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Abstract: The present study utilised a geometric mean model in which sea surface temperature,
oxygen, and sea surface salinity were used to predict the effects of climate change on the habitats of
mature albacore tuna in the Indian Ocean under multiple representative concentration pathway (RCP)
scenarios. Data pertaining to the albacore tuna fishing conducted by Taiwanese longline fisheries
during the October–March period in 1998–2016 were analysed. The fishery data comprised fishing
location (latitude and longitude), fishing effort (number of hooks used), number of catches, fishing
time (month and year), and fish weight. Nominal catch per unit effort data were standardised to
mitigate the potential effects of temporal and spatial factors in causing bias and overestimation. The
Habitat Suitability Index (HSI) scores of potential habitats for mature albacore in the Indian Ocean are
predicted to change considerably in response to varying levels of predicted climate change. Under
projected warm climate conditions (RCP 8.5), the stratification of water is predicted to cause low HSI
areas to expand and potential habitats for mature albacore to shift southward by 2100. The findings
derived from these mature albacore habitat forecasts can contribute to the evaluation of potential
hazards and feasible adaptation measures for albacore fishery resources in the context of climate
change. The distribution trends pertaining to potential habitats for mature albacore should be used
with caution and can provide resource stakeholders with guidance for decision-making.

Keywords: arithmetic mean modelling; geometric mean modelling; Habitat Suitability Index;
albacore tuna; representative concentration pathway; Indian Ocean

1. Introduction

Albacore tuna is one of the most valuable commercial species worldwide. This species,
which belongs to the family Scombridae, was first described by Bonnaterre in 1788 and
is one of the most commercially exploited fish species [1]. Albacore tuna is consumed
in numerous countries [2]. It is a highly migratory species that inhabits the tropical and
temperate waters of three oceans, namely the Indian, Pacific, and Atlantic Oceans. It
is highly valuable and nutrient-dense and serves as a rich source of lean protein and
omega-3 fatty acids. The distribution of albacore tuna in the Indian Ocean varies seasonally.
Immature albacore tuna tends to live in the southern part (after 30◦ S) of the Indian Ocean
throughout the year [3] because of the cooler temperature in this region relative to that in
the central part of the Indian Ocean. Mature albacore tuna exhibits a similar distribution
trend, although this trend can only be observed between April and September [1]. Between
October and March, which is the spawning period of albacore tuna in the Indian Ocean,
mature albacore tuna migrates northward and live between 10◦ S and 30◦ S [1,4]. Thus, this
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area, where the sea surface temperature (SST) is warm, is considered the spawning ground
of albacore tuna in the Indian Ocean.

The distribution pattern of mature albacore tuna in the Indian Ocean can be determined
using SST. In addition to SST, oxygen (OXY), sea surface salinity (SSS), and sea surface
height (SSH) are major factors that affect the habitats of albacore tuna. Each of these factors
also uniquely influences various aspects of the lives of mature albacore or albacore tuna.
For example, SST can directly or indirectly influence numerous aspects of the lives of
ocean fish species, such as their metabolic rate, reproduction, spawning behaviour, activity
level, disease development, stress, and OXY consumption. SST also affects the migratory
behaviours of highly migratory fish, such as albacore tuna, because such behaviours
occur in response to specific temperature gradients [5–7]. For mature or spawning albacore,
spawning time, egg development and incubation, and larval survival and growth are highly
dependent on SST [8]. OXY level also plays a key role in several aspects of the lives of fishes,
including their respiration, survival, growth, activity level, behaviour, and reproduction [9].
For mature or spawning albacore, gamete development and hormonal regulation are highly
dependent on OXY level [10]. SSS also affects several major aspects of the lives of fishes,
such as osmoregulation [11], migration [12], and spawning [13]. Sperm activation, egg
fertilisation, and embryo development are highly dependent on SSS [14]. SSH influences
water circulation and exchange in coastal regions, which can affect salinity levels and water
quality [15]. Higher sea levels can increase tidal cleansing and water circulation, which
may improve water quality and salinity [16]. For mature or spawning fishes, SSH can
influence the effectiveness of their spawning and reproduction activities [17]. Changes in
SSH may disrupt the timing, duration, and location of reproduction, thereby affecting the
recruitment and abundance of fish populations [18] The aforementioned findings highlight
the relevance of individual oceanographic variables to mature albacore tuna.

