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Abstract: Remote sensing has been widely used for oil spill monitoring in open waters. However,
research on remote sensing monitoring of oil spills in ice-infested sea waters (IISWs) is still scarce.
The spectral characteristics of oil-contaminated sea ice (OCSI) and clean sea ice (CSI) and their
differences are an important basis for oil spill detection using visible/near-infrared (VNIR) remote
sensing. Such features and differences can change with the observation geometry, affecting the
identification accuracy. In this study, we carried out multi-angle reflection observation experiments
of oil-contaminated sea ice (OCSI) and proposed a kernel-driven bidirectional reflectance distribution
function (BRDF) model, Walthall–Ross thick-Litransit-Lisparse-r-RPV (WaRoLstRPV), which takes
into account the strong forward-scattering characteristics of sea ice. We also analyzed the preferred
observation geometry for oil spill monitoring in IISWs. In the validation using actual measured data,
the proposed WaRoLstRPV performed well, with RMSEs of 0.0031 and 0.0026 for CSI and OCSI,
respectively, outperforming the commonly used kernel-driven BRDF models, Ross thick-Li sparse
(R-LiSpr), QU-Roujean (Qu-R), QU-Lisparse R-r-RPV (Qu-LiSpr-RrRPV), and Walthall (Wa). The
observation geometry with a zenith angle around 50◦ and relative azimuth ranging from 250◦ to 290◦

is preferred for oil spill detection in IISWs.

Keywords: oil spill; sea ice; BRDF; kernel-driven model

1. Introduction

With the development of high-latitude maritime routes and the exploitation of oil and
gas resources, oil spills have become a significant risk in ice-infested sea waters (IISWs).
The Northeast Passage in the Arctic has achieved regular commercial operations, gradually
increasing the number of vessels passing through it [1]. Coastal nations in the Arctic region
are exploring and developing marine oil and gas resources. The Bohai Sea in China is
influenced by cold air, resulting in three to four months of ice formation during winter. The
Liaodong Bay, which is located at the southern edge of the ice-covered area in the Northern
Hemisphere, is home to major oil fields, such as the Liaohe and Dagang oil fields. Ports
along the northern coast, including the Yingkou Port and Jinzhou Port, are vital import
hubs for crude oil in China. The presence of sea ice poses severe hazards to oil production
and transportation, including damage to passing vessels, oil platforms, pipelines, and an
increased likelihood of oil spill accidents.

Once an oil spill occurs in an IISW, the cleanup process becomes challenging and
prolonged and can lead to severe ecological disasters. The risk of oil spills from vessels
operating in IISWs has become a focal point in Arctic development and protection. To
address this concern, the International Maritime Organization (IMO) has developed the
“Polar Code”, with Part II-A, Chapter I, specifically outlining the mandatory measures for
preventing oil pollution. The accurate monitoring of oil spills is crucial in providing precise
information support for spill clean-up. This is an essential aspect of emergency response.
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Currently, most oil spill monitoring efforts are focused on open waters. Remote
sensing technologies used for oil spill monitoring in open waters include visible/near-
infrared (VNIR) remote sensing [2], thermal infrared remote sensing [3], and synthetic-
aperture radar (SAR)/marine radar [4–6]. Among these, VNIR remote sensing is one
of the primary techniques for observing oil spills in open waters due to its simplicity,
ease of access in obtaining remote sensing images, and low cost. A theoretical basis for
oil spill detection using VNIR remote sensing lies in the spectral differences between oil
and seawater reflections. Research has been conducted on the spectral characteristics of
different types of oil spills [7], which vary in thicknesses [8–10] and have different degrees
of weathering [11]. Currently, most studies have focused on the spectral characteristics of
oil slicks in open waters to effectively identify and differentiate oil slick regions. However,
the spectral characteristics of oil slicks on clean sea ice (CSI) are more complex than those
in open waters. The spectral features obtained from open waters cannot be directly applied
to detect and identify oil-contaminated sea ice (OCSI). Therefore, studying the spectral
characteristics of CSI and OCSI is necessary to distinguish oil slicks on sea ice, which is
essential for oil spill identification.

However, there is limited research on remote sensing monitoring of oil spills in IISWs.
To investigate the distribution characteristics of petroleum and hydrocarbon substances
within and beneath snow, Bradford et al. [12] utilized ground-penetrating radar to detect
oil leakage within snow, and found that ground-penetrating radar can be a powerful tool
to significantly improve the monitoring of oil spill characteristics in IISWs and guide actual
spill response operations. Building upon this, Bradford et al. [13] developed a targeted
algorithm for ground-penetrating radar waveform inversion, enabling quantification of
the geometric shapes of oil leakage beneath and within sea ice. Based on experimental and
measured data, Asihen et al. [14] demonstrated that the backscattering effects of C-band
radar can effectively identify the differential characteristics of CSI and OCSI, facilitating
the identification of oil spills on sea ice surfaces. Dickins et al. [15] conducted a series of
experiments to test the capabilities of some remote sensing methods in detecting oil spills
in IISWs. They tested SAR, infrared, VNIR, and laser fluorescence sensors. The results
indicated that multispectral and hyperspectral VNIR remote sensing could be used to
detect oil spills among ice packs and on ice surfaces. To explore the reflectance spectral
characteristics of oil spills in IISWs, Li et al. [16] conducted experiments to measure the
reflectance of oil films under different seawater, broken ice, and solid ice backgrounds. They
extracted the spectral features for detecting oil spills in the VNIR range. Using the spectral
characteristics of oil contamination and sea ice, Liu et al. [17] researched the inversion of the
oil spill area ratio on ice surfaces. An important basis for monitoring oil spills in IISWs is the
existence of spectral differences between CSI and OCSI; these differences show the spectral
characteristic bands that can distinguish OCSI and CSI, which can vary with changes in the
observation geometry and affect identification accuracy. These kinds of changes could be
described by using the bidirectional reflectance distribution function (BRDF).

