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Abstract: This study delves into the offshore fishing industry in Taiwan, emphasizing the significance
of the aquatic product market, supply chain development, and the maturity of cold chain technology.
Taiwan’s geographical advantage of being surrounded by the sea provides a thriving environment for
marine resources and migratory fish. This study is motivated by the increasing demand for diverse
fish products, driven by the growing need for high-quality protein. Recognizing the importance
of meeting this demand, this study aims to investigate the capacity of logistics systems and cold
storage in the offshore fishery industry, particularly under conditions of uncertainty. To tackle the
optimization challenges prevalent in the offshore fishery supply chain, this study employs the bat
algorithm (BA), a metaheuristic algorithm inspired by the remarkable echolocation behavior of bats.
Additionally, a systematic literature review methodology is utilized to gather relevant articles and
establish a comprehensive understanding of the study domain. This study culminates in proposing
an optimized fishing model for the offshore fishery supply chain, highlighting the significance of
evaluating supply chain value from a management perspective and identifying existing deficiencies
and bottlenecks in current research. By focusing on optimizing the offshore fishery supply chain,
this study aims to enhance the industry’s efficiency and effectiveness, providing valuable insights
and recommendations to improve the capacity of logistics systems and cold storage. Furthermore,
this study presents the results of the BA, showcasing its effectiveness in approaching optimization
challenges, thereby validating its utility for the offshore fishery industry. Sensitivity analysis reveals
the potential for higher profits by raising the inventory limit of the manufacturer, enabling the
supplier to provide materials to more profitable trading partners. While this study is based on a
revenue and cost model, it acknowledges that the objectives and constraints would become more
complex in varying logistic system circumstances. The future study aims to expand the scale of the
model and incorporate practical cases to further enhance its applicability.

Keywords: supply chain; offshore fishery; nonlinear programming; bat algorithm; inventory limit;
profit maximization

1. Introduction

The Taiwanese offshore fishing industry has experienced significant growth in recent
years, with the aquatic product market becoming export oriented. This development has
led to the maturation of the product supply chain, supported by advancements in cold chain
technology. The supply chain encompasses crucial processes such as harvesting, product
processing, and the transportation of raw materials and finished products. These processes
are influenced by the dynamic environment, particularly the demands arising from both
local and global markets [1]. The increasing demand for various fish products is driven by
the growing need for high-quality protein. Moreover, wild fishing activities are dependent
on factors such as fish species, weather conditions, and government regulations [2]. Despite
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the abundance of marine resources, several challenges persist, impeding the efficiency
of the offshore fishery supply chain. These challenges can be categorized into two main
areas: (a) the dynamic nature of the environment, including fluctuating demands in local
and global markets, which directly impacts fishing, production, and distribution activities
within the offshore fishery industry; and (b) supply and demand issues, encompassing the
delicate balance between fish species availability, weather conditions, and compliance with
government regulations. These factors collectively affect the stability and efficiency of the
supply chain. Nonetheless, the offshore fishing industry plays a vital role in generating
economic and social impacts, while also providing inherent scientific benefits. Ma et al. [1]
argue that studying the capacity of logistic systems and cold storage under conditions
of uncertainty is crucial. However, existing studies have primarily focused on the flow
and supply chain of pelagic fishery, leaving the offshore fishery supply chain relatively
unexplored. This gap highlights the need for further investigation in order to improve the
understanding and management of the supply chain processes specifically related to the
offshore fishing industry.

Constructing a profit-maximizing model for the offshore fishery industry is necessary
for optimizing the supply chain, meeting market demand, managing resources, and ad-
dressing complex supply chain problems. Furthermore, it assesses the impacts of industry
development on cost problems and fishery management, improving coordination and
efficiency. In this study, it is assumed that refrigerated storage is exclusively applicable
to offshore fishing within the model. This study considers the diverse temperature re-
quirements for different fish species and environmental conditions, and thus utilizes a
fixed temperature setting based on the suitable temperature for the majority of species.
Additionally, this study assumes that only vessels from local offshore fishing companies
are accepted, and variables in the model include the cost of racks, construction expenses,
and other influential costs. Prior studies have attempted to identify the various influential
factors in the supply chain where purchased quantity, fish weight, sale price, inventory,
and transportation are identified as the most influential factors in the whole supply chain
model [3–5]. However, these studies focused on different assumptions such as how three
types of supply chain are able to coexist and interact with each other, how information
disclosure might infer the demand received by the downstream players, and how carbon
footprint is considered and estimated in the capture seafood industry management. This
study, nevertheless, focuses on proposing a profit-maximizing model to reach an efficient
supply chain management in the offshore fishery industry.

A supply chain includes issues of management and coordination, as well as the
relationship between the various participants in the supply chain. In addition, the supply
chain operation, involving the entire activities and decisions from suppliers to consumers,
is essential to a set of fishery supply chain models because the model is critically dependent
on the environment and the use of natural resources [2,6]. Moreover, conducting a supply
chain analysis involves inspecting the operation of the various stakeholders, any deal
between stakeholders in the supply chain, the influence among the stakeholders, and the
stakeholders’ relationship evolution. From the perspective of management, Rosales et al. [7]
have emphasized the importance of connections among the stakeholders, which potentially
augmented the supply chain value. Nevertheless, it is necessary to evaluate the potential
impacts of the industrial chain development, from upstream to downstream, on cost
problems and fishery management.

Thus, this study focuses on optimizing a fishing model for the offshore fishery supply
chain. On the one hand, the supply chain offers problems that cannot be solved by
using linear programming. There is a wide range of approximate methods to solve such
problems using various metaheuristic algorithms. For instance, the BA is inspired by the
echolocation behavior of bats when searching for prey in nature. The BA is widely used due
to its simplicity, ease of handling, and applicability to various problems [8]. The method
is effective for solving continuous optimization challenges [9]. In addition, nonlinear
programming is applied using Python. The study’s objectives are as follows:
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• To develop a model of supply chain based on profit maximization;
• To identify the crucial player in the offshore fishery supply chain;
• To provide decision-makers with a solution based on the determining parameters in

the offshore fishery supply chain.

This study contributes to the literature by developing an optimal model that enhances
the offshore fishery supply chain through an identification of the important player in the
supply chain. The result of this study demonstrates the effectiveness of the BA in tackling
the optimization challenges of the offshore fishery supply chain, providing valuable insights
for enhancing the industry’s efficiency and effectiveness. The managerial implications
include providing a solution for the decision-makers in Taiwan’s offshore fishery supply
chain.

The rest of the study is organized in five sections of which Section 2 presents the
literature review in relation to supply chain and the fishery supply chain model. Section 3
explains the materials and methods applied in the study. The results are discussed in
Section 4 which is divided into theoretical and managerial implications. Lastly, Section 5
concludes the study and presents the study’s limitations and a direction for future study.