Numerous oceanographic variables are highly dependent on SST and change drasti-
cally with SST. For example, SST can affect the metabolic rates of various marine organisms.
In general, a higher SST increases the metabolic demand for OXY, which increases OXY
consumption rates. This phenomenon can deplete OXY levels in the water, especially in
regions with high biological activity or during periods of low circulation [19]. SST also
influences the rate of ocean surface evaporation and the quantity of precipitation over the
ocean. A higher SST tends to increase evaporation, resulting in increased salt concentration
and SSS. By contrast, a lower SST can reduce evaporation and SSS. Changes in SST can also
affect atmospheric circulation patterns, modifying precipitation rates and, consequently,
SSS [20]. Such changes can affect seawater density; warmer water is less dense than cooler
water, which causes it to rise and contribute to an increase in SSH, whereas cooler water is
denser and sinks, resulting in a decrease in SSH. In coastal areas and regions influenced by
upwelling or downwelling processes, such vertical movements of water masses, which are
driven by density, can be observed [21]. The aforementioned facts indicate that the habitat
of mature albacore tuna and other aspects of their lives that are related to SST, OXY, SSS,
and SSH are altered when SST changes.

Globally, the effects of human activities and environmental pollution on fish stocks
and marine ecosystems are substantial. Human activities such as overfishing (decline in
fish stocks), bottom trawl and dynamite fishing (habitat destruction), industrial discharge
(environmental pollution), bycatch (catching endangered, juvenile fishes), illegal fishing
(overfishing), etc. effect the fish stock and the ecosystem adversely [22,23]. Fish stocks
and aquatic ecosystems can suffer severe and negative effects as a result of environmental
pollution [24]. Fishes are extremely sensitive to environmental changes, and pollution can
affect their ability to reproduce, find a suitable home, and maintain general health [25]. This
is because environmental pollution leads to water quality degradation, habitat destruction,
ocean acidification, eutrophication, etc. In addition, global climate change caused by
higher greenhouse gas emissions has led to a drastic increase in the global temperature
relative to that of the previous decade [26]. Since the Industrial Revolution [27], human
activities have led to substantial increases in the concentrations of numerous greenhouse
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gases, particularly CO2, that have caused an increase in SST. This increase is due to oceans
absorbing and storing heat from the atmosphere [28]. Because of its high heat capacity,
seawater can absorb and retain a considerable amount of heat, and the oceans function
as a heat sink under conditions of global temperature increases [29], which contributes
to SST warming. An increased SST can initiate feedback mechanisms that contribute to
further increases in temperature levels [30]. When SST increases, the melting of sea ice and
glaciers accelerates, which reduces the Earth’s albedo (i.e., reflectivity), causes the oceans
to absorb more heat, and enhances the heating effect. Globally, ocean SST is predicted to
increase by 1 ◦C–4 ◦C by 2100. Numerous oceanographic variables, which are strongly
associated with SST, are also changing, which may result in changes to the habitats of
albacore tuna [31]. Several studies have revealed that such changes are occurring in the
oceans [32–34]. For example, the summer feeding season in the Nordic Seas witnessed
a significant geographical expansion of mackerel from 2007 to 2016. This expansion was
primarily influenced by the growing size of the mackerel stock, while being limited by the
availability of suitable temperature habitats preferred by the species [35]. Another study
unequivocally establishes sea temperature as the principal determinant of fish community
composition within the Northeast Atlantic continental shelf. This study strongly suggests
that fishes located at higher latitudes will experience the greatest degree of impact as a
result of ongoing climate change [36].

The marine science community has studied likely climate change scenarios under
various representative concentration pathway (RCP) conditions to make qualitative and
quantitative projections of marine ecosystem responses to atmospheric changes [37,38].
RCPs are used to characterise an extensive range of greenhouse gas outflow scenarios,
including a rigid relief scenario (RCP 2.6; [39]), a moderate scenario (RCP 4.5; [40]), and an
exceptionally high GHG-outflow scenario (RCP 8.5; [41]). On the basis of the aforemen-
tioned findings, the present study hypothesised that the spawning ground distribution of
Indian Ocean mature albacore tuna changes with the global climate change scenario that is
considered. The present study assessed the changes in the spawning ground distribution of
mature albacore tuna in the Indian Ocean in response to changes in SST and other related
oceanographic variables under various RCP scenarios.