BRDF is a function closely related to the view zenith angle (VZA), solar zenith angle
(SZA), and sensor–sun relative azimuth angle. It describes the spatial characteristics of
non-Lambertian surface reflectance concerning the changing directions of incident and
viewing angles. The initial development of reflectance fitting based on the BRDF function
was primarily focused on surface types, such as vegetation and soil, where backscattering
is stronger than forward scattering. BRDF-based bidirectional reflectance models have
been proposed and developed to characterize strong backscattering surfaces. These models
can be broadly classified into three categories: (1) Physical models: examples include the
Discrete Ordinate Radiative Transfer (DISORT) model [18], the Cook–Torrance model [19],
and the Asymptotic Radiative Theory (ART) developed by Kokhanovsky et al. based
on snow-covered surfaces [20]. (2) Empirical models: common examples are empirical
formulas that provide straightforward calculations of reflected light, such as the Walthall
model [21]. (3) Semi-empirical models: The Rahman–Pinty–Verstraete (RPV) model devel-
oped by Pinty et al., which combines physical relationships with measured data [22], and
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the RossThick-LiSparse-Reciprocal (RTLSR) coupled model developed by Roujean et al.
based on a linear kernel-driven model [23].

There is limited research on the bidirectional reflectance of sea ice, and few studies
have investigated that of CSI and OCSI. The forward-scattering intensity of ice and snow
is significantly greater than the backward-scattering intensity, but the classical BRDF
models have paid limited attention to these scattering characteristics. Traditional linear
kernel-driven models cannot accurately describe the scattering behavior of ice surfaces.
For surfaces with strong forward scattering, such as ice and snow, there is currently no
dedicated volume scattering kernel or geometric-optical scattering kernel established. Ice
and snow exhibit a forward-scattering characteristic that is significantly different from
that of vegetation surfaces. Therefore, when constructing BRDF models for these types of
surfaces, it is common to borrow from the volume scattering kernel and geometric-optical
scattering kernel used for vegetation and introduce a forward scattering kernel to adjust
and capture the scattering characteristics of ice and snow. Qu et al. [24] proposed a method
tailored to such a strong forward-scattering capability. They modified the traditional linear
kernel function by introducing a forward scattering kernel to better reflect the characteristics
of ice and snow. Jiao et al. [25] proposed a new snow kernel based on the ART model,
which modified the traditional RTLSR model to describe the anisotropic reflection of
snow surfaces. The experimental data showed that this model effectively simulated the
anisotropy of pure snow-covered surfaces. Ding et al. [26] evaluated the fitting capability
of the RossThick-LiSparseReciprocal-Snow (RTLSRS) model for ice and snow bidirectional
reflectance using multi-angle reflectance data from POLDER. The results demonstrated that
the model achieved a high accuracy in characterizing the directional scattering of ice and
snow, outperforming the fitting results of the ART model. However, the RTLSRS model
requires detailed physical parameters of ice and snow as its input, which are often difficult
to obtain in practical applications. The above-mentioned BRDF models are focused on clean
ice and snow surfaces. They do not take into account the scenario of OCSI. To accurately
describe the directional spectral features of OCSI, it is necessary to establish a BRDF model
suitable for OCSI and select appropriate observation angles for oil spill detection, thereby
improving the accuracy of oil spill detection in IISWs.

In this study, we conducted multi-angle reflectance measurements on OCSI to inves-
tigate its spectral characteristics and angular variations. Based on the extracted spectral
features for oil-contaminated identification, we developed a Walthall–Ross thick-Litransit-
Lisparse-r-RPV (WaRoLstRPV) BRDF model. It is designed explicitly for OCSI, taking into
account the characteristics of the classical BRDF models. Simulations and analyses were
performed to compare the reflectance differences between CSI and OCSI under different
observation geometries. These analyses allowed us to determine the range of optimal
observation geometries for oil spill detection in IISWs.

2. Data and Methods
2.1. Measurement of Reflectance

The anisotropy of surface reflectance refers to the variation of reflection characteristics
in objects, which change with wavelengths and spatial features, such as viewing angle and
azimuth. This phenomenon is commonly represented by the BRDF. However, other mea-
surements beyond a direct measurement of the BRDF are needed, and therefore, researchers
often employ the bidirectional reflectance factor (BRF) as a substitute in their studies.

The multi-angle observation experiment was conducted using an ASD FieldSpec®3
spectroradiometer (Malvern Panalytical Ltd., Malvern, UK). The spectral measurement
range is from 350 to 2500 nm. The spectral resolution is 1.4 nm in the 350–1000 nm range
and 2.0 nm in the 1000–2500 nm range. The spectroradiometer is equipped with a fiber-
optic probe as the front-end sensor, and the probe’s field of view is 8◦. In this experiment,
the ASD FieldSpec®3 probe (Malvern Panalytical Ltd., Malvern, UK) was mounted on a
multi-angle observation platform for reflectance measurement. The sensor is approximately
50 cm above the ice surface, and at a VZA of 0◦, the observed area is a circular region with
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a diameter of about 7 cm (indicated by the solid line in Figure 1a). When VZA is not 0◦, the
observed area forms an elliptical region (indicated by the dashed line in Figure 1a).

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 4 of 20 
 

 

range is from 350 to 2500 nm. The spectral resolution is 1.4 nm in the 350–1000 nm range 
and 2.0 nm in the 1000–2500 nm range. The spectroradiometer is equipped with a fiber-
optic probe as the front-end sensor, and the probe’s field of view is 8°. In this experiment, 
the ASD FieldSpec®3 probe (Malvern Panalytical Ltd., Malvern, UK) was mounted on a 
multi-angle observation platform for reflectance measurement. The sensor is approxi-
mately 50 cm above the ice surface, and at a VZA of 0°, the observed area is a circular 
region with a diameter of about 7 cm (indicated by the solid line in Figure 1a). When VZA 
is not 0°, the observed area forms an elliptical region (indicated by the dashed line in Fig-
ure 1a). 

  
(a) (b) 

Figure 1. Diagram of observation geometry, (a) the schematic diagram of OCSI and the observa-
tion range is as follows, (b) ground platform for multi-angular observations. 

The experiment was conducted under clear, cloudless weather conditions with tem-
peratures around −10 °C. To ensure the comparability of data from different dates, meas-
urements were made at similar solar elevation angles whenever possible. 

The sea ice used in the experiment was formed naturally from seawater off the coast 
in the Yellow Sea, with an approximate thickness of 10 cm. 

The oil used in the experiment was heavy diesel fuel from the vessel “Yukun”. The 
average thickness of the oil layer was about 2 mm, with some parts covered by thin ice. 
Under different observation zenith angle conditions, the fraction of the oil within the field 
of view ranged from 27.6% to 30.9%. 