1.1. Literature Review of Supply Chain

Supply chain has an extendable definition. Prior studies have associated the term with
a supplier providing products to a single buyer or multiple buyers [10,11]. A supply chain
is a chain of processes involving manufacturers, suppliers, retailers, and consumers, which
have an inventory system with multi-retailer with a continuous review function, that maxi-
mizes profits to optimize costs and inventory management [12–15]. Desiderio et al. [16]
provided a narrow perspective in describing the supply chain by limiting the range of
activities performed within a firm to produce a certain output that ends at the consumer.
From a broad perspective, supply chain is defined as a process that starts from the produc-
tion system of raw materials and moves along the linkages with other sectors and firms
engaged in trading, harvesting, processing, manufacturing, pricing, transporting, advertis-
ing, and others; the performance is enhanced by implementing logistical strategies [2,17].
Tliche et al. [4] suggested that these strategies include capacity utilization, reduced quantity
of inventory, increased flexibility, improved responsibility to customer needs, reduced
delivery times, and increased system and process transparency.

Further, Aragão et al. [5] claimed that a supply chain is the management of the entire
production process, starting from processing, distributing, and ultimately purchasing
activities by consumers. Supply chain includes a wide range of aspects such as risks, costs,
quantity, capability of transportation, and inventory [3,6,18]. Thus, there is consensus
among studies that the supply chain entails the processes that involve a firm’s operational
activities that are affecting and affected by the other stakeholders along the process.

1.2. Offshore Fishery Supply Chain Model

In the context of the offshore fishery industry, the supply chain begins with producers
or fishermen and terminates with end-buyers who sell to consumers. End-buyers include
retail outlets, that is locally owned fish markets to supermarket chains and restaurants.
The objective functions and indicators of the design of the fishery supply chain could
include a wide range of aspects, like risks, costs, quantity, capability of transportation, and
inventory, which might involve multiple levels with diverse products during different
periods [4,18,19]. Offshore fishery products are under the categorization of perishable
products that are subject to spoilage and are short-lived, causing a challenge in main-
taining the quality, and require a specific harvesting and distribution model [20,21]. For
example, the supply chain needs to consider a process of temperature control that is a
vital need of cold chain transportation and storage affecting an increase in energy costs.
Prior studies have attempted to develop different models with the integration of inventory
model, coordination between a single buyer and a single seller, and economic order quan-
tity [10,22]. Yang et al. [23] comprehensively studied the cost and energy consumption of
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perishable products in the production, transportation, and sales process and formulated
integrated marketing strategies on the basis of pricing, temperature, and quality control.
Bányai et al. [24] described a heuristic optimization mathematical model for sequential sup-
ply based on a flower pollination algorithm, focusing on aspects of sustainability, including
fuel consumption and emissions, including allocation and scheduling issues.

Studies have identified the potential incomes and costs in this supply chain model [25,26].
For instance, manufacturing costs such as packaging, freezing, labor costs, and transporta-
tion costs as well as both deterioration and maintenance costs would be considered in this
model. Moreover, Song et al. [26] contributed a network flow model based on integrating
problems of cold storage location as well as yield uncertainty and demand dynamics for
distant-water fishery supply chains. The complexity of the supply chain processes is de-
picted in Figure 1 that provides a visual overview to illustrate the complex relationships
in the network, containing the process of fishing in the fishing grounds, harvesting by
fishery vessels, and the process of transportation to manufacturing plants, through storage
in manufacturer/wholesaler cold storage and delivery to the final consumers/retailers
through these distribution channels.
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Compared with the traditional supply chain, the factors considered in the fishery
supply chain are different in terms of side of production (fishery production) and supply
(seasonal fish species). For this kind of perishable product industry, operation costs in the
supply chain of perishable aquatic products are rather high due to a dilemma in cold-chain
transport and storage. When allocating the capacity of cold storage and inventory storage
of manufacturers and fish-processing plants, decisions in offshore fishery industry chains
should be deliberated. Yang et al. [23] proposed a model by considering energy consump-
tion and the cost involved in the process of freezing, transportation, and trading. The
impacts of perishable products for energy consumption on strategies of replenishment and
management, deduction of costs, and improvement of resource utilization were analyzed.
Ma et al. [1] inferred that decision variables, such as depth, number of rows, level, and aisle,
of the storage capacity were affected by the harvesting effort, storage capacity of plants,
batch size, and productivity. Structure variables such as height and length were used to
allocate the cold storage capacity of the port. Moreover, Liu et al. [27] considered the opti-
mal freezing storage capacity of offshore fisheries under uncertain fishing (or production)
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conditions and proposed an optimization model for both the optimal refrigeration capacity
and maximal expected results.

This study assumes that refrigerated storage is only applicable to offshore fishing in
this model. Since different species of fish require different temperatures for cold storage and
condition of environments, according to the suitable temperature setting for most species,
cold storage with a fixed temperature setting has been used. Moreover, this study assumes
the accepted vessels are only those of local offshore fishing companies and considers the
set cost of racks, construction cost, and other influential costs as variables in the model.
Overall, the assumptions are compiled in Table 1.

1.3. Previous Studies

The BA has been known as a formidable optimization tool and is notable for its
productivity in the solution of law-dimensional functions, and a different range of appli-
cations [8]. For instance, the method was used to optimize the operating costs of thermal
power plants; however, it has been indicated that as the scale of the problem increases, the
capability of the BA might be diminished [8]. Thus, maintaining good performance with
the increasing complexity of the problem is a difficult task using the method. Nevertheless,
an ensemble BA was proposed to solve large-scale optimization problems and introduced
integration ideas.

Compared with other excellent swarm intelligence optimization algorithms, the supe-
riority of the BA is confirmed for solving large-scale optimization problems. There is an
improved version of the original BA, known as the fractional Lévy flying bat algorithm
in which the velocity is updated as the score calculation and the local search process
with random walks based on the Lévy distribution progress. Effectively, this change
improves the ability of the algorithm to get rid of local solutions. Furthermore, a novel
hybrid model was introduced, incorporating the Lagrangian Relaxation (LR) technique, a
metaheuristic method, the BA, and a practical Swarm Optimization method. This model
aims to address the complex long-term production scheduling problem arising from de-
terministic assumptions and various levels of uncertainties. Through its integration of
diverse optimization strategies, this hybrid model offers a near-optimal solution to the
aforementioned problem.

Table 1. Selection of literature review based on the assumptions and methods.

Reference Assumptions Methods

Macusi et al. [2]

The study assumes that shrimp aquaculture is facing
the need to increase production to meet growing food
demand, particularly in the Philippines where there
has been a shift from milkfish to prawn due to market
demand. It acknowledges the positive and negative
impacts of intensification on the environment and
socioeconomic aspects.