2. Materials and Methods
2.1. Albacore Tuna Fishery Data

Albacore tuna fishery data were collected from a journal containing records of the
large-scale, longline fishing activities (deep water fishing involving a boat with a gross
register tonnage of >100 tonnes and length of >24 m) of Taiwanese fisheries during January–
December in 1998–2016; the journal was obtained from the Overseas Fisheries Development
Council of Taiwan. Data pertaining to small-scale fishing activities (primarily coastal
water fishing involving a boat with a gross register tonnage of <100 tonnes and length
of <24 m) were not used in this analysis because such data corresponding to the study
period (1998–2016) were lacking. The spatial extent of the collected data was 0◦ S to 45◦ S
and 20◦ E to 120◦ E (spatial resolution = 1◦ × 1◦). The collected logbook information
included the year, month, latitude, longitude, number of catches, number of hooks used,
number of hooks used per basket (not available for all years), and weight (type of weight
[dry or moist] was not specified). Notably, the data set lacked information on soaking
time, connection depth, and operation time. The first maturity weight of albacore tuna
in the Indian Ocean is 14 kg [4]. The present study set the average weight of 14 kg as
the threshold for distinguishing between mature and immature albacore; that is, albacore
tuna with an average weight of >14 kg were regarded as mature. Albacore tuna in the
Indian Ocean primarily spawn in the western and central regions of the Indian Ocean,
that is, in areas such as the Mozambique Channel, the waters surrounding Madagascar,
and the Southwest Indian Ocean [1]. The region between 10◦ S and 30◦ S is the primary
spawning ground for albacore tuna in the Indian Ocean, and they primarily spawn there in
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October–March [1,4]. The present study selected and used fishing data pertaining to the
fishing activities conducted between 10◦ S and 30◦ S and between October and March.

2.2. Oceanographic Data

In the present investigation, data related to four oceanographic parameters were
collected (Table 1). The spatial resolution of the data, which pertained to fishing activities
conducted between 10◦ S and 30◦ S and between 20◦ E to 120◦ E, varied. All collected data
pertained to the fishing activities conducted during October–March in 1998–2016. Because
the spatial resolution of the fishery data was 1◦ × 1◦, Matlab version 2019a was used to
interpolate the collected oceanographic data to a 1◦ × 1◦ grid to ensure they matched the
spatial coverage of the fishery data.

Table 1. Analysed oceanographic parameters.

Environmental Data Abb. Unit Source Time Period Spatial
Resolution

Temporal
Resolution

Sea surface temperature SST ◦C

COP 1998–2016 0.08◦ × 0.08◦ MonthlyDissolved oxygen OXY mL/L

Sea surface salinity SSS psu

Sea surface height SSH m

Abbreviation: COP, Copernicus (https://resources.marine.copernicus.eu/products (accessed on 14 November 2021)).

2.3. Projected Oceanographic Data

All oceanographic projection data were collected from the Intergovernmental Panel
on Climate Change (IPCC) climate models that were tested under the RCP 2.6, 4.5, and
8.5 scenarios. Data on the environmental variables were downloaded from the Earth
System Grid Federation. To minimise the risk of significant bias resulting from the use
of a single climate model, the average result derived from multiple climate models was
used in accordance with the recommendations of the IPCC (Table 2). The projection data
were those for October–March in the years 2040, 2070, and 2100, and this study focused
on the short-, middle-, and long-term effects of projected climate-related changes on the
distribution pattern of mature albacore during spawning months under all RCP scenarios.
The data from all considered climate models were interpolated to a 1◦ × 1◦ spatial grid
by using Matlab version 2019a because the collected fishery data were interpolated to a
1◦ × 1◦ spatial grid.

Table 2. Sources of oceanographic projection data corresponding to various climate models.