We represent the observation geometry using the relative azimuth angle (RAZ), SZA, 
and VZA between the sensor and the sun. When the sensor’s observation direction aligns 
with the sun’s incident direction, the RAZ is 0 degrees. Then, the RAZ increases in a clock-
wise direction. Regarding the RAZ, the data collection primarily focused on the principal 
plane (0°–180°) and the principal perpendicular plane (90°–270°). In the following sec-
tions, specific observation angles are represented using the RAZ/VZA notation. For exam-
ple, if the relative azimuth angle is 0 degrees and the observation zenith angle is 30 de-
grees, it is expressed as 0/30. The observation angles on each plane ranged from 0° to 50°, 
and data were collected at 10° intervals (Figure 1). For each angle, 10 sets of data were 
obtained. Out of these, 6 sets were averaged to represent the results under that specific 
observation geometry and used for constructing the BRDF model. The remaining 4 sets 
were utilized to evaluate the fitting performance of the model. 

During data collection with the spectroradiometer, the average of every 10 measure-
ments was taken to generate one valid data point. This process was repeated 10 times. The 
observed values of sea ice ( objDN ) and the reference panel ( refDN ) were recorded sepa-
rately. The reflectance of the measurement target was calculated using the ratio method. 

Figure 1. Diagram of observation geometry, (a) the schematic diagram of OCSI and the observation
range is as follows, (b) ground platform for multi-angular observations.

The experiment was conducted under clear, cloudless weather conditions with tem-
peratures around −10 ◦C. To ensure the comparability of data from different dates, mea-
surements were made at similar solar elevation angles whenever possible.

The sea ice used in the experiment was formed naturally from seawater off the coast
in the Yellow Sea, with an approximate thickness of 10 cm.

The oil used in the experiment was heavy diesel fuel from the vessel “Yukun”. The
average thickness of the oil layer was about 2 mm, with some parts covered by thin ice.
Under different observation zenith angle conditions, the fraction of the oil within the field
of view ranged from 27.6% to 30.9%.

We represent the observation geometry using the relative azimuth angle (RAZ), SZA,
and VZA between the sensor and the sun. When the sensor’s observation direction aligns
with the sun’s incident direction, the RAZ is 0 degrees. Then, the RAZ increases in a
clockwise direction. Regarding the RAZ, the data collection primarily focused on the
principal plane (0◦–180◦) and the principal perpendicular plane (90◦–270◦). In the following
sections, specific observation angles are represented using the RAZ/VZA notation. For
example, if the relative azimuth angle is 0 degrees and the observation zenith angle is
30 degrees, it is expressed as 0/30. The observation angles on each plane ranged from 0◦ to
50◦, and data were collected at 10◦ intervals (Figure 1). For each angle, 10 sets of data were
obtained. Out of these, 6 sets were averaged to represent the results under that specific
observation geometry and used for constructing the BRDF model. The remaining 4 sets
were utilized to evaluate the fitting performance of the model.

During data collection with the spectroradiometer, the average of every 10 measure-
ments was taken to generate one valid data point. This process was repeated 10 times. The
observed values of sea ice (DNobj) and the reference panel (DNre f ) were recorded separately.
The reflectance of the measurement target was calculated using the ratio method.

Robj(λ) =
DNobj(λ)

DNre f (λ)
× Rre f (λ) (1)

In the equation, Robj(λ) represents the reflectance of CSI or OCSI; Rre f (λ) represents
the reflectance of the referee panel; DN is the value obtained by the spectrometer; DNobj(λ)
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represents CSI or OCSI observations; DNre f (λ) represents the reference panel observations;
and λ represents the central wavelength of the spectral sampling point.

Due to the similarity in spectral characteristics for the same object at different ob-
servation angles, it is challenging to select characteristic bands from the original spectral
curves directly. In this study, we proposed to perform an envelope removal operation on
the multi-spectral measured data, amplifying the spectral feature differences between the
CSI and oil spills. Finally, we employed a spectral standard deviation analysis method to
confirm the characteristic wavelength.

2.2. Spectral Standard Deviation Analysis

In this study, we used a spectral standard deviation analysis method to identify the
wavelength with the largest spectral feature difference. Feature extraction [27] can be
operated on the active ingredient present in spectral reflectance measurement data to
extract valid data. The extraction of characteristic bands is closely related to the quality and
accuracy of subsequent spectral data processing. In the data processing phase, we employed
an envelope removal method to obtain the spectrally separable range. Subsequently, we
utilized the spectral standard deviation analysis method. Then, based on the absolute
difference ∆Abs between the spectral reflectance of CSI and OCSI at a specific wavelength
λ, we compared it to the sum of the standard deviations ∑ Sd of the two surfaces at that
wavelength. Specifically, if the absolute difference is greater than the sum of the standard
deviations, then

∆Abs > ∑ Sd = (Sλ,csi + Sλ,ocsi) (2)

where ∆Abs represents the absolute difference between OCSI and CSI in spectral reflectance;
∑ Sd represents the sum of the spectral reflectance standard deviations between OCSI
and CSI; Sλ,csi represents the spectral reflectance standard deviations of CSI; and Sλ,ocsi
represents the spectral reflectance standard deviations of OCSI.

Under such circumstances, it can be assumed that CSI and OCSI can be differentiated
based on the spectral curve at wavelength λ. The wavelength λ represents the hyperspectral
characteristic wavelength that distinguishes between the two types of objects. In this case,
an appropriate bidirectional reflectance model can be selected to fit the spectral data.

2.3. BRDF Model

Ice and snow surfaces exhibit a stronger forward-scattering intensity and a rough and
uneven texture. When sunlight illuminates such a surface, it undergoes diffuse scattering
in various directions. In light of the scattering characteristics of sea ice coverage, this study
proposed a semi-empirical kernel-driven WaRoLstRPV BRDF model. The formula for the
constructed kernel-driven model is as follows:

R(θs, θv, ϕ, λ) = fiso(λ) + fvol(λ)Kvol(θs, θv, ϕ) + fgeo(λ)Kgeo(θs, θv, ϕ)

+ f f wk(λ)K f wk(θs, θv, ϕ) + fwal(λ)Kwal(θs, θv, ϕ)
(3)

The symbol R(θs, θv, ϕ, λ) represents the BRF at a given solar zenith angle θs, view
zenith angle θv, relative azimuth angle ϕ, and wavelength λ. Kvol(θs, θv, ϕ), Kgeo(θs, θv, ϕ),
K f wk(θs, θv, ϕ), and Kwal(θs, θv, ϕ) represent the volume scattering kernel, the geometric-
optical scattering kernel, the forward scattering kernel, and the empirical kernel, respectively.