The study utilizes the PRISMA method to
review and assess the challenges faced by
the shrimp aquaculture industry,
including environmental issues like farm
management, marine pollution, disease
outbreaks, and social, economic, and
climate change impacts.

Flynn et al. [3]

The study assumes the existence of three types of
supply chain uncertainty, namely, micro-level,
meso-level, and macro-level, and hypothesizes that
these uncertainties coexist and interact with each other,
while also positing that supply chain integration,
centralization, formalization, and flatness influence
the dimensions of uncertainty, which are tested using
hierarchical regression analysis.

A hierarchical regression analysis based on
data collected from
339 manufacturing plants.
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Table 1. Cont.

Reference Assumptions Methods

Tliche et al. [4]

The study assumes that utilizing a downstream
demand inference (DDI) strategy with various
forecasting methods, including the proposed weighted
moving average, can effectively address information
disclosure issues in decentralized supply chains and
improve supply performance metrics, while
formalizing the manufacturer’s forecast
optimization problem.

A comprehensive approach
encompassing downstream demand
inference (DDI) strategy, various
forecasting methods, analysis of demand
processes, evaluation of supply
performance metrics, formalization of the
manufacturer’s forecast optimization
problem, and application of Newton’s
method for solution.

Aragão et al. [5]

The study assumes that greenhouse gas emissions are
crucial for climate change mitigation, and that
emission assessments are typically excluded from the
management of capture fisheries. It also assumes that
hake is an important food in Spain and aims to
estimate the carbon footprint of the hake seafood chain
by analyzing its extraction, transport, and distribution.

The analysis of the hake seafood chain in
Spain, which includes the extraction
(fishing), international transport, and
domestic distribution within Spanish
territory. The data is obtained from
various sources, such as vessels’ logbook
records for hake landings, the official
database of seafood trade flows, and the
Food Consumption Panel data.

Desiderio et al. [16]

The study assumes that achieving sustainable
production and consumption in food systems requires
considering the entire supply chain and the social
dimensions that are often overlooked compared to
environmental and economic aspects. It acknowledges
the lack of consensus and measurement methods
regarding social sustainability in food supply chains.

The study reviews 101 papers and gray
literature documents to identify the
current state of measuring social
sustainability using various tools and
indicators. The analysis focuses on five
stages of the food supply chain
(production, processing, wholesale, retail,
and consumer) and four stakeholders
(farmers, workers, consumers,
and society).

Karray and Martín-Herrán
[17]

This research assumes that the introduction of a store
brand in a supply chain with competing national
brands can have significant impacts on the profitability
of different supply chain members, particularly the
national brand manufacturers. The study focuses on
analyzing the effects of manufacturers’ decision timing
choices regarding pricing and advertising on the
competition between national and store brands.

A game-theoretic model is developed,
considering different decision
timing scenarios.

Despite the dimensionality and constraint issues, this study addresses some remedies.
Prior studies have used the BA and proved that the method was effective in achieving the
well-known constraint benchmark solution [28]. Yılmaz and Küçüksille [29] emphasized
the use of an enhanced BA and adopted the capability of the standard test functions and
constrained problems. Nevertheless, the different contexts where the BA was applied in-
cluded a control of energy consumption and tracking accuracy in robots [30], an exploration
of buried ore and mineral targets parameters [31], and an assessment of multi-classification
problem of Cardiotocography [32]. Meanwhile, the application of the algorithm in the
context of offshore fishery supply chain is scarce in the literature. Moreover, while it is true
that the models used in this study are nonlinear, the claim regarding the feasibility space
being a convex set and the existence of a global optimal solution is found in prior studies
that applied nonlinear models to find an optimal solution [1,28,29]. Although nonlinearity
typically complicates the analysis, certain techniques and mathematical frameworks can be
employed to verify convexity properties and establish the existence of global optima.

In sum, these studies resulted in proving that the enhanced BA is a superior method,
as illustrated in Figure 2.
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2. Materials and Methods

This section reviews the methodology used in prior studies, explains the BA, its struc-
ture, formulation of the optimization problem, and disaggregates inventory constraints.

2.1. Review Methodology

The kind of coordinated relationship involving strategies, relationships, and activities
in the supply chain integrates diverse participants from the chain, which include suppliers,
manufacturers, distributors, and retailers, to achieve efficiency and deliver value to cus-
tomers. The methodology of systematic literature review includes (a) finding the definition
of the study’s topic; (b) searching for the origins of literature such as Scopus and Web or
Google Scholar, then narrowing the number of articles while identifying the article’s main
concept; (c) defining the methodology of the selected articles; (d) describing the results of
the optimization problems in the articles; and (e) indicating the deficiencies and bottlenecks
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of the current study. For defining the relevant keywords, it is crucial to review articles in
diverse fields of supply chain management and aim for the articles with the most similar
concept. The keywords that are used to search for the articles based on the titles, abstracts,
and keyword lists in the internet database include “supply chain model” “optimizing
model”, and “optimal bat algorithm”. The literature introduces a wide range of methods
used to solve optimizing problems under a single vessel considering the offshore fishery
supply chain.

2.2. Bat Algorithm

Metaheuristic algorithms such as Genetic Algorithm, Particle Swarm Optimization,
and Ant Colony Optimization have become powerful methods for solving many tough
optimization problems, whose characteristics are described in Table 2.

Table 2. Characteristics of different metaheuristic algorithms.

Metaheuristic Algorithms Characteristics

Bat Algorithm [9,33]

• The BA replicates how bats would act if they were randomly seeking prey, in a manner
inspired by the way that they use echolocation.

• Bats utilize echolocation to find their prey and travel. Similar to this, each bat in the BA
stands for a potential solution, and the frequency and loudness of the bats indicate
how good the solution is.

• Bats use ultrasonic pulses to exchange information with one another and to improve
their communication by varying their frequency and loudness.

• In order to explore the search space, the BA uses local and global search tactics. It also
adjusts the frequency and loudness of bats to go towards the best solution.

Genetic Algorithm [34]

• Natural selection and evolution are the sources of the Genetic Algorithm’s inspiration.
It reflects how evolution works in nature, where the strongest survive.

• Each member of the population used by the Genetic Algorithm represents a potential
remedy for the issue.

• It employs genetic operators including selection, crossover, and mutation to produce
novel progeny and raise population standards across many generations.

• Positive qualities are more likely to spread through time as a result of selection for
reproduction favoring individuals with greater fitness (i.e., those that are closer to the
ideal solution).

Particle Swarm Optimization [35]

• Swarm optimization is based on how a collection of people (particles) behave
collectively in a search space.

• This algorithm mimics the actions of a swarm in which each particle represents a
potential answer.