Institute Code Resolution

Institute Pierre Simon Laplace IPSL 1◦ × 1◦

Geophysical Fluid Dynamics Laboratory GFDL 0.3–1◦ × 1◦

Commonwealth Scientific and Industrial Research Organization CSIRO 1.5◦ × 1◦

Hadley Center Global Environment Model HadGEM 0.3–1◦ × 1◦

Max Plank Institute for Meteorology MPI 1◦ × 1◦

Canadian Earth System Model CanSEM 1.5◦ × 1◦

2.4. Standardisation of Nominal Catch per Unit Effort

Mature albacore relative abundance was indexed as nominal catch per unit effort
(N.CPUE). N.CPUE (per 1000 hooks) was calculated using the following formula:

N.CPUE =
No.of albacore catch

No.of hooks used
× 1000 (1)

https://resources.marine.copernicus.eu/products
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To minimise the influence of spatial (latitude, longitude) and temporal (year, month)
variables, the obtained N.CPUE data were standardised by applying generalised linear
models (GLMs), which are widely recognised as a means of obtaining filtered and unbiased
standardised catch per unit effort (S.CPUE) values. The GLMs were constructed using
multiple explanatory variables in R-Studio version 3.6.0. The GLMs were formulated
as follows:

GLMn : Log(N.CPUE + c) ∼ Year + Month + Latitude + Longitude + Interactions (2)

where c is a constant value of 0.1, n is the number of variables, GLMn is a model with
n factors, and µ is the interactions of factors (Year × Latitude, Year × Longitude, and
Latitude × Longitude). The obtained S.CPUE results were used in subsequent analyses.

2.5. Species Distribution Modelling

Two methods were employed to complete species distribution modelling, namely
arithmetic mean modelling (AMM) and geometric mean modelling (GMM). These two
methods are widely used to identify suitable habitats for species. A suitable habitat is
an environment or area that meets the basic requirements for an organism or species to
survive, reproduce, and grow. A habitat’s suitability is determined by whether it has
the temperature, humidity, food availability, shelter availability, and other resources that
an organism requires to survive. The subsequent subsections describe the techniques
employed in the current study for species distribution modelling.

2.5.1. Construction of Suitability Index Curves

Smoothing spline regression was used to determine the relationships between the
relative abundance of mature albacore tuna and their oceanographic preferences [42] and
those between S.CPUE and various oceanographic variables. S.CPUE was considered a
dependent variable in regression analysis, and all selected oceanographic parameters were
considered explanatory variables. The suitability index (SI) curve for mature albacore tuna
was obtained by considering S.CPUE and all oceanographic variables, and the curve was
subsequently normalised using the following formula [43]:

SI =
Y − Ymin

Ymax − Ymin
(3)

where Ymax and Ymin are the maximum number and minimum number of S.CPUE or
oceanographic variable observations, and Y is the simulated (predicted) value from Ymax
to Ymin; SI values range from 0 to 1.

SI values were calculated using the summed frequency distribution of the S.CPUE of
each class, and the SI values were assumed to range between 0 and 1. The midpoint of the
class interval of each environmental variable was used as the observed value for SI model
fitting. Finally, the relationships between the SI and oceanographic variable results were
determined using the following formula [44–46]:

SI = eα(m+β)2
(4)

where m denotes the response variable (oceanographic variables), and α and β are fixed
by applying the nonlinear least squares estimate to minimise the residual between an SI
observation and the SI function.

2.5.2. Model Construction

AMMs and GMMs were constructed using the SI values by employing the follow-
ing formulas:

AMM = (SI1 + SI2 + SI3 + .... + SIn)/n (5)
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GMM = (SI1 × SI2 × SI3 × .... × SIn)
(1/n) (6)

where SI1, SI2, SI3 are the observations and n is the nth observation of the SI. Various
parameter combinations were applied using AMM and GMM. The results obtained using
these combinations were analysed using R-Studio version 3.6.0.

2.6. Model Selection and Prediction

From among the models derived using AMM and GMM, one model was selected
on the basis of the Akaike information criterion (AIC; i.e., the least value is optimal) and
adjusted R-squared (i.e., the highest value is optimal) values. For the validation of the
selected model, the fishing data set was randomly divided into two parts, with 70% of the
data used for training and 30% used for testing. The Pearson correlation coefficients and
areas under the curve (AUCs) were calculated for both the training and testing data sets.
The data set that exhibited the least difference between its training and testing sets in terms
of R and AUC values was selected as suitable for minimising the bias (70:30) of the model.
This data set was subsequently used to obtain predictions. The predicted values for each
point of the study area from the final model were then mapped to a 1◦ × 1◦ spatial grid by
using ArcGIS software (version 10.2).