The coefficients fiso, fvol , fgeo, f f wk, and fwal correspond to the weights assigned to the
isotropic scattering kernel, volume scattering kernel, geometric-optical scattering kernel,
forward scattering kernel, and empirical kernel functions, respectively. These coefficients
determine the contribution of each component to the overall scattering behavior.

The isotropic scattering kernel function represents a constant term, and its corre-
sponding coefficient reflects the reflectance values in the zenith illumination and reflection
direction. The volume scattering kernel function primarily accounts for the randomly
distributed leaf components within a canopy. It is used to describe the BRDF of bowl-
shaped hotspots and uneven leaf canopies. Commonly used volume scattering kernel
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functions include the Ross-thick (RT) kernel [28] and the Ross-thick–Maigna (RTM) kernel
derived by Maigna et al. [29] based on Jupp and Strahler’s theory of mutual shadowing.
Although commonly used models are mainly aimed at vegetation scattering, simulation of
strong forward-scattering features is insufficient. However, its kernel function can be used
as the basis, and by introducing the forward scattering kernel, snow, and ice scattering
characteristics can be better simulated. Since this study disregarded hotspot effects, the
selected volume scattering kernel function is as follows [25]

Kvol(θs, θv, ϕ) = (π/2−ξ)cosξ+sinξ
cosθs+cosθv

− π
4 (4)

ξ = arccos(cosθscosθv + sinθssinθvcosϕ) (5)

where ξ is the scattering phase angle, which is related only to the observed solar zenith
angle θs, the observed azimuth angle θv, and the relative azimuth angle ϕ.

The geometric-optical kernel function describes the strong shadowing effects caused
by sparsely distributed tree crowns or other opaque vegetation canopies. It captures the
geometric-optical scattering resulting from the discrete three-dimensional structure of
vegetation and its shadowing effects. Commonly used geometric-optical kernel functions
include the Roujean kernel, Lisparse kernel, LiDense kernel, and LiTransit kernel. The
LiTransit kernel represents a transitional form of the Lisparse kernel. To ensure the ap-
plicability of the proposed model to various surface conditions while considering that oil
patches on a sea ice surface tend to aggregate, as well as to account for non-sparse surface
coverage in observations, the Lisparse kernel and LiTransit kernel are combined to form
a comprehensive geometric-optical kernel function. The kernel function is expressed as
follows [29]

Kgeo(θs, θv, ϕ) = KLisparse(θs, θv, ϕ) + KLitransit(θs, θv, ϕ) (6)

KLisparse(θs, θv, ϕ) = 1
2π [(π − ϕ)cosϕ + sinϕ]tanθstanθv

− 1
π [tanθs + tanθv + ∆(θs, θv, ϕ)]

(7)

∆(θs, θv, ϕ) =
√

tan2θstan2θv − 2tanθstanθvcosϕ (8)

where ∆(θs, θv, ϕ) quantifies the horizontal distance between the sun and the view direction.
The calculation determines the bulk scattering kernel and the geometric-optical kernel.

The characteristics of strong forward scattering on sea ice surfaces are difficult to
describe using traditional kernel-driven models. To represent the characteristics of strong
forward scattering, we introduced a forward-scattering factor into the model. In this study,
the RPV radiative transfer model [24] was selected. The influence of hotspots was neglected,
and the parameters k and g in the model were adjusted to typical values that favor forward
scattering. By incorporating these modifications, a corrected RPV kernel function (r-RPV)
was obtained, which serves as the forward-scattering parameter kernel. The formula is
expressed as follows [24]

K f wd = cosk−1θscosk−1θv
(cosθs+cos θv)

1−k ·
1−g2

(1−g2−2gcos(π−ξ))
1.5 +

1+g
21+k(1−g)2 (9)

where k = 0.846, and g = 0.0667.
The Walthall (Wa) model is suitable for representing surfaces with strong diffuse

scattering effects. Considering the scattering variations caused by gaps on sea ice surfaces,
the modified Wa model [29] was introduced for local correction. The modified Wa model
was incorporated as an empirical kernel function for model construction. The formula for
the empirical kernel function is as follows [29]

Kwal(θs, θv, ϕ) = k1F1(θs, θv, ϕ) + k2F2(θs, θv, ϕ) + k3F3(θs, θv, ϕ) (10)
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where:
F1(θs, θv, ϕ) = θs

2 + θv
2 (11)

F2(θs, θv, ϕ) = θs
2θv

2 (12)

F3(θs, θv, ϕ) = θsθv cos ϕ (13)

For CSI and OCSI, the feasibility of and differences between the model proposed in
this study and other models were compared. The following BRDF models were employed
for comparison: Ross thick-Li sparse (R-LiSpr) [30], QU-Roujean (Qu-R) [31], QU-Lisparse
R-r-RPV (Qu-LiSpr-RrRPV) [24], Wa [29], and WaRoLstRPV. The Qu kernel is a modification
of the Ross-thick volume scattering kernel. Although Qu-R and R-LiSpr models share
similar simplified expressions, there are differences in their geometric-optical and volume
scattering kernels (Table 1). These models were fitted to the data obtained from CSI and
OCSI, respectively. By doing so, the study explored the multi-angle spectral characteristics
of sea ice reflection and determined the range of observation angles. These findings could
guide practical oil spill monitoring efforts.

Table 1. Fitting method of sea ice surface bidirectional reflection factor.

Name Method Reference

R-LiSpr R(θs, θv, ϕ, λ) = fiso(λ) + fvol(λ)Kvol(θs, θv, ϕ) + fgeo(λ)Kgeo(θs, θv, ϕ) [30]
Wa R(θs, θv, ϕ) = k1F1(θs, θv, ϕ) + k2F2(θs, θv, ϕ) + k3F3(θs, θv, ϕ) [29]

Qu-R R(θs, θv, ϕ, λ) = fiso(λ) + fvol(λ)Kvol(θs, θv, ϕ) + fgeo(λ)Kgeo(θs, θv, ϕ) [31]

Qu-LiSpr-RrRPV R(θs, θv, ϕ, λ) = fiso(λ) + fvol(λ)Kvol(θs, θv, ϕ) + fgeo(λ)Kgeo(θs, θv, ϕ)
+ f f wk(λ)K f wk(θs, θv, ϕ)

[24]