• Particles move around the search area and modify their placements depending on
their own experience and the experience of nearby particles in Swarm Optimization
methods like Particle Swarm Optimization.

• Particle Swarm Optimization seeks to converge towards the optimal solution by
balancing exploration (global search) and exploitation (local search) of the
search space.

• The movement of particles is driven by their current position, velocity, and the best
solution discovered by any particle in the swarm.

Ant Colony Optimization [36]

• The foraging habits of actual ants looking for food served as the basis for Ant
Colony Optimization.

• Ant Colony Optimization makes use of an artificial ant colony, where each ant
represents a potential route to a solution.

• The pheromone concentrations have an impact on the likelihood that other ants will
choose the pathways that ants leave behind as pheromone trails on the terrain
they investigate.

• The algorithm employs positive feedback, where ants reinforce the path with higher
pheromone concentrations when they find better solutions.

• Ant Colony Optimization aims to find the shortest path or optimal solution by
exploiting the accumulated pheromone information and balancing exploration and
exploitation of the search space.
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According to Vu-Huu et al. [37], one of the key advantages of the BA is its robust
capability for auto-zooming. As the search process approaches global optimality, the pulse
emission rates and variations in loudness intensify, allowing the BA to focus on promising
areas with potential solutions. This auto-zooming ability gives the BA a competitive
edge over other metaheuristic approaches. Additionally, the BA differs from many other
metaheuristics in terms of parameter control. Instead of using fixed parameters determined
by the algorithm, the BA adjusts its parameters based on the values of loudness and pulse
emission rates. This adaptive parameter control enables the BA to automatically switch
from exploration to exploitation when optimal results are achieved.

In comparison to Genetic Algorithm, Swarm Optimization, and Ant Colony Opti-
mization, the BA is especially helpful in discovering new solutions because of its ability to
balance exploration and exploitation of the search space, adaptability, diversity of solutions,
and capability to handle constraints. Utilizing local and global search tactics for exploita-
tion, the BA strikes a balance by adjusting frequency and loudness to explore uncharted
territory. Due to its dynamic alterations made possible by its adaptive processes, it is
able to adapt to the shifting nature of the problems it faces. The algorithm’s adaptability
and unpredictability encourage a variety of solutions, delaying convergence and allowing
for more thorough investigation. Furthermore, because it can manage constraints well,
the BA is a good choice for restricted optimization issues. However, the selection of an
algorithm should be based on the features of the issue, the resources at hand, and em-
pirical analyses utilizing a variety of performance measures to evaluate performance in
various circumstances.

Among the methods, the BA was introduced based on the echolocation ability guiding
the foraging behavior of miniature bats [38]. By observing the behavior and characteristics
of microbats, the used idealized rules in the BA as a method include:

• All bats use echolocation to sense distance and xi, the location of a bat, and encode the
position as a solution to the optimization problem under consideration.

• Bats fly with velocity vi at position xi with a frequency fmin, varying wavelength λ and
loudness A0 to search for prey randomly. They automatically adjust the wavelength (or
frequency) of their emitted pulses and regularly the rate of pulse emission r ∈ [0, 1],
based on the proximity of the prey source.

• The loudness ranges from a large (positive) A0 to a minimum value (constant) Amin as
assumed in this study.

2.3. Bat Algorithm Structure

a. Initialization of bat population: The search space is assumed as a region that contains
many preys in it. The algorithm attempts to find the high-quality or best position
in the search space. Since the locations of the prey source are unknown, the initial
population is randomly generated from real-valued vectors with dimension d and
number N, by taking into account lower and upper boundaries. Then, the prey source
located within the population are evaluated.

xij = xmin + ϕ(xmax − xmin) (1)

where i = 1, 2, . . ., N, j = 1, 2, . . ., d, and xmax and xmin are upper and lower boundaries for
dimension j, respectively. ϕ is a randomly generated value ranging from 0 to 1.

b. Generation of frequency, velocity, and new solution: The movements could be influ-
enced by the evaluated fitness values of all bats. For each bat (i), its position (xi) and
velocity (vi) in a d-dimensional search space should be defined. xi and vi should be
updated subsequently in the iterative process. The rules for updating the position
and velocities of a bat (i) are given below:

fi = fmin + ( fmax − fmin)β, (2)

vt
i = vt−1

i +
(
xt

i − x∗
)

fi, (3)
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vt
i x

t
i = xt−1

i + vt
i (4)

where β ∈ [0,1] is a random vector derived from a uniform distribution. Here, x∗ is the
current global best location (solution), which is determined after comparing all results
among n bats. As the product λi fi is the velocity increment, this study uses fi (or λi) to
adjust the velocity while fixing the other factor λi.

c. Local search capability of the algorithm: In order to improve the local search capability
of the algorithm, once a solution is selected among the current best solution, a new
solution will be generated locally using a random fly for each bat.

xnew = xold + εAt, (5)

where xold is an effective solution chosen by some mechanism (e.g., roulette wheel), At is
average loudness value of all bats at tth time step, and ε is generated randomly ranging
from −1 to 1.

d. Loudness and pulse emission rate: The loudness Ai and the rate ri of pulse emission
have to be updated according to the iteration processing. When a bat approaches its prey,
the loudness A and the pulse emission rate r will be updated. Pulse emission rate r is
increased as loudness A is decreased with respect to Equations (6) and (7) respectively.

At+1
i = αAt

i , (6)

rt+1
i = r0

i [1− exp(−γt)], (7)

where α and γ are constants. For any value, 0 < α < 1 and γ > 0, where α and γ are constants.
r0

i is the initial pulse emission rate value of the tth bat.
The first step of the BA is the initialization numbers of bats, and each bat is determined

by initial position (solution), random pulse rate, loudness, and frequency. During the
iteration, all bats will shift from the initial position to the best position, that is, the global
best solution. After movements, if any bat finds a better solution, the bat will update the
pulse emission rate and loudness. During the flight iteration process, the best solution will
be updated.

These processes will stop until the termination criteria are reached. A pseudo-code
developed to solve the model optimization problem with the BA, is shown in Figure 3.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 11 of 21 
 

 

 

Figure 3. Pseudo-code of bat algorithm. 