3. Results
3.1. Standardisation of N.CPUE Data

The final GLM model, which included all factors, had a deviance explained value
of 0.58 (Table S1). Because the standardisation model’s histogram and quantile–quantile
plot (Figure 1) revealed a nearly normal distribution, the model was used to standardise
the mature albacore tuna N.CPUE. The monthly summed catch per unit effort (CPUE)
ranged from 0.1 to 2700 individuals (Figure 2). After standardisation, the summed monthly
CPUE decreased to a range of 0.1 to 1700 individuals. The S.CPUE was used as a metric for
analysing the mature albacore tuna data.
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Figure 2. Comparison of N.CPUE and S.CPUE results based on selected GLM for mature alba-
core tuna.

3.2. Construction of SI Curves

SI curves for mature albacore tuna were generated on the basis of various selected
parameters. Subsequently, Habitat Suitability Index (HSI) scores were calculated. The
optimal ranges for SST, SSS, OXY, and SSH were determined to be 25–29 ◦C, 34.85–35.55 psu,
5–5.3 mL L−1, and 0.5–0.7 m, respectively, under the condition of the SI value being >0.6.
When the SI value was >0.6, the S.CPUE for mature albacore tuna in the Indian Ocean
during October–March was highly correlated with SST (predominant value = 27.5 ◦C),
SSS (predominant value = 35.05 psu), OXY (predominant value = 5.1 mL L−1), and SSH
(predominant value = 0.55 m; Figure 3). Subsequently, SI curves were plotted using the
smoothing spline technique.

3.3. Analysis of Habitat Models, Model Selection, and Validation

Table 3 presents the results obtained using AMMs and GMMs when the selected
parameters were used in all feasible combinations. The AMM-designated model 2, which
incorporated OXY and SSS results, exhibited superior performance relative to the other
models. An analysis revealed that the model had a minimum AIC value of 14.240 and
maximum adjusted R-squared value of 0.845, and therefore, model 2 was considered to
be the most suitable AMM. Among the GMMs, model 7 (GMM_7) with the combination
of OXY, SST, and SSS had the most favourable performance; it had the highest adjusted
R-squared value (0.87) and lowest AIC value (18.943) and was therefore selected as the
optimal model.



J. Mar. Sci. Eng. 2023, 11, 1565 8 of 17J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 8 of 17 
 

 

 

Figure 3. SI curves of selected environmental variables pertaining to mature albacore tuna during 

October–March (plotted using smoothing spline regression). The black bars, black dotted lines, and 

red solid lines indicate the summed S.CPUE, SI scores with a cut-off value of >0.6, and SI curves, 

respectively. The intersections of the horizontal dotted lines and SI curves indicate the optimal en-

vironmental range of each parameter. 

3.3. Analysis of Habitat Models, Model Selection, and Validation 

Table 3 presents the results obtained using AMMs and GMMs when the selected pa-

rameters were used in all feasible combinations. The AMM-designated model 2, which 

incorporated OXY and SSS results, exhibited superior performance relative to the other 

models. An analysis revealed that the model had a minimum AIC value of 14.240 and 

maximum adjusted R-squared value of 0.845, and therefore, model 2 was considered to be 

the most suitable AMM. Among the GMMs, model 7 (GMM_7) with the combination of 

OXY, SST, and SSS had the most favourable performance; it had the highest adjusted R-

squared value (0.87) and lowest AIC value (18.943) and was therefore selected as the opti-

mal model. 

Table 3. Performance of AMMs and GMMs for mature albacore tuna (October–March). Bolded and 

colour-marked values indicate optimal AMM and GMM results, respectively. 

No. Model 
AMM GMM 

a b AIC Adj. R2 a b AIC Adj. R2 

1 OXY, SST 0.535 4.995 37.015 0.507 1.854 3.692 25.753 0.693 

2 OXY, SSS −0.661 5.721 14.240 0.845 1.494 3.423 24.822 0.679 

3 OXY, SSH −0.391 5.27 22.646 0.836 2.006 2.619 26.393 0.501 

4 SST, SSS 2.595 −2.129 26.758 0.375 1.144 −0.77 26.186 0.115 

Figure 3. SI curves of selected environmental variables pertaining to mature albacore tuna during
October–March (plotted using smoothing spline regression). The black bars, black dotted lines, and
red solid lines indicate the summed S.CPUE, SI scores with a cut-off value of >0.6, and SI curves,
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Table 3. Performance of AMMs and GMMs for mature albacore tuna (October–March). Bolded and
colour-marked values indicate optimal AMM and GMM results, respectively.

