3D of 23.5% and a total volume of 1.643 mm3,
the volume (voxel) is 6483, and the voxel volume is 2.533 µm3. With the D3Q19 model
stated in Appendix B, the determined permeability in 3D is 27.8 × 10−3 µm2. In addition,
for site B with a bulk porosity ϕ3D of 23.4%, the volume (voxel) is 6813, the voxel volume
is 1.553 µm3, and the total volume is about 1.063 mm3. Then, based on LBM simulation,
the 3D permeability of site B was determined, with the value of 69.4 × 10−3µm2. More
detailed information about the D3Q19 model can be found in Appendix B. For the sake of
simplification, site J (J = A, B, C, ···) from the sample I (I = 1, 2, 3) is labeled as sample I–J.

To verify the derived model in Section 2, a cross-section of each sample was sliced
and used to estimate the permeability of the corresponding parent sample. Specifically
speaking, firstly the 2D pore structure parameters (e.g., rmax, rmin, ϕ2D, and df) from the 2D
digital image were determined; then, based on our derived model, the 3D permeability of
the carbonates was predicted. In addition, our predicted 3D permeability was compared to
that from D3Q19 LBM to validate the feasibility and effectiveness of our derived model.
The experimental data and modeling results are summarized in Table 1. As shown in
Table 1 and Figure 4a, the areal porosity (2D porosity) of the cross-section consists of the
bulk porosity (3D porosity) of the parent sample. The results (Figure 4a) suggest the slope
and the intercept of the fitting line are 1.048 (close to unity) and 7.56 × 10−3 (close to 0),
respectively. Similar findings are shown in Figure 2. The results shown in Table 1 suggest
that the predicted 3D permeability of each parent sample from the derived model exhibits
excellent agreement with the experimental data (the results from the LBM simulations).
Taking parent sample 1-A (Figure 4a), for example, in light of the image processing tech-
nology, the ϕ2D of the selected 2D cross-section (Figure 4b) is 31.24%. In addition, with
the box-counting algorithm [38], the double logarithmic (Lg) plot of the box size (pixel)
versus the total pore number is presented in Figure 4b; then, the pore fractal dimension
df (the negative of the slope) was determined to be 1.686. As shown in Figure 4b, the
pore structure of the 2D cross-section of sample 1-A has a typical fractal scale. In our
modeling, df and ϕ2D were assigned as 1.686 and 31.24%, respectively. rmax was assigned
as 535.06 µm, and ϕ3D was assigned as 23.5%. Moreover, r3D,max and Df were assigned as
41.18 µm and 2.81, respectively. Then, based on the derived model, the predicted perme-
ability K3D is 27.8 × 10−3µm2, which is in agreement with that determined by the LBM
simulation. Figure 4c presents the pore structure parameters (e.g., τav, rmax/r3D,max, and
DT) of the samples. As we can see from Figure 4c, the parameter rmax is larger than r3D,max,
which is consistent with the results stated by Chen et al. [17]. For these 9 samples, the ratio
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rmax/r3D,max ranges from 3.18 to 10.58. In addition, DT ranges from 1.10 to 1.15, and τav
ranges from 2.19 to 4.69. The results (Figure 4c) also suggest that even from the same parent
sample, the different sites behave strongly in heterogeneity. For instance, sample 1-A and
sample 1-B come from the same parent sample 1; however, their physical properties vary
greatly. Figure 4d presents the average tortuosity versus the ratio rmax/r3D,max. The results
(Figure 4c) show that there exists an approximately linear relationship between the ratio of
the maximum pore radius in 2D space to that in 3D space (rmax/r3D,max) and the average
tortuosity of porous media. Physically, when the average tortuosity of porous media is
unity, the corresponding ratio rmax/r3D,max approximately equals unity. As we can see
from the fitting equation, when τav is assigned as unity, rmax/r3D,max is determined to be
0.82, which is close to unity, which verifies our model. The reason for the deviation may be
caused by the computational error.

In general, carbonates generally contain clay minerals, and the interaction between
clay minerals and fluids (e.g., water, gas, oil) will significantly affect the permeability
of porous media [37,40]. For example, Lei et al. [37] derived analytical permeability to
study the effect of clay swelling on the permeability of clay-rich argillaceous porous media.
In addition, as the interaction between solid minerals (e.g., illite, montmorillonite, and
kaolinite) and fluids in porous media (e.g., carbonate media) will change pore structures,
the effect of the physical or chemical nature of solid minerals on the fluid flow in porous
media is of great significance. However, the derived model in this paper does not consider
the interaction between solid minerals and fluids. Thus, in our future work, the inter-
action between solid minerals and fluids will be taken into account to make our model
more reasonable.