2.4. Formulation of the Optimization Problem 

The composite optimization model is developed aiming to maximize the net profit of 

the system, which comes from the sum of the net profit related to the supply chain of 

manufacturing and logistics. The mathematical formulations of the proposed model are 

listed in detail below. All the symbols of the variables are also summarized, including the 

decision variables involved in the optimization process of the proposed model. According 

to the integrated logistics system structure, the integrated objective function (Ω) of the 

proposed model contains an objective function whose goal is to maximize the net profit 

of the manufacturing chain. Therefore, this study constructs a mathematical form of the 

proposed compound objective function, and the maximum profit is measured by subtract-

ing the corresponding FC from the corresponding revenue, given by the following equa-

tion: 

𝑀𝑎𝑥 𝛺 = 𝐹𝑅 − 𝐹𝐶 = 𝐹𝑅 − (𝐹𝑃𝐶 + 𝐹𝑀𝐶 + 𝐹𝐼𝐶 + 𝐹𝑇𝐶 + 𝐹𝐿𝐶 + 𝑉𝐶)  (8) 

where FR = the total amount revenue; FC = the total amount of cost; FPC = the total 

amount of cost of acquiring the materials necessary for manufacturing; FMC = the total 

amount of cost of manufacturing; FIC = the total cost of all inventory held in stock; FTC = 

the total cost of transportation; FLC = the total amount of cost for labor; and VC = the total 

amount of cost of vessel operations. Equation (9) shows the FC associated with an existing 

manufacturing chain is composed of six items which are the corresponding FPC, FMC, 

FIC, FTC, FLC, and aggregate operation cost of vessels. The components of the mathemat-

ical form shown in Equation (9) are further expressed as presented below: 

                FR = ∑ {[∑ ∑ ∑ ∑ 𝑟𝑚𝑖,𝑚𝑗
𝑟𝑎𝑤 (𝑡) × 𝑊𝑚𝑖,𝑚𝑗(𝑡)

∀𝑚𝑗∀𝑚𝑖

3

𝑗=𝑗+1

2

𝑖=1

]

∀𝑡

+ [∑ ∑ ∑ ∑ 𝑟𝑚𝑘,𝑚𝑙(𝑡) × 𝑊𝑚𝑘,𝑚𝑙(𝑡)

∀𝑙∀𝑘

5

𝑙=4

4

𝑘=2

]}                                    

(9) 

where the upper part represents the aggregate profit obtained from the raw fish material 

flow 𝑊𝑚𝑖,𝑚𝑗(𝑡) supplied by the layer of raw material supply to the layer of manufacturing 

and wholesalers; the part above the formulation introduces the aggregate profit from the 

physical flow (processes of manufactured product) in any given distribution channel. 

Figure 3. Pseudo-code of bat algorithm.



J. Mar. Sci. Eng. 2023, 11, 1593 11 of 20

2.4. Formulation of the Optimization Problem

The composite optimization model is developed aiming to maximize the net profit
of the system, which comes from the sum of the net profit related to the supply chain
of manufacturing and logistics. The mathematical formulations of the proposed model
are listed in detail below. All the symbols of the variables are also summarized, includ-
ing the decision variables involved in the optimization process of the proposed model.
According to the integrated logistics system structure, the integrated objective function
(Ω) of the proposed model contains an objective function whose goal is to maximize the
net profit of the manufacturing chain. Therefore, this study constructs a mathematical
form of the proposed compound objective function, and the maximum profit is mea-
sured by subtracting the corresponding FC from the corresponding revenue, given by the
following equation:

Max Ω = FR− FC = FR− (FPC + FMC + FIC + FTC + FLC + VC) (8)

where FR = the total amount revenue; FC = the total amount of cost; FPC = the total amount
of cost of acquiring the materials necessary for manufacturing; FMC = the total amount
of cost of manufacturing; FIC = the total cost of all inventory held in stock; FTC = the
total cost of transportation; FLC = the total amount of cost for labor; and VC = the total
amount of cost of vessel operations. Equation (9) shows the FC associated with an existing
manufacturing chain is composed of six items which are the corresponding FPC, FMC, FIC,
FTC, FLC, and aggregate operation cost of vessels. The components of the mathematical
form shown in Equation (9) are further expressed as presented below:

FR = ∑
∀t

{[
2

∑
i=1

3

∑
j=j+1

∑
∀mi

∑
∀mj

rraw
mi,mj(t)×Wmi,mj(t)

]

+

[
4

∑
k=2

5

∑
l=4

∑
∀k

∑
∀l

rmk,ml(t)×Wmk,ml(t)

]} (9)

where the upper part represents the aggregate profit obtained from the raw fish material
flow Wmi,mj(t) supplied by the layer of raw material supply to the layer of manufacturing
and wholesalers; the part above the formulation introduces the aggregate profit from the
physical flow (processes of manufactured product) in any given distribution channel.

FPC = ∑
∀t

{[
2

∑
i=1

3

∑
j=i+1

∑
∀mi

∑
∀mj

cproraw

mi,mj (t)×Wmi,mj(t)

]
+

[
3

∑
k=2

∑
∀m4

∑
∀mk

cpro
mk,ml(t)×Wmk,m4(t)

]}
(10)

where the aggregate cost of obtained material procurement (FPC) involves two components:
(a) the initial cost of raw materials harvested in the layer of raw material supply and (b)
the procurement cost generated from the layer of manufacturing for ordering the raw
materials from the raw material supplies of the given manufacturing chain, presented in
Equation (10).

FMC = ∑
∀t

{
4

∑
i=2

∑
∀mi

[
cFz

mi(t)×
(

Ψinv
mi

raw
(t) + Ψinv

mi (t)
)
+ cDEP

mi (t) + cMT
mi (t)

]
+

[
∑
∀m3

cman
m3 (t)×Uman

m3 (t)

]} (11)

where the aggregate manufacturing cost (FMC) is composed of three terms: (a) the freeze
cost in the layer of raw materials and manufacturing processes in any given distribution
channel; (b) the aggregate manufacturing cost for the canned and the processed foods
obtained from flows of the manufacturing processes; and (c) the aggregate maintenance
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and depreciation costs of equipment in the layer of manufacturing processes, as presented
in Equation (11).

FIC = ∑
∀t

{[
3

∑
i=1

∑
∀mi

cinvraw

mi (t)×Ψinvraw

mi (t)

]
+

[
4

∑
i=2

∑
∀mj

cinv
mj (t)×Ψinv

mj (t)

]}
(12)

where the aggregate inventory cost (FIC) of the given manufacturing chain involves two
components: (a) the inventory cost of the raw materials utilized in both layers of wholesalers
and manufacturing processes and (b) the inventory cost of the manufactured products in
layers of manufacturing processes and wholesalers in the given manufacturing chain, as
presented in Equation (12).

FTC = ∑
∀t

{[
∑
i=1

3

∑
j=i+1

∑
∀mi

∑
∀mj

ctp
mi,mj(t)×Wtp

mi,mj(t)

]
+

[
4

∑
k=2

5

∑
l=k+1

∑
∀mk

∑
∀ml

ctp
mi,mj(t)×Wtp

mi,mj(t)

]}
(13)

where the aggregate transportation cost (FTC) of the manufacturing chain is composed of
the two physical flows: (a) the raw material (Ψtp

mi,mj(t)) transported from the layers of raw

material to manufacturing plants and (b) the products (Ψtp
mi,mj(t)) transported in any given

distribution channels of the manufacturing chain, as presented in Equation (13).