No. Model
AMM GMM

a b AIC Adj. R2 a b AIC Adj. R2
1 OXY, SST 0.535 4.995 37.015 0.507 1.854 3.692 25.753 0.693
2 OXY, SSS −0.661 5.721 14.240 0.845 1.494 3.423 24.822 0.679
3 OXY, SSH −0.391 5.27 22.646 0.836 2.006 2.619 26.393 0.501
4 SST, SSS 2.595 −2.129 26.758 0.375 1.144 −0.77 26.186 0.115
5 SST, SSH 1.788 −0.456 31.624 0.1 0.85 0.882 25.864 0.022
6 SSS, SSH −0.23 3.096 26.450 0.59 −0.31 3.379 23.907 0.694
7 OXY, SST, SSS −0.896 5.623 33.347 0.71 1.258 4.459 18.943 0.87
8 OXY, SST, SSH 0.801 3.272 40.487 0.239 1.464 4.074 24.942 0.751
9 SST, SSS, SSH 2.117 −0.361 38.593 0.117 0.339 2.273 29.604 0.333

10 OXY, SST, SSS, SSH 0.725 3.25 41.974 0.2 1.06 4.5 20.545 0.853
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3.4. Validation of Selected Models

GMM_7 was evaluated using four validation techniques, all of which indicated mini-
mal differences in the coefficient values (R and AUC) between the split data sets (70:30).
This result indicates that the predictive performance of GMM_7 was not affected by signifi-
cant bias (Table 4). Therefore, GMM_7 was employed to generate an overall HSI forecast
for all sampling sites within the study area.

Table 4. Validation results for GMM_7 before HSI prediction.

Techniques
70% 30%

R2 AUC R2 AUC

Random split 0.845 0.872 0.839 0.865

3.5. HSI Prediction

In the month of October, the zones with high S.CPUE were scattered throughout the
study area. For the months of November to February, the zones with high S.CPUE for
mature albacore tune were mainly between 10◦ S and 25◦ S (Figure 4). From February
onward, a southward shift occurred. In February, a high S.CPUE zone was noted at
approximately 15◦ S. In March, this shift became more pronounced. A zone with a very
low S.CPUE appeared between 10◦ S and 25◦ S and at approximately 35◦ S. The predicted
HSI (P.HSI) of this zone was in line with the S.CPUE trend. Longitudinally, this zone
started extending eastward and up to 100◦ E in the month of March. The P.HSI results for
October–March indicated that a suitable habitat zone was mainly formed between 10◦ S
and 25◦ S (Figure 4).
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3.6. Projected Habitat Changes

Figure 5 presents the changes in the HSI scores for mature albacore tuna during
October–March under various RCP scenarios and at various time points. A high HSI (>0.6)
zone was identified between 15◦ S and 30◦ S. The predicted latitudinal pattern of the high
HSI zone for the year 2040 was nearly identical to that for the year 2016 under all RCP
scenarios. For the year 2070, the high HSI zone was situated between 20◦ S and 30◦ S under
the RCP 2.6 and 4.5 scenarios. The high HSI zone exhibited a slight southward shift in the
year 2070. At the end of the year 2100, the high HSI zone remained situated between 25◦ S
and 35◦ S under the RCP 2.6 and 4.5 scenarios. However, a clear change occurred under
the RCP 8.5 scenario; the high HSI zone exhibited a notable southward shift, crossing 35◦ S
in the year 2100 under the RCP 8.5 scenario. Two high HSI zones were identified; one was
situated between 20◦ S and 25◦ S and 90◦ E and 100◦ E, and the other was situated between
25◦ S and 35◦ S and 30◦ E to 40◦ E.
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Figure 6 presents the results pertaining to the latitudinal shift in the ensemble HSI
score for mature albacore tuna during October–March under various RCP scenarios and at
various time points. For the year 2016, the high HSI zone was situated between 18◦ and
25◦ S. Under the RCP 2.6 scenario, this zone exhibited a high HSI trend that was mostly
similar to that for the year 2016 at three time points; the HSI scores ranged between 0.5
and 0.6. Under the RCP 4.5 scenario, this zone exhibited a high HSI trend that was mostly
similar to that for the year 2016 at three time points; the HSI scores were slightly greater
than 0.5. In terms of changes that occurred when both scenarios (2.6 and 4.5) and time
points (2040, 2070, and 2100) were considered, the HSI score only exhibited a considerable
reduction after 25◦ S. Under the RCP 8.5 scenario, the high HSI zone exhibited a substantial
latitudinal shift for the years 2040 and 2070, and the HSI score changed slightly relative
to that for the year 2016. However, for the year 2100, the HSI score decreased to nearly
0.4, and the high HSI zone was situated between 25◦ S and 35◦ S, indicating an upward
latitudinal shift. For the year 2100, the HSI score of the area between 18◦ S and 25◦ S was
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slightly less than 0.4 under the RCP 8.5 scenario, which is lower than the values obtained
under the RCP 2.6 (0.5–0.6) and 4.5 (0.5–0.6) scenarios. This finding indicates a notable
shift in the high HSI zone is likely to occur in the year 2100 under the RCP 8.5 scenario.
Figure 7 represented the latitudinal changes of the 27.5 ◦C isotherm line under various
climate change scenarios.
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4. Discussion
4.1. Projected Habitat Changes under Various Climate Change Scenarios