Table 1. Experimental data and modeling results.

No. Samples a
LBM Proposed Model

ϕ3D
(%) K3D (10−3 µm2)

ϕ2D
(%) df R3D,max (µm) Df K3D (10−3 µm2)

1 1-A 23.5 27.8 31.24 1.686 41.18 2.81 27.8

2 1-B 23.4 69.4 21.35 1.450 43.15 2.79 69.4

3 2-A 31.5 1450 35.71 1.576 64.04 2.78 1450

4 2-B 21.5 216.7 26.44 1.683 70.31 2.79 216.7

5 2-C 34.9 1743.1 38.55 1.611 60.24 2.79 1743.1

6 3-A 30.7 906.9 34.97 1.735 89.07 2.82 906.9

7 3-B 16.2 103.1 10.81 1.415 49.04 2.74 103.1

8 3-C b 31.3 3049.4 36.97 1.631 61.83 2.76 3049.4

9 3-D b 40.7 2660 36.74 1.636 60.20 2.82 2660
a The samples are the sites in the end trims cut off from the original samples in the literature [46]. b Samples 3-C
and 3-D denote sites D and E of sample 3 in Table 1 of the literature [46].

Dataset of Saxena et al. [26]: To further verify our derived model, the predicted K2D
and K3D from the new model were compared with available test data [26]. Saxena et al.
conducted numerical experiments on 12 samples from various geologic formations [26].
For these 12 samples, samples 1 to 3 come from the same parent Berea sandstone and
represent Berea sandstones A to C, respectively. In addition, samples 4 to 6 represent
Bituminous sands A to C, respectively. Samples 7 to 9 represent Fontainebleau (Font)
sandstones A to C, respectively. And samples 10 to 12 represent Grosmont carbonates A to
C, respectively. During the numerical experiments, Saxena et al. first calculated the K3D of
the parent samples based on 3D digital rocks using an LBM simulation; then, they sliced
2D thin sections along the flow direction from the parent samples and performed an LBM
simulation to estimate the K2D of the thin section [26]. It should be noted that to calculate
the K2D of the thin section, the pore structure was restructured by permeating the pores in
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the thin section with straight tubes along the flow direction. That is, for the restructured
porous media used to determine K2D, the tortuosity fractal dimension dt was equal to 1. As
a result, during our modeling, dt was assigned as 1, and Equation (3) was used to validate
our derived model.
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Figure 4. Modeling results of the samples: (a) the curves of ϕ2D versus ϕ3D; (b) df of the 2D image
of sample 1-A; (c) the determined pore structure parameters for various samples; (d) τav versus the
ratio rmax/r3D,max for various samples.

Taking sample 1 (sample Berea A) with a volume of 800 × 800 × 800 µm3 and a pixel
size of 0.74 µm, for example, the bulk porosity ϕ3D is 4%, and the areal porosity ϕ2D of
the thin sections ranges from 2% to 6% with an average of 4%. Based on simulations,
the LBM 3D permeability of the parent sample was determined as 3 × 10−3µm2, and the
average LBM 2D permeability of the thin sections is 624 × 10−3µm2. In our modeling,
both ϕ3D and ϕ2D were assigned as 4%. Based on Equations (3) and (13), K2D and K3D
can be calculated. The results (Figure 5a–d) suggest that the predictions (K2D and K3D)
provide a good match over the test data. Besides K2D and K3D, other parameters (e.g., df,
τav, rmax/r3D,max, DT, and Df) of each sample are presented in Figure 5e. As we can see
from Figure 5e for these 12 samples, τav ranges from 1.10 to 1.50, which is smaller than that
of the carbonates in Figure 4. This reveals that the carbonates in Figure 4 have stronger
heterogeneity than the rocks in Figure 5. The reason may be that the rocks in Figure 4 are
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carbonate core plugs; however, most of the rocks in Figure 5 are sandstones, which are
more homogeneous. In addition, Figure 5e shows that the ratio rmax/r3D,max ranges from
1.15 to 1.74, DT ranges from 1.01 to 1.03, df ranges from 1.64 to 1.82, and Df ranges from 2.69
to 2.83. The results (Figure 5f) also suggest that τav and the ratio rmax/r3D,max are linearly
dependent. When τav is assigned as unity, the ratio rmax/r3D,max is estimated to be 0.93,
which is approximately equal to unity. Similar findings are shown in Figure 4e.