FLC = ∑
∀t

{
4

∑
i=1

∑
∀mi

clab
mi (t)×Qlab

mi (t)

}
(14)

where the aggregate labor costs (FLC) were generated from every process of harvesting,
product processing, manufacturing, and in any given distribution channel, as presented in
Equation (14).

VC =
3

∑
i=1

(αi + β)·hpi·hr
L ·(1− σ)·KLi (15)

where the operation costs of vessel (VC) are generated from any activities that occurred on
the vessel. The determined factor was the fuel that supported power for dynamic. There
are three types of fishery vessels in accordance with government regulations. The first type
of vessel is supported by pure diesel, the second type of vessel is supported by a mixture
of fuel oil and diesel oil, and the last type of vessel is supported by pure fuel oil. The
government regulated the standard of the amount of oil purchased that the horsepower
of the motor on the fishing vessel corresponded to the tonnage and the corresponding
calculation ratio was proposed. For the main and auxiliary engine oil, the corresponding
ratios (αi + β) are proposed; the amount of oil purchased is calculated by the number
of horsepower (hpi) and operating hours (hr) corresponding to the tonnage purchased,
and the number of liters (L) is a unit converted to kiloliters, and subsidies (σ) offered by
government, in contrast to the published daily oil price (KLi), are depicted in kiloliters.

2.5. Disaggregate Inventory Constraints

Inventory constraints defined the connections of the inbound and outbound logistics
flows as well as the corresponding storage quantities associated with the members in
the chain.

(1) For raw material suppliers (mc-layer1),

0 ≤Winvraw

m1 (k) = Winvraw

m1 (k− 1) + Wraw
m1 (k)−∑

∀m2

Wm1,m2(k) ≤ Ψinvraw

m1 ∀(m1, k) (16)

There are three parts of raw material supplier equation and include the time-varying
inventory amount (Winvraw

m1 (k)) in a given time interval k that is equal to the sum of the cor-
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responding inventory remaining amount in the previous time interval k− 1 (Winvraw

m1 (k− 1))
and the corresponding time-varying amount generated in the given time interval k (Wraw

m1 (k)),
subtracting the total outbound from raw material flow ( ∑

∀m2
Qm1,m2(k)) transported to the

layer of manufacturing in the given time interval k. In addition, Winvraw

m1 (k) is subjected to
upper and lower bounds, i.e., the corresponding storage capacity (Ψinvraw

m1 ) and 0. Therefore,
Equation (16) is proposed for the disaggregate inventory constraint associated with every
raw material supplier (m1) in the given supply chain.

(2) For wholesalers (mc-layers 2),

0 ≤Winvraw

m2 (k) = Winvraw

m2 (k− 1) + ∑
∀m1

Wraw
m1,m2(k)− ∑

∀m3
Winvraw

m2,m3(k)

≤ Ψinvraw

m2 ∀(m2, k)
(17)

0 ≤Winv
m2 (k) = Winv

m2 (k− 1) + ∑
∀m1

Wrawpd

m1,m2(k)−
5

∑
i=4

∑
∀mi

Winv
m2,mi(k)

≤ Ψinv
m2 ∀(m2, k)

(18)

The disaggregate inventory (Winv
m2 (k)) was varied with time, and amounts were con-

strained by upper and lower bound with given wholesalers. There was a difference between
these two types of inventories. When raw materials (Wraw

m1,m2(k)) moved to the layer of

wholesaler, a part of raw materials would be transformed to products (Wrawpd

m1,m2(k)) for
selling directly to retailers and customers via processing of repackaging, as presented
in Equation (18). Then, the other part of raw materials (Wraw

m1,m2(k)) would be similarly
transported to the manufacturer as raw materials, as presented in Equation (17).

(3) For product manufacturers (mc-layer 3),

0 ≤Winvraw

m3 (k) = Winvraw

m3 (k− 1) +
2

∑
i=1

∑
∀m3

Winvraw

mi,m3 (k)−Wman
m3 (k) ≤ Ψinvraw

m3 ∀(m3, k) (19)

0 ≤Winv
m3 (k) = Winv

m3 (k− 1) + Wman
m3 (k)−

5

∑
i=4

∑
∀mi

Winv
m3,mi(k)

≤ Ψinv
m3 ∀(m3, k)

(20)

The amounts of time-varying inventory can be divided into two parts: raw mate-
rials (Winvraw

m3 (k)) and manufacturer products (Winv
m3 (k)), and the rationales are applied

in Equations (17) and (18). The variation of channel distribution transformed from raw
materials to products should be considered. The raw materials (Winvraw

mi,m3 (k) ) from raw mate-
rial suppliers and wholesalers could have been processed as fishery products (Wman

m3 (k)), the
finished products can be transferred to retailers and customers as presented in
Equations (19) and (20).

(4) For retailers (mc-layer 4),

0 ≤Winv
m4 (k) = Winv

m4 (k− 1) +
3

∑
i=2

∑
∀mi

Winv
mi,m4(k)−Winv

m4,m5(k)

≤ Ψinv
m4 ∀(m4, k)

(21)

Based on the same rationale, the time-varying inventory (Winv
m4 (k)) is subjected to the

upper and lower bounds with the amounts of inventory (Ψinv
m4 ) with any given retailers

in the chain. There were three parts shown in this equation (Equation (21)); the first
part defined the remaining inventory (Winv

m4 (k− 1)); the second part presented products
obtained from wholesalers and manufacturers transported to the layer of retailers; and the
last part presented the product transferred to the customers.
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3. Experimental and Numerical Results

This section presents the experimental analysis and design conducted using the BA
to solve the optimization problem in the perishable product industry. To illustrate the
applicability of the method, a simplified numerical study was implemented. This study
constructed an integrated logistic network based on fishery activities in the north of Tai-
wan including the logistics distribution channels. After extracting related information,
the estimated data input such as parameters and constraints of the model, and the core
parameters, cost, and revenue involved in the whole processes in the supply chain were
used to formulate corresponding supply chain management issues. The numerical results
of the optimal solution were determined by using the algorithm, which was then compared
with the operating performance of the optimized approach. The significant procedures of
the numerical study and the thorough details of the corresponding results are presented in
this section.