WaRoLstRPV R(θs, θv, ϕ, λ) = fiso(λ) + fvol(λ)Kvol(θs, θv, ϕ) + fgeo(λ)Kgeo(θs, θv, ϕ)
+ f f wk(λ)K f wk(θs, θv, ϕ) + fwal(λ)Kwal(θs, θv, ϕ)

/

3. Result
3.1. Spectral Characteristics of OCSI

In this study, multi-angle reflectance spectral data of CSI and OCSI were collected
through experiments using the visible-to-thermal-infrared wavelength range. The data
were obtained at 11 observation angles, both in the principal and principal perpendicular
planes. By analyzing the measured reflectance spectra of CSI and OCSI, it was observed
that the reflectance data exhibit a generally decreasing trend in the visible-to-near-infrared
range, while in the infrared range and more extended wavelength range, the spectra show
irregular variations due to noise. Overall, the reflectance of OCSI is lower than that of
CSI. The reflectance spectrum of OCSI is smoother, with only a reflection peak at around
760 nm. On the other hand, CSI exhibits an absorption trough at around 1000 nm and
a small reflection peak at around 1100 nm. Therefore, based on the distribution pattern
of the measured spectral data, this study focused on investigating the spectral features
using the measured data of CSI and OCSI within the visible-to-near-infrared wavelength
range. During the measurements in the principal plane and vertical plane, we separately
measured the reflectance of CSI and OCSI at a zenith angle of 0 degrees. There was a
difference in time between these two measurements, resulting in a change in the SZA. This
variation in the SZA may be the cause of the difference in reflectance between (a–b) and
(c–d) at 0 degrees [32].

For the spectral characteristics of CSI, the reflectance features in the azimuthal range
of 0◦–180◦ were studied. As the VZA decreases, the received reflectance by the sensor
increases due to the laws of optical propagation. When the VZA approaches the critical
point of 0◦, the reflectance change in the forward-scattering region exhibits a completely
different trend compared to the backscattering region, as shown in Figure 2b. In the
forward-scattering region, within the range of [180◦/50◦, 180◦/0◦], as the VZA approaches
0◦, the received reflectance by the sensor decreases. When the VZA is 0◦, the sensor receives



J. Mar. Sci. Eng. 2023, 11, 1503 8 of 20

the minimum reflectance in the forward-scattering region. This reflectance characteristic
only applies to the azimuthal range of 0◦–180◦. For azimuth angles between 90◦ and 270◦,
the reflectance also increases as the VZA increases. At azimuth angles of 90◦ and 270◦,
and with the VZA around 50◦, the measured reflectance of CSI remains at its maximum in
that region.
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Figure 2. The reflection spectrum of CSI under different geometric conditions, (a) RAZ = 0◦,
(b) RAZ = 180◦, (c) RAZ = 90◦, and (d) RAZ = 270◦.

As shown in Figure 3, it can be observed that for OCSI, within the azimuthal range
of 0◦–180◦ in the forward-scattering region, the measured reflectance of contaminated
ice reaches its maximum when the VZA is equal to the SZA. As the VZA approaches
0◦, the received reflectance by the sensor decreases, reaching its minimum at a VZA of
0◦. In the backscattering region, when the VZA is 0◦, the sensor’s received reflectance
reaches its maximum. As the VZA gradually approaches the SZA, the received reflectance
decreases. When the VZA is close to the SZA, the reflectance value reaches its minimum.
The spectral response of contaminated sea ice exhibits a similar trend to that of CSI. Like
CSI, this spectral response trend applies only to the principal plane. When the azimuth
angle is between 90◦ and 270◦ at a VZA of 0◦, the received reflectance by the sensor is at
its minimum. As the VZA increases, the received reflectance also increases, reaching its
maximum at the maximum VZA.
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Figure 3. The reflection spectrum of OCSI under different geometric conditions, (a) RAZ = 0◦,
(b) RAZ = 180◦, (c) RAZ = 90◦, and (d) RAZ = 270◦.

After exploring the spectral response characteristics of CSI and OCSI, it was found that
sea ice exhibits different spectral response characteristics in different situations. To identify
suitable spectral bands for effective discrimination of sea ice before and after pollution, this
study employed the spectral standard deviation analysis method described in the previous
section to identify characteristic wavelengths. The results are shown in Figure 4, where the
solid line is the absolute difference in reflectance between OCSI and CSI, and the part of
the dashed line is the sum of their standard deviations. In these characteristic wavelengths,
the spectral features of sea ice exhibit significant variations corresponding to changes in the
observation angles. Combining these results with the reflectance difference map shows that
the reflectance of OCSI is significantly lower than that of CSI in the 400 nm–1300 nm range.
Within this range, the reflectance difference is maximized at around 560 nm wavelength.
Based on this method, the 560 nm wavelength was selected as the characteristic wavelength,
and the measured data in this wavelength were used to fit various BRDF models to further
investigate the fitting performance of each model.
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3.2. BRDF Fitting Results