Dataset of Berryman and Blair [31]: Based on digital image analysis, Berryman and
Blair first studied the two-point correlation functions, porosity, and specific surface area of
glass beads (55 µm), Ironton Galesville (IG) sandstones, and Berea sandstones [31]. Then,
they predicted the permeability of these samples with the following equation:

K3D =
ϕ2

2D
bFS2

2D
, (17)

where F is the formation factor, and b is a constant that depends on the cross-section of
the tubes. It is recommended that b is assigned as 2 and 3 for circular tubes and flat
cracks, respectively.

In order to further verify our derived model, the predictions from our derived model
were compared against the available data of Berryman and Blair [31]. Taking sample 3
(sample Berea 1) with an image specific surface of 0.0281 µm−1, an areal porosity ϕ2D of
17%, and an image permeability K2D of 0.312 µm2. For example, Berryman and Blair found
the bulk porosity (laboratory porosity) ϕ3D ranged from 15% to 18% with an average value
of 16.5%. In addition, based on Equation (14), the laboratory permeability of K3D was
determined to be 0.023 µm2. In our modeling, ϕ3D and ϕ2D were assigned as 16.5% and
17%, respectively. The results (Figure 6a) suggest that the predicted results (K2D and K3D)
of these samples (i.e., two glass beads, four Berea samples, IG-775 and IG-785) provide
a good match over the test data. In addition, the pore structure parameters (e.g., df, τav,
rmax/r3D,max, DT, and Df) of each sample are presented in Figure 6b. As pore structures
(df, τav, rmax/r3D,max, DT, and Df) of these samples are different, the curves show different
behaviors. In addition, the results (Figure 6c) also suggest that τav is remarkably correlated
linearly with the ratio rmax/r3D,max.

For a given porous medium (bulk porosity ϕ3D) composed of identical spherical grains,
the average particle radius Rap of the porous medium could be written as [26,31,58]:

S3D = 4πR2
ap/

(
4πR3

ap/3

1− ϕ3D

)
=

3(1− ϕ3D)

Rap
⇒ Rap =

3(1− ϕ3D)

S3D
, (18)

where S3D is the specific surface area. Based on the derivation in Appendix C, Rap can be
also expressed as:

Rap = λRavs + (1− λ)Ravc, (19)

where λ is the weight coefficient of the average spherical particle radius, Ravs is the av-
erage spherical particle radius, and Ravc is the average circular particle radius. More
details about Ravs and Ravc can be found in Equations (A22) and (A24). By combining
Equations (15) and (16), the weight coefficient of the average spherical particle radius can
be determined. Figure 6d compares the calculated average particle radius for spherical
particles and the calculated average particle radius for circular particles with that from the
former model. The results from Figure 6d demonstrate that the calculated average particle
radius from Equation (15) is approximately in the middle between the calculated values
from Equations (A22) and (A24). This indicates that the model gives predicted values that
are quite consistent with the results from the former model. In addition, by combining the
results from Equations (15) and (16), the weight coefficients for different samples have been
determined in Figure 6d. Taking sample 3 for example, when the weight coefficient is unity,
the average particle radius can be effectively determined by Equation (A22).
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Figure 5. Modeling results of the samples [26]: (a) the predicted permeabilities from the derived
model versus the data for Berea samples; (b) the predicted permeabilities from the derived model
versus the data for Bitumen samples; (c) the predicted permeabilities from the derived model versus
the data for Font samples; (d) the predicted permeabilities from the derived model versus the data for
Grosmont samples; (e) the determined pore structure parameters for various samples; (f) τav versus
the ratio rmax/r3D,max for various samples.
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Figure 6. Modeling results of the samples: (a) predicted permeability (K2D and K3D) and experimental
data; (b) the determined pore structure parameters (df, dt, τav, DT, and Df) of various samples;
(c) τav versus the ratio rmax/r3D,max for various samples; (d) the predicted average particle radius for
spherical particles and circular particles versus that from Equation (15).