3.1. Parameter Setting

The estimation of relevant parameters was acquired through the interview data. Due
to the difficulty in obtaining some confidential government information, it is hard to
estimate related parameters directly from the statistical data of the information, such as
unit operating costs and revenue. To tackle such a difficulty, this study incorporates the
Fisheries Agency and the Department of Environmental Biology and Fishery Sciences of
National Taiwan Ocean University for assistance by interviewing the experts. This study
carried out one round of interviews using a purposeful sampling technique of professors
from National Taiwan Ocean University. The representation and reliability of experts
were based on their extensive years of research experience (a minimum of 10 years) in
supply chain management and logistics and the number of published research papers in
SSCI/SCI journals. The experts were approached in person, and thus, the interviews were
conducted in each of the expert’s office rooms. Each interview took up to one hour. The
first 15 min before the interview was focused on introducing and explaining the research.
The rest 45 min were concentrated on identifying the relevant parameters needed for the
research. Overall, the collection timespan was three weeks due to the different availability
of the experts. Thus, this study uses a qualitative method by employing a complex cost
function with multiple restrictions to define the relation and analysis sensitivity of quantity
and price. The interview was focused on the potential operational performance (e.g., the
probable range of operating revenues and costs) and the corresponding logistic constraints
involving cold chain technology such as the capacity of the facility, availability of fleet
size, and frequency of vehicle scheduling. The collected data through the interview were
analyzed and processed to generate the corresponding upper and lower bounds of cost
and revenue.

The information was analyzed using a uniform distribution, and the ranges were
respectively defined by the estimated upper and lower bounds. Then, the corresponding
unit revenues and costs were associated with each chain member in the proposed model.
The survey data herein was used to set limits on the corresponding parameters with the
upper and lower bounds by uniform distribution functions. The estimated intervals of the
corresponding revenue are summarized in Table 3, whereas the corresponding unit ranges
and costs involved in the manufacturing supply chain are summarized in Table 4. The
other main parameters were prearranged depending on the data previously mentioned, as
shown in Table 5.
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Table 3. Estimated boundaries of unit revenues.

Layer-Mc Parameter
Unit Revenues (kg/US)

Lower Bound Upper Bound

m1→ (raw materials)→ m2 rraw
m1,m2(t) 2.74 4.79

m1→ (raw materials)→ m3 rraw
m1,m3(t) 2.74 4.79

m2→ (raw materials)→ m3 rraw
m2,m3(t) 1.35 2.33

m2→ (products)→ m4 rm2,m4(t) 2.39 5.17
m2→ (products)→ m5 rm2,m5(t) 4.24 5.46
m3→ (products)→ m4 rm3,m4(t) 1.94 3.35
m3→ (products)→ m5 rm3,m5(t) 2.43 4.2
m4→ (products)→ m5 rm4,m5(t) 4.26 6.47

Table 4. Estimated boundaries of unit costs associated with the manufacturing supply chain.

Layer-Mc Parameter
Unit Revenues (kg/US)

Lower Bound Upper Bound

m1: raw material suppliers cinvraw

m1 (t) 0.3 0.5
clab

m1(t) -- 30
m2: wholesalers cproraw

m1,m2(t) 2.37 4.16
cFz

m2(t) 0.88 1.12
cDEP

m2 (t) -- 100
cMT

m2 (t) -- 250
cinvraw

m2 (t) 0.3 0.5
cinv

m2 (t) 0.3 0.5
ctp

m1,m2(t) 0.25 0.5
clab

m2(t) -- 25
m3: manufacturer cproraw

m1,m3(t) 2.38 4.16

cproraw

m2,m3(t) 1.35 2.33
cman

m3 (t) -- 0.94
cFz

m3(t) 0.88 1.12
cDEP

m3 (t) -- 1000
cMT

m3 (t) -- 500
cinvraw

m3 (t) 0.3 0.5
cinv

m3 (t) 0.38 0.61
ctp

m1,m3(t) 0.25 0.5

ctp
m2,m3(t) 0.25 0.5
clab

m2(t) -- 30
m4: retailers cpro

m2,m4(t) 2.72 4.14
cpro

m3,m4(t) 2.74 4.79
cFz

m4(t) 0.88 1.12
cDEP

m4 (t) -- 100
cMT

m4 (t) -- 100
cinv

m4 (t) 0.5 1.00
ctp

m2,m4(t) 0.35 0.6

ctp
m3,m4(t) 0.35 0.6
clab

m4(t) -- 15
m5: customers ctp

m2,m5(t) 0.35 0.6

ctp
m3,m5(t) 0.35 0.6

ctp
m5,m5(t) 0.35 0.6
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Table 5. Summary of primary related parameter.

1. Inventory capacity

Ψinvraw

m1 Ψinvraw

m2 Ψinv
m2 Ψinvraw

m3 Ψinv
m3 Ψinv

m4
5000 2000 1000 2000 3000 1000

2. Corresponding gas rate
α1 α2 α3 β σ

0.18 0.3 0.18 0.18 0.14
3. Corresponding rate of time and hour hr1 = 72

4. Corresponding capacity of gas

L KL1 KL2 KL3
1000 596.43 466.23 589.77

1 in accordance with governmental regulation, the maximum fuel consumption was limited to 72 h.

3.2. Analysis of Numerical Results

The programming approach in this study was processed to generate the result through
Python with modified code. This study evaluated the performance of the proposed method
by comparing the result and efficiency with nonlinear programming and the BA, respec-
tively, using the given data and parameters. The nonlinear programming and the BA
were implemented by using the programming language, Python. Despite using the same
programming language, the former used the approach of optimizing solutions, and the
latter adopted the approach of the BA in Python.

Accordingly, this study has obtained the arithmetic results as summarized in Table 6.
The optimized solution was compared with the one generated by the BA, which leans
toward the optimized solution. Moreover, the results from the BA may change as the
fitness generated randomly would not be closest to the best solution during the iterations
in every execution. The starting positions and movement of the bats are different at each
time of execution, and in this situation, this study proposes a comparison of the BA and
optimized solution, and the comparison of the best BA and the optimized solution is shown
in Table 6.

Table 6. Performance evaluation of approach using the proposed model.

Evaluation Criterion
Net Profit (USD)Operation Alternative

Non-linear programming 41,850
Bat Algorithm approach (80 bats) 41,515

3.3. Sensitivity Analysis of Cost Allocation

Cost is crucial to the aggregate profit that directly affects the structure between revenue
and cost. For suppliers to understand how the costs vary with overall profit, it was
analyzed in a commodity-oriented manner, and the commodity types were divided into
raw materials and processed products in this section. The sensitivity analysis was employed
with adjustment to parameters, and the inventory limits of manufacturers and wholesalers
were varied to observe the effects on aggregate profit. The corresponding results were
listed in Scene 1 and Scene 2, as can be seen in Table 7.

Table 7. Performance evaluation of approach with varying inventory limits of wholesalers
and manufacturers.

Evaluation Criterion
Net Profit (USD)Operation Alternative

Scene 1 (Raise inventory of m2) 66,290
Scene 2 (Raise inventory of m3) 68,240

The optimal method 41,515
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The results show that in Scene 1 with a raised inventory limit of wholesalers, the net
profit is USD 66,290, while in Scene 2 with a raised inventory limit of manufacturers, the
net profit is USD 68,240. Table 8 shows the comparison of both scenes based on revenues
and costs to identify the profit.