When constructing a model, the reflectivity value at the wavelength with the largest
difference is selected under different observation geometries, which is taken as the depen-
dent variable, while the observation geometric angle is taken as the independent variable,
and the kernel coefficients corresponding to each kernel function of the model are finally
determined. The measured data used in this analysis are the reflectance measurements at
the 560 nm wavelength. The fitting performance of the five models for the reflectance data
of CSI and OCSI was compared and analyzed. Firstly, the models were simulated for CSI,
and the results are shown in Figure 5. When the observed azimuth angle is in the range of
0◦–180◦, it can be observed from Figure 5a that all five models exhibit spectral response
characteristics consistent with CSI in the entire principal plane in the forward-scattering
region. When the observation is in the backward-scattering region, the reflectance decreases
as the VZA approaches the SZA. Among the five models, only the Wa and WaRoLstRPV
models satisfy this trend, which is consistent with the measured data. The other models
show similar reflectance variations corresponding to the measured data in the forward-
scattering region. However, in the backward-scattering region, the R-LiSpr, Qu-R, and
Qu-LiSpr-RrRPV models show an increasing trend in reflectance with increasing observa-
tion angle, which is different from the measured data. As shown in Figure 5b, when the
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observed azimuth angle is in the range of 90◦–270◦, all five models can effectively fit the
spectral response variations of CSI at this azimuth angle. They exhibit a minimum value
at 0◦ observation and increased fitted reflectance values as the VZA increases. However,
when comparing the five models, it can be observed that only the proposed kernel-driven
model in this study shows a high level of consistency with the measured reflectance data in
this plane. Among the other models, only the Wa model roughly matches the measured
data, but there are still differences between the fitted data and the measurements at certain
VZA. Comparing the fitting results of the Wa model and the WaRoLstRPV model, it can be
seen that there is no significant difference in the fitting of the two models to the measured
data in the forward-scattering region. Both models overlap well with the measured data.
However, in the backward-scattering region, the WaRoLstRPV model shows the best fitting
performance to the measured data between the two models.
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To verify the fitting performance of these models for the reflectance data of oil-polluted
sea ice, this study combined the measured data of oil-polluted sea ice to examine the
consistency and differences between the fitted data and the measured data. As shown
in Figure 6a, when the azimuth angle is in the range of 0◦–80◦, the measured reflectance
decreases throughout the entire observation range as the VZA changes from 180/50 to 0/50;
however, the rate of decrease in reflectance is not consistent across different observation
intervals. In the forward-scattering region, the reflectance decreases significantly as the
VZA increases. In the backward-scattering region, the measured reflectance changes with
a minor trend. When comparing the fitted data obtained from different models, only
the WaRoLstRPV model exhibits the same trend and highly overlaps with the measured
data at each observation angle. Although the Wa model shows a similar trend in its
fitted data to the measured data in the forward-scattering region, it does not work well in
the backward-scattering region. While the remaining models follow an overall trend of
decreasing reflectance with an increasing angle in all observation intervals, they do not
match the decreasing trend of the measured data. The fitted data from these models also
do not maintain a high consistency with the measured data at each observation point.
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As shown in Figure 6b, when considering an azimuth angle range of 90–270◦, the
observed reflectance of vertically contaminated sea ice exhibits a distinct variation pattern
from that of the main plane. Notably, it demonstrates a symmetric behavior around a VZA
of 0◦, in which the reflectance changes in the forward- and backward-scattering regions
show an opposite trend. Within the forward-scattering region, the measured reflectance
attains its maximum value at a VZA of 40◦. As the VZA gradually approaches 0◦, the
reflectance values progressively decrease, reaching a minimum at 0◦. Conversely, as the
VZA increases, the reflectance values exhibit an opposite trend, gradually increasing. In
the vicinity of 40◦ within the backward-scattering region, the reflectance values peak and
subsequently experience a substantial decrease with further increases in the VZA. Based on
the observed reflectance values and the fitted data trends of the five models, it is evident that
the R-LiSpr, WaRoLstRPV, and Qu-LiSpr-RrRPV models can better capture the observed
data trends. On the other hand, the remaining two models do not align with the observed
data trends. Among the three models that exhibit the desired data trends, the WaRoLstRPV
model demonstrates the best-fitting performance.

Based on the above analyses, it is established that the WaRoLstRPV model, developed
within this study, exhibits good fitting performance for both CSI and OCSI reflectance
spectral data. To validate the fitting effectiveness of the proposed kernel-driven model
specifically for CSI, an absolute difference calculation was performed by comparing the
measured data before and after ice contamination with the corresponding fitting results.
This approach further illustrates the high fitting accuracy achieved by the constructed
kernel-driven model.

As shown in Figure 7a, the proposed WaRoLstRPV model in this study exhibits a
stable absolute difference between the fitting and observed data, with values hovering
around zero and fluctuating within a small range across the entire range of observations.
When the VZA is 180/50 or 0/50, the difference between the measured values of CSI and
the fitting values of the model is minimal and can be considered negligible. For other
observation angles, the fitting values are approximately equal to the measured values,
aligning with expectations. The fitting performance of the Wa model surpasses that of
other commonly used models for CSI surfaces. The difference in reflectance between the
fitting and measured values of the Wa model also fluctuates within a small range around
zero; however, it can be observed that there are certain discrepancies between the fitting
performance of the Wa model and the WaRoLstRPV model at certain observation angles.
Models such as the R-LiSpr, Qu-R, and Qu-LiSpr-RrRPV exhibit significant differences
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when fitting their reflectance values of CSI to the measured values. The absolute difference
between the reflectance fitting and measured values is relatively low when the VZA is
near 0◦. However, when the VZA increases specifically at 180/50 or 0/50, the absolute
difference reaches its maximum value, which deviates significantly from the overall trend
simulated by the proposed WaRoLstRPV model.
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The difference between the measured data and the fitting data for OCSI is shown
in Figure 7b. It can be observed that the WaRoLstRPV model exhibits a similar fitting
performance to CSI across all observation ranges. The absolute difference between the
observed and fitted values for polluted sea ice fluctuates around zero with a small mag-
nitude. For the Wa model, the fitting values are roughly similar to the measured values
when the VZA ranges from 270/30 to 270/10; however, noticeable differences exist for
other VZA. Regarding the R-LiSpr and Qu-R models, the absolute difference between the
fitting and observed values is highest when the VZA is 270/50. When the VZA is 270/40,
the fitting values of both models are nearly equal to the measured values, resulting in
the slightest difference. As the VZA gradually approaches 0◦, the absolute difference in
reflectance increases. When the VZA is 270/10, the reflectance difference exhibits a small
peak. With increasing VZA, the reflectance difference reaches its minimum around 90/20
and then gradually increases. The correlation coefficient between the WaRoLstRPV model
constructed in this study and the measured value is significant at a p-value less than 0.05.

4. Discussion and Analysis
4.1. Spectral Analysis

By combining the measured spectral data of CSI and OCSI shown in Figures 2 and 3, a
comparative analysis reveals that across the entire visible/near-infrared spectrum, in the
350 nm–1200 nm range, the reflectance values decrease with increasing wavelength. Within
the VNIR range, CSI exhibits a smooth decreasing trend with increasing wavelength. At
around 740 nm, there is an absorption feature in the reflectance spectrum of CSI; however,
OCSI does not exhibit a distinct absorption feature in that range. This feature could
potentially be used to distinguish between CSI and OCSI. Beyond 1200 nm, the reflectance
of CSI is very low. In this range, CSI behaves similarly to a total absorber, with little change
in reflectance as the wavelength varies. On the other hand, for polluted sea ice, there is
no prominent absorption peak in the spectral curve, regardless of the changes in azimuth
angle or VZA. This is due to the lack of significant absorption characteristics in polluted
sea ice throughout the wavelength range. Within the 350–500 nm range, the measured
reflectance decreases significantly with wavelength, while in the 500–1200 nm range, the



J. Mar. Sci. Eng. 2023, 11, 1503 14 of 20

decrease in reflectance is relatively gradual and the values slowly approach zero. Thus,
polluted sea ice can also be considered as a total absorber in this range.