4. Results and Discussions

After validation with exhaustive experimental data, this derived model was utilized
for sensitivity analysis of different parameters (Df and DT) on the 3D permeability of
porous media. Figure 7 shows the influence of pore fractal dimension Df on the average
tortuosity τav and K3D of porous media in 3D. In this case, the maximum and minimum
pore radii in 2D were 3 µm and 0.13 µm, respectively. The parameters ϕ2D and ϕ3D were
both 0.15, and parameter DT was 1.1. During the calculation, the parameter Df ranged
from 2.2 to 2.8. Based on our derived model, the maximum pore radius in 3D space r3D,max
was determined, which ranged from 1.4 µm to 0.82 µm. In addition, the determined
parameter r3D,min ranged from 0.0077 µm to 0.0045 µm. Specifically, when parameter Df
was assigned as 2.2, the corresponding values of r3D,max and r3D,min were 1.4 µm and
0.0077 µm, respectively. As one can see from Figure 7a, there exists a positive relationship
between Df and the average tortuosity τav. The main reason is that a larger value of Df
means a more complex pore structure of porous materials, leading to a larger value of
τav. Furthermore, the permeability of porous media in 3D decreases with an increase in
Df, which is anticipated. Figure 7b demonstrates that the linear correlativity between τav
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and the ratio rmax/r3D,max is very prominent. Moreover, when τav is assigned as unity,
rmax/r3D,max is determined to be 0.9951, which is close to unity.
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Figure 7. Effect of pore fractal dimension Df on properties of porous media in 3D: (a) curves of Df

versus τav and K3D; (b) τav versus the ratio rmax/r3D,max.

The influence of parameter DT on the τav and K3D are shown in Figure 8. In this case,
the basic parameters applied in the model are summarized in the corresponding figures.
During the calculation, the parameter Df was assigned as 2.2, and the parameter DT ranged
from 1.05 to 1.2. Based on our derived model, the parameter r3D,max ranges from 2.2 µm
to 0.07 µm. The results (Figure 8a) suggest that a larger τav corresponds to a larger DT.
However, K3D decreases as DT increases. Specifically, for this case, when DT increases up
to a certain value (e.g., DT ≥ 1.2), the value of K3D is extremely small. The main reason is
that a larger value of DT means larger seepage resistance, resulting in a small value of K3D.
Figure 8b also reveals that τav has distinct linear correlations with the ratio rmax/r3D,max.
Similar findings have been also demonstrated in Figure 6.
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Figure 8. Effect of tortuosity fractal dimension DT on properties of porous media in 3D: (a) curves of
DT versus τav and K3D; (b) τav versus the ratio rmax/r3D,max.

Based on the definition of the bridge function f bridge connecting K2D and K3D (i.e.,
f bridge = K2D/K3D), we studied the influences of Df and DT on this bridge function f bridge.
Figure 9 presents the influences of Df and DT on f bridge. For the calculation, the parameters
applied in the model are summarized in the corresponding figures, which are identical to
those for Figures 7 and 8, respectively. As one can see from Figure 9, the bridge function
increases as Df (or DT) increases. The main reason is that for a given 2D pore structure, a
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larger value of Df (or DT) corresponds to a smaller value of K3D. Similar findings can be
found in Figures 7a and 8a. Moreover, Figure 9 reveals that with an increase of Df (or DT),
the increase rate of f bridge increases. The main reason is that with an increase of Df (or DT),
the increase rate of the seepage resistance in the porous media increases.
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Figure 9. Effects of Df and DT on the bridge function f bridge: (a) pore fractal dimension Df versus the
bridge function K2D/K3D; (b) tortuosity fractal dimension DT versus the bridge function K2D/K3D.

Model advantages and limitations: The developed model provides a theoretical basis
for predicting the 3D permeability of porous media from 2D digital image analysis without
the need for 3D reconstruction, achieving high accuracy even with only 2D information.
Compared to DRP, our model not only reduces the computational cost of high-resolution
scanning, 3D pore network reconstruction, and numerical simulation but also captures the
effect of realistic pore shapes on permeability. Furthermore, our model can be used for
inverse modeling to estimate relevant parameters, such as tortuosity and the pore fractal
dimension in 3D, making it highly practical for estimating permeability in heterogeneous
porous media. Overall, our derived model is of great practical significance, as 2D images
are easier and cheaper to access than 3D images and reconstructions of 3D pore networks.