Scholars reported major shifts in the distribution of marine organisms in the global
ocean due to anthropogenic climate change [47]. Our findings indicate that the suitable
habitat for mature albacore tuna is likely to shift in the future. Our prediction results,
especially those for the RCP 8.5 scenario, indicate that the suitable habitat for mature
albacore tuna will undergo a size reduction and bifurcation (Figure 5). For the year 2016,
the high HSI zone for mature albacore tuna during October–March was situated mainly
between 15◦ S and 25◦ S; however, for the year 2100, the zone crossed 35◦ S under the RCP
8.5 scenario, indicating the zone shifted southward. Under the RCP 8.5 scenario, which is
an extreme and worse-case scenario with respect to climate change, the suitable habitat for
mature albacore tuna shifted toward higher latitudes (Figure 6). This finding is consistent
with the predicted changes in the natural habitats of South Pacific albacore tuna [48];
albacore tuna in the Northeast Pacific [49]; Atlantic tunas, such as bluefin tuna [50]; and
other fish species, such as billfishes and mackerels.

4.2. Increased Water Temperature and Albacore Spawning

Climate change poses a threat to pelagic predators such as tuna [51]. Latitudinal
variations in the optimal SST range for albacore tuna may cause a habitat shift (Figure 7).
Climate change substantially affects the circulation of wind and water in the ocean, which
can lead to changes in upwelling and downwelling processes that affect the availability of
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OXY and nutrients. Mature albacore tuna living outside of their preferred SST range may
be at risk of local or global extinction if they cannot migrate or compete for resources. In
the current study, the optimal SST for mature albacore tuna during October–March was
determined to be >27 ◦C. This phenomenon can be attributed to the spawning behaviour
of fully-grown albacore tuna during these months, which leads to them engaging in less
swimming activity. Thus, despite the decrease in continuous activity, energy loss decreases
even at high temperatures. Mature albacore tuna tends to prefer warm temperatures
during their spring spawning period because such temperatures enable them to regulate
their body temperature and manage heat loss. Mature spawning albacore tuna were
observed by Chen et al. (2005) [4] in seas with a temperature of >27 ◦C, and temperature
and food availability were reported to be linked to fish distribution constraints [46]. An
SST that is higher than the optimal range may hinder the reproductive development
of mature albacore tuna by affecting their muscle contraction speed, disrupting their
energy expenditure, reducing their performance, increasing their stress susceptibility, and
impeding their growth.