The main difference between CSI and OCSI lies in the presence of a distinct absorption
dip at around 1000 nm in the reflectance spectra of CSI observed at various azimuth angles.
In contrast, polluted sea ice does not exhibit this absorption dip feature throughout the en-
tire wavelength range, which can be attributed to the presence of oil that alters the physical
properties of the ice surface. From the perspective of observation angle, the spectral values
of CSI show significant variations with changes in the VZA. However, for polluted sea ice,
changing the VZA does not significantly impact the spectral values, and the overall trend
remains relatively smooth. When the azimuth angle is in the range of 0◦–180◦, both CSI and
OCSI exhibit the characteristic of maximum reflectance values in the forward-scattering
region at angles approximately equal to the VZA. As the VZA gradually approaches the
backward-scattering region, the measured reflectance values decrease. When the azimuth
angle is in the range of 90◦–270◦, there is no common characteristic describing both CSI and
OCSI. This is precisely because the measured reflectance values of CSI and OCSI exhibit
different behaviors in terms of wavelength, VZA, and azimuth angle. Therefore, it is neces-
sary to research angle specificity and determine suitable wavelengths for distinguishing
between pre- and post-pollution sea ice before conducting field monitoring of oil spills.

4.2. Comparison of BRDF Models

To compare the differential fitting performance of the models for CSI and OCSI, this
study calculated the absolute difference between the observed data and the simulated data
separately for CSI and OCSI, and the results are shown in Figure 7.

When the observed surface is CSI, the absolute differences are shown in Figure 7a.
In contrast to the WaRoLstRPV model, the semi-empirical models, such as R-LiSpr and
Qu-R, cannot effectively fit the observed data throughout the observation range. This
is because these semi-empirical models are primarily designed for vegetation surfaces
where backscattering is stronger than forward scattering, and they do not consider the
characteristics of strong forward scattering on ice and snow surfaces. As a result, these
models cannot accurately fit the ice surface data, and their trend generally exhibits an
inverted V shape. In contrast, the WaRoLstRPV model provides an excellent fit to the
measured reflectance of CSI across the entire observation range and maintains consistent
fitting performance. The proposed model exhibits significant differences in fitting when
compared to the Qu-LiSpr-RrRPV model. This disparity arises from the use of Lisparse
as a geometric-optical kernel function, which assumes that the observed surface consists
of numerous identical convex points to calculate the geometric scattering component.
This kernel function strongly depends on the azimuth angle, resulting in a reduction in
forward scattering compared to other geometric-optical kernel functions and a significant
enhancement in backscattering. In contrast, the proposed model incorporates an influencing
factor that considers the forward-scattering region, enabling it to better fit the overall area
rather than solely focusing on the backscattering region. This consideration allows the
WaRoLstRPV model to fit the observed data well. Although the Qu-LiSpr-RrRPV model
accounts for the strong forward scattering in CSI, its fitting performance could be more
satisfactory. However, by incorporating additional parameters to address the forward-
scattering region, the Qu-LiSpr-RrRPV model could achieve better simulation results for
sea ice data. The Wa model, which is not semi-empirical, does not depend on the relative
azimuth angle between the sun and the observation direction. Instead, it takes into account
only the VZA and the SZA, and its fitting mechanism differs from other semi-empirical
models. As shown in Figure 5, when using this model to fit the reflectance values across the
entire observation range, there is no significant variation in fitting performance. The fitting
performance of the Wa model surpasses that of the other semi-empirical models by a large
margin. However, there is still some disparity when compared to the WaRoLstRPV model at
certain observation angles. To further investigate the performance of the constructed model
in simulating the observed data in the sea ice region, the root mean square error (RMSE)
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between the simulated values of each model and the observed values were calculated,
and the results are shown in Figure 8a. As depicted in the RMSE plot, the proposed
WaRoLstRPV model in this study achieves an RMSE value of 0.0031. The Wa model, which
exhibits superior performance in fitting the reflectance of CSI in the model fitting plot,
attains an RMSE value of 0.0087, significantly outperforming other models; however, a
noticeable gap exists between the Wa model and the model proposed in this study.
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As shown in Figure 7b, when the observed surface is OCSI, the WaRoLstRPV model
proposed in this study exhibits the best validation performance among the five models; this
is similar to CSI. The absolute differences are generally centered around zero, indicating
the excellent fitting performance of the model for both CSI and OCSI throughout the entire
observation range. This is attributed to the addition of Litransit as another geometric-
optical kernel function in the model. This function compensates for the weak fitting ability
of Lisparse for high-density coverings and the discrepancy in inferred equation parameters;
therefore, the WaRoLstRPV model is capable of providing good simulations for OCSI.
In contrast, the semi-empirical Qu-LiSpr-RrRPV model shows different fitting results for
OCSI surfaces. The Qu-LiSpr-RrRPV model, with the addition of the RPV kernel-driven
function, demonstrates good simulation performance for OCSI, with absolute differences
fluctuating around zero. This is in stark contrast to its performance in simulating CSI.
The significant improvement is mainly attributed to the RPV function, which addresses
the issue of excessive forward scattering in ice and snow surfaces, thus enhancing the
model’s ability to simulate OCSI measurements. On the other hand, the Wa model, which
performs well in fitting CSI, exhibits relatively poorer performance in simulating OCSI. This
is because polluted sea ice’s surface conditions are more complex than CSI. However, being
an empirical model, the applicability of the Wa model to various targets is limited due to its
empirical nature, resulting in more significant limitations. For other semi-empirical models
that do not include the RPV function or consider the influence of forward scattering as a
parameter, their ability to fit measurements of OCSI is greatly diminished. The plots of the
differences between fitted and observed values for these models exhibit a W-shaped pattern.

To demonstrate the effectiveness of the proposed model in simulating OCSI, a compar-
ison of the RMSE values for the five models was conducted. As depicted in Figure 8b, it is
evident that the WaRoLstRPV model achieves an RMSE of 0.0026, significantly outperform-
ing the other models.



J. Mar. Sci. Eng. 2023, 11, 1503 16 of 20

4.3. Optimal Observation Geometry Analysis

The occurrence of oil spills on ice surfaces is typically sudden, and timely monitoring
of such incidents often requires the utilization of satellites for data acquisition. This enables
further determination of the oil spill area and guides practical actions. In this study,
commonly used oceanic satellites were selected based on the abovementioned purpose,
leveraging the knowledge obtained in this research. The common satellite parameters are
presented in Table 2.