However, it is worth noting that our derived model shares the problems of uncertainty
and challenge in terms of predicting 3D pore structures and the permeability of porous
media. Physically speaking, for a given 2D image, the possible 3D samples are infinite. That
is, for a given 2D image, there are infinitely many permeabilities to this problem. As our
model is derived based on fractal theory, it is limited to fractal porous media; however, it
may not be suitable for some porous media. In addition, in our modeling, the areal porosity
of 2D cross-sections ϕ2D is assumed to be identical to the bulk porosity of the 3D matrix.
However, ϕ2D varies with the slices, and sometimes the difference between the maximum
and the minimum 2D porosity is relatively large. Although ϕ3D is approximately in the
middle between the maximum and minimum values of ϕ2D, 2D porosity is not enough
to represent ϕ3D. Moreover, our developed model is limited to intact porous media and
ignores the effect of micro-fractures on the 3D permeability of porous media. Thus, further
research is required to reduce the uncertainty in estimating the 3D permeability of porous
media from 2D images without reconstruction. Furthermore, in general, the pore surface of
porous materials is rough, and the surface fractal dimension is crucial to characterize the
fluid flow in porous media [41,59,60]. For example, Lei et al. [59] and Xiao et al. [41] derived
theoretical models to study the fluid flow in porous media, and they concluded that the
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effects of surface fractal dimension on permeability and relative permeability in porous
media were significant. Thus, to make our model more reasonable, in our future work, a
rough pore surface and surface fractal dimensions will be taken into account. Moreover, as
mentioned above, the interaction between solid minerals and fluids will significantly affect
the permeability of porous media. To improve the applicability of our derived model, the
interaction between solid minerals and fluids will be taken into account. What is more, as
the information on fracture systems may not be obtained from 2D cross-sections, in this
paper, our derived model focuses on predicting the 3D permeability of intact porous media,
and the fractures are ignored. In our future work, we will try to extend our model to study
the 3D permeability of fractured porous media from 2D cross-sections of parent samples
without 3D reconstruction.

5. Conclusions

In this paper, a novel analytical model was derived to estimate the 3D permeability
of porous media from 2D cross-sectional images without reconstruction. Based on fractal
theory and the Kozeny–Carman equation, a bridge function was developed to correlate the
2D pore information from the 2D images and the 3D pore structure of the parent samples.
The derived model was validated with the results from lattice Boltzmann method (LBM)
simulations and various experimental data and is shown to perform well.

The derived model was also used to conduct sensitivity analysis of different parame-
ters (e.g., tortuosity fractal dimension in 3D space DT, pore fractal dimension in 3D space
Df) on the 3D permeability K3D of porous media. The results indicate that the average
tortuosity τav decreases with an increase of Df (or DT). In addition, the average tortuosity
τav is remarkably correlated linearly with the ratio of rmax (the maximum pore radius of
2D images) to r3D,max (the maximum pore radius of 3D porous media). Moreover, the
permeability K3D decreases as Df (or DT) increases. With an increase of Df (or DT), the
decrease rate of the permeability K3D increases.

The proposed model not only reveals the Intrinsic link of 2D pore information and
3D pore structure in unconventional oil/gas reservoirs but also reduces the computational
cost of high-resolution scanning and flow simulation to predict the 3D permeability of
unconventional reservoirs. Our proposed model can be applied in many fields, such as
CO2 geology storage, unconventional onshore and offshore oil/gas development, and
groundwater seepage.

Although the model focuses on predicting single-phase flow in dry porous media,
when the irreducible wetting phase saturation is taken into account, our model can be
extended to study the 3D effective permeability of porous media. In addition, it is also
available to extend this model to study multi-phase flow in porous media and obtain
relative permeability in porous media.

However, it should be noted that our proposed model never considers a rough pore
surface (e.g., surface fractal dimension) or interactions in solid minerals–fluid systems.
Thus, in our future work, more mechanisms will be taken into account to make our model
more reasonable.
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Nomenclature

Latin symbols
A The cross-sectional area of the representative element (µm2)
Aav The average pore area (µm2)
b A constant that depends on the cross-section of the tubes (dimensionless)
c Lattice sound speed, which is determined by ∆x/∆t (m/s)
de The Euclidean dimension is 2 in 2D space (dimensionless)
df The pore fractal dimension in 2D space (dimensionless)
dt The tortuosity fractal dimension in 2D space (dimensionless)
Df The pore fractal dimension in 3D space (dimensionless)
DT The tortuosity fractal dimension in 3D space (dimensionless)
eα Lattice velocities (m/s)
ey The unit vector along the y-axis (m/s)
F The formation factor (dimensionless)
f The pore size distribution in 2D space (dimensionless)
f 3D The pore size distribution in 3D space (dimensionless)
fα(y, t) The evolution of the density distribution function (kg/m3)
K2D Permeability of the 2D cross-section (10−3 µm2)
K3D 3D permeability of porous media in flow equivalence (10−3 µm2)
Kij Permeability in the i direction when the flow is driven in the j direction (10−3 µm2)
L The actual streamlined length of a tortuous capillary (µm)
Lj The size of the computational domain in the j direction (µm)
Lu The edge length of the cubical unit cell (µm)

N
The total number of pores in the representative element of a 2D cross-section
(dimensionless)