Table 8. Composition of profit with varying inventory limits of wholesalers and manufacturers.

Scene 1 Scene 2
Raise Inventory of m2 (USD) Raise Inventory of m3 (USD)

Aggregate revenue 157,940 168,230
Aggregate cost

Procurement cost 34,550 35,940
Manufactured cost 22,220 26,340

Inventory cost 14,830 16,160
Transportation cost 16,300 17,800

Aggregate profit 66,290 68,240

4. Discussion

This section presents a discussion of the results divided into theoretical and manage-
rial implications.

4.1. Theoretical Implication

Based on the results in Table 8, there is a difference in aggregate profit when whole-
salers (m2) and manufacturers (m3) are compared. The results imply that aggregate profit is
optimized by raising the inventory of the manufacturers (m3) to USD 68,240 in comparison
to raising that of the wholesalers (m2) to USD 66,290. This implies that among the involved
players—raw material suppliers, wholesalers, retailers, consumers, and manufacturers—
that influence the overall supply chain performance, the manufacturers play a significant
role in improving the model in terms of yielding optimal profits. In general, the recognized
relationship between manufacturers and the overall supply chain has been discussed with
a positive tone in other studies where manufacturing firms can use supply chain practices
to improve supply chain collaboration and performance, and a manufacturer’s degree of
relational embeddedness is a crucial factor in its decision to establish a direct connection
between its suppliers and customers. Additionally, the manufacturer’s reported ability to
steer and manage this relationship underscores its role as a central player in orchestrating
interactions within the supply chain network [14,15]. The manufacturer’s role in the supply
chain is emphasized in product packing, cold-storage, labor cost, transportation and dete-
rioration, and maintenance [26]. However, this study suggests that the roles of the other
stakeholders are not to be underestimated. For instance, there is a sensitive line between
the role of manufacturers and that of retailers that effectively disturbs the manufacturers’
financial gain subject to aspects such as the retailer’s product rebranding, profitability anal-
ysis, and profit-oriented strategies [17]. Nevertheless, this study highlights the importance
of strengthening the manufacturers’ role throughout the supply chain processes to enhance
the chain’s overall performance.

4.2. Managerial Implication

Overall, the findings show that each parameter significantly impacts the numerical
outcome, which may then be used to inform prospective managerial suggestions for Tai-
wan’s relevant government institutions or agencies that have expertise in dealing with
the fishing industry’s supply chain. However, the inventory limit is a critical determi-
nant affecting the performance of the model in this study. Specifically, the results reveal
that profit maximization is sensitively influenced by the changes in setting the inventory
limit, which interacts with the revenue and cost. After raising the inventory limit of both
wholesalers and manufacturer, the results show that the rise in the inventory limit of the
manufacturer yields a higher profit. In other words, by raising the inventory limit of the
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manufacturer from the original quantity to twice, the structure of aggregate profit becomes
observable. Thus, in practice, this study suggests decision-makers at the manufacturer’s
end perform proper inventory management so that consumers can place their orders with
confidence, by optimizing the stock levels and minimizing unused or perished fishery
products; hence, the sales increase to boost the profits to the maximum levels, which allows
costs to be reduced and revenue to be increased. The corresponding numerical results
indicate that the profit in this model potentially increases significantly with an increasing
quantity of processed products from the manufacturer. Therefore, this study suggests that
decision-makers concentrate on allocating quantity of fisheries while taking into account
how revenue and cost impact the model. Nevertheless, the model is adjustable in response
to different conditions.

4.3. Political and Academic Implications

Based on the findings, the political implications can be highlighted on the policy for-
mulation and industry regulation through (1) the potential to influence policy formulation
and regulations related to the fishing industry’s supply chain. Specifically, the identifica-
tion of manufacturers’ significant role in optimizing profits suggests that policymakers
and relevant government institutions need to consider targeted strategies and incentives
to support manufacturers within the supply chain; (2) inter-stakeholder collaborations,
including raw material suppliers, wholesalers, retailers, consumers, and manufacturers;
and (3) sustainable resource management within the fishing industry’s supply chain to
prevent overfishing, reduce waste, and promote responsible sourcing.

Furthermore, this study offers several academic implications by (1) emphasizing
the advancement of supply chain theory through a comprehensive understanding of
each stakeholder’s role in achieving optimal outcomes; (2) contrasting prior studies to
critically analyze the contextual factors that shape differing perspectives on manufacturers’
contributions to supply chain performance; and (3) model flexibility and applicability might
be explored by the academics to be tailored to different industry contexts, considering
factors like revenue, cost, and stakeholder interactions.

5. Conclusions

Due to the dominance of Taiwan’s maritime location, both deep-sea fishery and
offshore fishery sectors have prospered. However, the issue of offshore fisheries is rarely
researched due to the complexity arising from fish species and harvest seasons, which
significantly complicates the proposed profit model structure in this study. The primary
objective of this research is to develop an optimized model specifically tailored for offshore
fisheries. The study takes into account the basic yet essential conditions to facilitate future
research expansion. An integrated logistics model has been proposed to coordinate the flow
of raw materials and processed products within the logistics framework of the offshore
fishery environment in Taiwan. By determining the key factors and associated operational
conditions in the proposed integrated logistics system, a comprehensive objective function
and corresponding constraints have been formulated. The recently proposed heuristic
algorithm, BA, known for its efficiency and adaptability across various problem types, is
employed in this study. The results obtained using the BA show a slight deviation from the
best solution, providing evidence of its proximity to optimality. The numerical results of the
sensitivity analysis, focusing on raising the inventory limit, indicate that a higher inventory
limit for manufacturers can generate increased profits, enabling suppliers to supply fishery
materials to more lucrative trading partners. In this study, the profit performance of
manufacturers and wholesalers plays a crucial role. Furthermore, this research is based on
a small-scale and basic revenue and cost model, but the objective and constraints would
become more complex when considering varying circumstances in the logistic system.
Future research can utilize this model to expand its scale and incorporate practical cases
for further development. Moreover, the model is limited to several key players and can
be extended by involving the role of distributor and fish collectors from the fishermen. In
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addition, the model is examined based on profit maximization with two examined scenes
involving the role of wholesalers and manufacturers in raising the inventory limit. Future
studies can examine more scenes by involving more players and decision-makers in the
scenarios. Moreover, the future study should consider other aspects that are more crucial
to develop sustainability rather than focusing on the profit maximization as a sole goal. At
last, this study is focused on the offshore fishery industry in Taiwan which is unique to
specific characteristics due to the geographic location of the country. Thus, future studies
might make a model comparison of the different regions with their unique characteristics.
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