Table 2. Common satellite parameters.

Satellite Name Sensor Name Central Wavelength (nm) Maximum Angle

PARASOL
POLDER-3

443 nm, 490 nm, 565 nm, 670 nm,
763 nm, 765 nm, 865 nm 60◦–70◦ADEOS

TERRA MODIS 500 nm 55◦

HY-1C On-Satellite Calibration Spectrometer 385 nm, 565 nm, 670 nm, 865 nm -

The selected satellites are commonly used for ocean surface remote sensing. From their
central wavelength and maximum VZA, it can be observed that the WaRoLstRPV model
proposed in this study can effectively distinguish between CSI and OCSI in the vicinity of
the 560 nm wavelength. This model can differentiate whether sea ice is contaminated or not.
The model performs best in the backward-scattering region near 180/40, corresponding to
the SZA. As mentioned above, the central wavelength and VZA designed for the satellites
are suitable for the proposed model. Therefore, this model can effectively use real-time
observational data obtained from popular satellite sensors and can be applied successfully
in practical oil spill monitoring activities on sea surfaces.

The reflectance obtained by the sensors varies depending on the observation geometry.
In this study, the WaRoLstRPV model was used to simulate the reflectance of OCSI and CSI
at specific wavelengths under different observation geometries. The difference in reflectance
between OCSI and CSI was calculated (Figure 9). A larger difference in reflectance between
OCSI and CSI indicates a greater potential for distinguishing between them.

Figure 9 demonstrates the reflectance difference between OCSI and CSI, and the value
varies with different observation geometries. The reflectance difference between CSI and
OCSI is significant, particularly in the characteristic wavelength range, indicating higher
reflection energy in that direction. This makes it more effective in distinguishing whether
sea ice is contaminated by oil. As shown in the figure, it can be observed that the reflectance
difference of contaminated sea ice is slight in the principal vertical plane, while within the
relative azimuth angle range of 250◦ to 290◦ and at a VZA of 50◦, the reflectance difference
is the largest. The overall trend shows that as the VZA increases, the reflectance difference
also increases. Therefore, for monitoring OCSI, larger observation angles are more suitable,
particularly within the relative azimuth angle range of 250◦ to 290◦.

Based on the model fitting and the calculated values shown in Figure 9, we analyzed
the values at the wavelength of 560 nm. Figure 9 demonstrates that, at this particular
wavelength, there is a relatively large difference in reflectance between CSI and OCSI
under certain observation geometries, indicating the potential of using optimal observation
geometry for distinguishing between CSI and OCSI. However, it is important to note that
in practical observations, differentiating oil-contaminated sea ice cannot solely rely on
the reflectance difference at a single wavelength. Instead, it is necessary to consider the
reflectance differences at multiple wavelengths and combine them in order to achieve
effective detection of oil-contaminated sea ice.
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Please note that when SZA changes, the reflectance values of OCSI and CSI also vary,
leading to changes in their difference under different observation geometries. Consequently,
this can result in different optimal observation zenith and relative azimuth angles. There-
fore, when we refer to the “optimal observation geometry” in this context, we specifically
mean the optimal observation geometry under the fixed SZA condition. This limitation
should be considered when interpreting the results.

4.4. Future Research Directions

In future research, we aim to explore more remote sensing features that can be used to
differentiate between CSI and OCSI by considering polarization characteristics and infrared
emission spectra. Additionally, we aim to enhance the capability of remote sensing for
oil spill detection in IISWs by integrating reflectance spectra, polarization, and infrared
emission spectra. Given that the construction of the proposed BRDF model in this study
utilized observations only from RAZ angles of 0◦, 90◦, 180◦, and 270◦, we aim to further
validate the model’s fitting performance on other planes. To achieve this, we plan to refine
the observation angles, such as reducing the RAZ interval to 30◦ and VZA interval to 5◦.

For spectral features within the visible-to-near-infrared range, we primarily utilize the
distinct reflectance spectral differences between OCSI and CSI at the same wavelengths
to further identify oil pollution. Under the influence of sun glint, the spectral features
of OCSI and CSI at the same wavelengths are significantly affected by the glare from the
sun. However, polarization characteristics [33,34] can effectively reduce or even eliminate
the impact of sun glint, allowing OCSI and CSI to exhibit distinct spectral features at the
same wavelengths and facilitating their differentiation. In practical oil spill monitoring in
IISWs, sunlight conditions are often weak, resulting in low reflectance energy for both OCSI
and CSI, making it challenging to differentiate them in the visible-to-near-infrared range.
Thermal infrared emissivity [7] does not depend on external light sources but relies on the
emission characteristics of OCSI itself. Therefore, it can serve as a complementary method
for oil spill detection in the visible-to-near-infrared range under low-light conditions and
improve the capability of remote sensing for oil spill monitoring in IISWs. In addition,
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by incorporating a large amount of data, deep learning [35,36] can be used for model
construction and analysis.

5. Conclusions

In this study, we conducted experiments to measure the reflectance of OCSI under dif-
ferent observational geometries. We obtained distinct spectral features of sea ice reflectance
before and after oil contamination. By employing spectral standard deviation, the spectral
characteristics of CSI and OCSI were analyzed, identifying the optimal wavelengths within
the VNIR range for distinguishing CSI and OCSI. Based on the analysis of the reflectance
of CSI and OCSI at different observation angles, we proposed a semi-empirical linear
kernel-driven model, the WaRoLstRPV model, to describe the directional characteristics
of the reflectance of CSI and OCSI. We compared the performance of the proposed model
with the R-LiSpr, Qu-R, Qu-LiSpr-RrRPV, and Wa models, which are some commonly
used kernel-driven BRDF models. The fitting results demonstrated that the proposed
model performed significantly superior compared to the other models. By simulating the
differential reflectance in all directions, the optimal observation geometry to detect OCSI
was analyzed. This optimal observation geometry could provide a reference for oil spill
detection in IISWs.

There are certain limitations in this study. Although our sea ice was formed by freezing
real seawater under natural conditions, we did not consider the influence of different ice
thicknesses on the research results. Additionally, we did not take into account the impact
of different types of oil on the research results, which requires further in-depth study in
the future. Finally, it is important to note that in practical oil spill monitoring, not only
the differences in spectral reflectance need to be considered, but also the influence of
spatial resolution.
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