N3D The total number of pores in a representative elementary volume (dimensionless)
Ntotal The total lattice number (dimensionless)
p The transient pressure (Pa)
pin The inlet transient pressure (Pa)
pout The outlet transient pressure (Pa)
r The pore radius in 2D space (µm)
rav The average pore radius in 2D space (µm)
r3D The pore radius in 3D space (µm)
r3D,av The average pore radius in 3D space (µm)
rmax The maximum pore radius in 2D space (µm)
rmin The minimum pore radius in 2D space (µm)
r3D,max The maximum pore radius in 3D space (µm)
r3D,min The minimum pore radius in 3D space (µm)
R The particle radius of the porous media (µm)
Rap The average particle radius of the porous media (µm)
Ravc The average circular particle radius (µm)
Ravs The average spherical particle radius (µm)
Rmax The maximum particle radius (µm)
S2D The specific surface area of the 2D cross-section (µm−1)
S3D The specific surface area of the 3D cross-section (µm−1)
uj The velocity at the void point j (m/s)
u The flow velocity (m/s)
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V The pore volume of representative elementary volume (µm3)
Vav The average pore volume (µm3)
Vu The volume of the cubical unit cell (µm3)
Greek symbols
τ Tortuosity (dimensionless)
τ(r3D) Tortuosity of pore radius r3D (dimensionless)
τav The average tortuosity (dimensionless)
τ0 The relaxation time (dimensionless)
ϕ2D The areal porosity of 2D cross-sections (dimensionless)
ϕ3D The bulk porosity of a 3D matrix (dimensionless)
µ The dynamic viscosity (mPa·s)
∆y The lattice distance or the voxel size (µm)
y The grid location (µm)
∆t The time step (s)
ui The component in the i direction of the volumetric average velocity (m/s)
v The kinematic viscosity (m2/s)
ρ The fluid density in the D3Q19 model (kg/m3)
ωα Fixed weighting factors (dimensionless)
π Circular constant, which is approximately equal to 3.1415926 (dimensionless)
λ The weight coefficient of the average spherical particle radius (dimensionless)
Subscript symbols
α The direction in the D3Q19 model (dimensionless)
2D Two-dimensional space
3D Three-dimensional space
max Maximum
min Minimum

Appendix A. Fractal Theory of Porous Media in 2D and 3D Space

As mentioned above, for a 2D cross-section, pore structure parameters can be deter-
mined using digital image process technologies and thin section analysis. For example,
pore fractal dimension df can be calculated with the box-counting algorithm [38]. Moreover,
with thin section analysis or digital image processing techniques, areal porosity ϕ2D and
pore size distribution can be easily determined. As the pore structures of most sedimen-
tary porous media follow fractal characteristics, fractal theory has been widely applied
to describe the pore structures of porous media [29,34,35]. Based on fractal geometry,
with the determined pore fractal dimension df, the maximum pore radius rmax, and the
minimum pore radius rmin, the pore size distribution f and the total number of pores in a
representative element of 2D cross-section N can be written as [29,35]: f = dfr

df
minr−(df+1),

N =
(

rmax
rmin

)df
.

(A1)

Based on Equation (A1), the average pore radius rav and specific surface area S2D of
the 2D cross-section are:

rav =
∫ rmax

rmin
r f dr = dfrmin

df−1

[
1−

(
rmin
rmax

)df−1
]

;

S2D = ϕ2D
A N

∫ rmax
rmin

2πr f dr = ϕ2D
A 2πrav

(
rmax
rmin

)df
,

(A2)

where A is the cross-sectional area of the representative element (RE), which is:

A =
N

ϕ2D

∫ rmax

rmin

πr2 f dr =
πdfr

df
max

(
r2−df

max − r2−df
min

)
ϕ2D(2− df)

=
πdfr2

max
ϕ2D(2− df)

(
1−

r2−df
min

r2−df
max

)
. (A3)
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By combining the Hagen–Poiseulle equation, the bundle of the capillary tube model,
and Darcy’s law, the permeability of the 2D cross-section (i.e., the 2D composite permeated
with tortuous capillary tubes that are perpendicular to the 2D cross-section, Figure 1) K2D
can be obtained as [12,29,40,54,55]:

K2D =
πdfr

df
max

(
r3−df+dt

max − r3−df+dt
min

)
24−dt

√
A1+dt(3− df + dt)

, (A4)

where dt is the tortuosity fractal dimension in 2D space, which can be determined with [42]:

dt = (2− df + 1) + (2− df)
log(df)− log(df − 1)

log(ϕ2D)
. (A5)

when dt is assigned as unity, K2D can be simplified as:

K2D =
πdfr

df
max

(
r4−df

max − r4−df
min

)
8A(4− df)

. (A6)