4.3. Temperature and Other Oceanographic Parameters

Temperature acclimatisation incurs an energetic expense that affects numerous phys-
iological functions of fishes (e.g., reproduction, growth, foraging, and swimming) that
are significantly associated with oceanographic drivers. To optimise biological efficiency
and minimise physiological adjustment costs, albacore tuna may migrate to habitats with
suitable temperatures with habitat heterogeneity [52]. Albacore tuna becoming capable of
migrating to and locating dynamic optimal environments that are beyond their present
distribution can lead to changes in their engagement in fishing activities, which may also
be influenced by prey movements. Elevated temperatures have a negative effect on OXY
solubility, which is also influenced by salinity. Increases in temperature and salinity lead
to a decrease in OXY solubility [53], which impairs fish growth. Although jellyfish can
thrive in low-OXY waters, albacore tuna, which expend more energy, cannot. Albacore
tuna tend to move to shallow oceans with more dissolved OXY. Low (>2–4 mg L−1) to
hypoxic (>0–2.0 mg L−1) concentrations of dissolved OXY may stress and kill albacore tuna,
and therefore, ocean OXY loss may affect albacore tuna distribution. Acidification may also
limit the optimal temperature range for albacore tuna, which because of ocean warming,
may reduce the number of suitable spawning habitats for such tuna and lead to a decrease
in larvae survival rates. This effect may be further intensified in environments with low
concentrations of dissolved OXY and lead to a further reduction in larvae survival rates [54].
An increase in seawater salinity leads to an increase in seawater density. Additionally,
the salinity of seawater influences the correlation between temperature and density [55]
and thereby influences oceanic precipitation and evaporation. Changes in SSS affect the
osmoregulatory expenditure of albacore tuna. A disparity between environmental salinity
and the internal osmotic concentration of a marine fish species can result in either a loss or
gain of salt and water. Consequently, deviations from the preferred SSS range for albacore
tuna may prompt them to migrate to areas with more favourable salinity conditions. SSS
also indirectly affects ALB abundance by influencing prey distribution and availability.
SSH affects the physical habitat of pelagic species in the open ocean. Positive and negative
SSH anomalies affect the formation of eddies and gyres, respectively, which delineate the
areas of convergence and divergence where tuna prey may congregate. The frontal systems
of gyres can attract tunas [56], and albacore tuna prefer slightly negative or positive SSH
levels [57].

Understanding the habitat preferences of albacore tuna is crucial, and the factors that
contribute to a high CPUE in a given area must be clarified. The present study identified
the latitudinal shifts in the centre of gravity of suitable habitats to determine the habitat
shift patterns of albacore tuna. This study’s analysis of longitudinal changes in the centre
of gravity of such habitats provides valuable insight into such patterns. The findings of the
present study reveal that the HSI scores for albacore tuna are likely to decline considerably
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in regions in which they have generally been high. The present study focused on a specific
set of parameters; understanding the effects of other parameters is crucial for improving
HSI scores. A key challenge in studying such parameters to identify potential shifts in
distribution is the accessibility of data on oceanographic and biological variables that can
be incorporated into climate models. Thus, future studies should determine how changes
in the growth, reproduction, and survival rates of albacore tuna affect their distribution.

4.4. Sustainable Development Goals

Our findings reveal that climate change affects the spawning habitat structure of
mature albacore tuna in the Indian Ocean. When applied in an appropriate context,
habitat or spatial distribution modelling can assist albacore tuna management by solving
maritime environmental problems. For example, such modelling can be employed to
identify underused fishing locations [58]. Increasing the ease with which fishing site
identification can be completed would lead to a higher fishery income and reduce the effort,
trip times, fuel consumption, and expenses of fishing. Nevertheless, fishery managers must
remain conscious of the United Nations’ Sustainable Development Goals (SDGs) because
easier identification of fishing sites may lead to a greater risk of overfishing [59]. SDG 14 has
increased global awareness of the relevance of ocean health to the planet’s future [60], and
its key focus is conservation [61]. Habitat modelling can assist conservation of overexploited
habitats because it can be employed to determine the distribution zone of a given species.
Stock evaluations of high or low catch zones can be conducted to detect overexploitation
or under exploitation [62]. The main objectives of SDG 14 include addressing overfishing,
climate change, and the unique positions of less-developed countries and small island
states [63] through institutional support. SDG 14.4 indicates that maintaining biologically
viable fish stocks should be prioritised, and identifying shifts in the spawning habitats of
albacore tuna under various climate change scenarios can contribute to the achievement of
this objective. To enhance stock sustainability, highly exploited regions should be protected
through the imposition of temporary fishing bans and provision of overfishing subsidies. To
combat overfishing, fishing vessel subsidies for less-exploited regions should be withdrawn.
Scientific research and marine technology transfers may also provide support for efforts
toward ensuring ocean sustainability. The aforementioned points highlight the relevance of
the present study, in which habitat modelling was performed under various global climate
change scenarios; this study represents a step toward ensuring the long-term sustainability
of mature albacore tuna stocks in the Indian Ocean.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jmse11081565/s1, Table S1. Performance of different combinations
of GLM models for the standardization of mature albacore nominal CPUE.
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