For 3D pore space, with the given pore fractal dimension Df, the maximum pore radius
r3D,max, and the minimum pore radius r3D,min, the pore size distribution f 3D and the total
number of pores in a representative elementary volume (SRV) N3D can be written as: f3D = Dfr

Df
3D,minr−(Df+1)

3D ;

N3D =
(

r3D,max
r3D,min

)Df
,

(A7)

where the subscript 3D presents 3D space. Based on fractal theory, in 3D pore space, the
actual streamline length L of a tortuous capillary and tortuosity fractal dimension DT can
be determined as [29,42]: L = (2r3D)

1−DT V
DT
3 ;

DT = (3− Df + 1) + (3− Df)
log(Df)−log(Df−1)

log(ϕ3D)
.

(A8)

where pore volume V of a representative elementary volume (REV) can be obtained as [61]:

V =
N3D

ϕ3D

∫ r3D,max

r3D,min

πr2
3DLdr3D. (A9)

By rewriting Equation (A9), we have:

V =

{
πDfr

3−DT
3D,max

4ϕ3D(3− DT − Df)

[
1−

(
r3D,min

r3D,max

)3−DT−Df
]} 3

3−DT

. (A10)

By combining the Hagen–Poiseulle equation, the bundle of the capillary tube model,
and Darcy’s law, the 3D permeability K3D can be obtained as [12,55,61,62]:

K3D =
N3D

V
2
3

∫ rmax

rmin

πr4
3D

8(2r3D)
1−DT V

DT−1
3

f dr =
πDf2DT rDf

3D,max

(
r3−Df+DT

3D,max − r3−Df+DT
3D,min

)
16V

1+DT
3 (3− Df + DT)

. (A11)

By combining Equation (A7) and Equation (8), the average tortuosity τav is:
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τav =
∫ r3D,max

r3D,min

f3D

(
3
√

V
2r3D

)DT−1

dr3D = 21−DT Dfr
Df
3D,min

(
3
√

V
)DT−1 r1−Df−DT

3D,max − r1−Df−DT
3D,min

1− Df − DT
. (A12)

Then, by the definition of specific surface area S3D in 3D space, we have:

S3D = N3D
V
∫ r3D,max

r3D,min
2πr3D

3√VDT(2r3D)
1−DT f3Ddr3D

= 22−DTπDfV
DT−3

3 rDf
3D,max

r
2−DT−Df
3D,max −r

2−DT−Df
3D,min

2−DT−Df
.

(A13)

Appendix B. The Algorithm of the D3Q19 Lattice Boltzmann Method

For single-phase flow simulations, the lattice Boltzmann method (LBM) based on
simple BGK relaxation was used here. The fundamental idea of the LBM is to construct a
kinetic model simplified from the Boltzmann equation at mesoscale that incorporates the
essential physical processes to ensure that the computed macroscopic quantities satisfy
the desired governing equation (i.e., Navier–Stokes equation in the current study). The
computational grids/lattices are uniformly distributed inside the computational domain.
The only unknown fα(x, t) is the density distribution function and evolves according to the
following propagation–collision scheme [63–66]:

fα(y + ∆teα, t + ∆t) = fα(y, t) +
f eq
α (y, t)− fα(y, t)

τ0
, (A14)

and

f eq
α (y, t) = ρωα

[
1 +

3
c2 eα · u +

9
2c4 (eα · u)2 − 3

2c2 u · u
]

, (A15)

where ∆t is the timestep, y is the grid location, c = ∆y/∆t is computed with the grid distance
∆y (namely the voxel size here), and τ0 is the dimensionless relaxation time, which is
determined by the kinematic viscosity v, namely τ0 = 3v/(c∆y) + 0.5. Additionally, the
lattice velocity eα and weight ωα in the moving direction α ∈ [0, Q− 1] were selected
according to the D3Q19 model (3-dimension and 19-velocity) [64]. For an arbitrary grid at y,
its neighboring grids are exactly located at y + eα∆t since the magnitude of eα depends on
c. The equilibrium distribution function f eq

α was determined from the local fluid density ρ
and flow velocity u that were computed in the absence of internal/external force as follows:

ρ =
18
∑

α=0
fα;

u = 1
ρ

18
∑

α=0
eα fα.

(A16)

At the initial state, fα is equal to f eq
α , which was computed with the initial distributions

of ρ and u. The bounce-back scheme was used at the complicated solid surface for the
non-slip boundary condition and was naturally implemented as the half-way bounce-back
scheme with a higher accuracy because the actual solid–fluid interface was exactly located
in the middle between the solid and fluid grids in the digital rock simulations. The flows
in the current study were driven by a pressure difference pin − pout between the inlet and
outlet (equivalent to a density difference due to p = ρc2/3), and the density constraint was
imposed by the robust non-equilibrium extrapolation scheme [67]. The permeability was
computed after convergence:

Kij =
ρvLj

pin − pout
〈ui〉 =

ρvLj

pin − pout

1
Ntotal

∑
j∈void

uj, (A17)
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where 〈ui〉 is the component in the i direction of the volumetric average velocity and
computed by a summation of ui over the void/fluid grids, Ntotal is the total number of
both void and solid grids, Kij is the component in the i direction when the flow is driven
in the j direction, and Lj is the size of the computational domain in the j direction. The
permeability Kij as a tensor has nine components in total by driving the flow in three
different directions using three independent simulations. However, the current simulations
in this paper always drive the flow by a pressure difference along the j = y direction
and focus on the component in the i = y direction, and Kyy is denoted by K3D as the 3D
permeability of the porous media.

It is worth noting that attention has been paid to alleviating the velocity and per-
meability dependences on the relaxation time due to the nonzero Knudsen effect in the
LBM simulations [46,68] where the Knudsen (Kn) number is

√
π/6(τ0 − 0.5)/Npore [69],

and Npore is the grid number used to discretize the dominant pore size. However, we
could not set (τ0 − 0.5)→ 0 for Kn→ 0 ; that would result in zero kinematic viscosity and
an infinite Reynold (Re) number, leading to the dependence of the permeability on Re.
In practical simulations of digital rocks [46,68], using (τ0 − 0.5) around 0.2 and a small
relative pressure drop of only 1% (i.e., pin − pout = 0.01pin) can make the Kn and Re effects
negligible, respectively. On the other hand, Li et al. (2018) found the multi-relaxation time
(MRT) model might provide a parameter range that was wider than that of the current
BGK model, but the basic mechanism remained the same; i.e., in simulations of intrinsic
permeability, one should choose the appropriate relaxation parameter to ensure that Kn is
small (but also nonzero as in the current BGK model).

Appendix C. Determination of the Average Particle Size

In this section, the average rock particle radius in porous media with bulk porosity
ϕ3D was estimated with the idealized geometrical model shown in Figure A1, assuming
that the unit cell was composed of spherical particles of the same size. Based on Figure A1,
the volume of the cubical unit cell Vu and its edge length Lu are: Vu = 4πR3

3(1−ϕ3D)
;

Lu = 3
√

4πR3

3(1−ϕ3D)
= 3
√

4π
3(1−ϕ3D)

R.
(A18)
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wherein r3D,av is the average pore radius in 3D space, which is: 

f

3D,max

3D,min

1

f 3D,min 3D,min

3D,av 3D 3D 3D

f 3D,max

= = 1 .
1

D
r

r

D r r
r r f dr

D r

  
        

  (A21)

By combining Equations (A19) and (A20), the average spherical particle radius Ravs is 
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Figure A1. The arrangement of spherical rock particles for the average pore radius of porous media:
(a) the cubical unit cell; (b) front view of the unit cell.
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Based on Equation (A18), the average pore volume Vav is:

Vav = Vu −
4πR3

3
=

4πR3 ϕ3D

3(1− ϕ3D)
. (A19)

Mathematically, the average pore volume Vav can be also estimated with:

Vav = AavLu = πr2
3D,av

3

√
4π

3(1− ϕ3D)
R, (A20)

wherein r3D,av is the average pore radius in 3D space, which is:

r3D,av =
∫ r3D,max

r3D,min

r3D f3Ddr3D =
Dfr3D,min

Df − 1

[
1−

(
r3D,min

r3D,max

)Df−1
]

. (A21)

By combining Equations (A19) and (A20), the average spherical particle radius Ravs is

Ravs = r3D,av

√√√√ 3

√
4π

3(1− ϕ3D)

3(1− ϕ3D)

4ϕ3D
. (A22)

By simplifying spherical particles in Figure A1 as circular particles, Xu and Yu derived
an analytical model for the maximum particle radius Rmax, which is [12]:

Rmax = r3D,max

√
ϕ3D

1− ϕ3D
. (A23)

In light of Equation (A23), the average circular particle radius Ravc can be also deter-
mined as:

Ravc = r3D,av

√
ϕ3D

1− ϕ3D
. (A24)

Then, by using the average particle radius statistical average method, the average
particle radius Rap of the porous media can be expressed as:

Rap = λRavs + (1− λ)Ravc, (A25)

wherein λ is the weight coefficient of the average spherical particle radius.
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