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Abstract: Underwater optical imaging devices are often affected by the complex underwater en-
vironment and the characteristics of the water column, which leads to serious degradation and
distortion of the images they capture. Deep learning-based underwater image enhancement (UIE)
methods reduce the reliance on physical parameters in traditional methods and have powerful fitting
capabilities, becoming a new baseline method for UIE tasks. However, the results of these methods
often suffer from color distortion and lack of realism because they tend to have poor generalization
and self-adaptation capabilities. Generating adversarial networks (GANs) provides a better fit and
shows powerful capabilities on UIE tasks. Therefore, we designed a new network structure for the
UIE task based on GANs. In this work, we changed the learning of the self-attention mechanism by
introducing a trainable weight to balance the effect of the mechanism, improving the self-adaptive
capability of the model. In addition, we designed a feature extractor based on residuals with multi-
level residuals for better feature recovery. To further improve the performance of the generator, we
proposed a dual path discriminator and a loss function with multiple weighted fusions to help model
fitting in the frequency domain, improving image quality. We evaluated our method on the UIE task
using challenging real underwater image datasets and a synthetic image dataset and compared it to
state-of-the-art models. The method ensures increased enhancement quality, and the enhancement
effect of the model for different styles of images is also relatively stable.

Keywords: underwater image enhancement (UIE); underwater image recovery (UIR); generative
adversarial networks (GANs); deep learning; adaptive enhancement

1. Introduction

The rapid development of underwater intelligence bodies, such as autonomous under-
water vehicles (AUVs) and unmanned underwater vehicles (UUVs), has made the human
exploration of marine resources possible. The development and conservation of aquatic
resources have become increasingly important globally and the focal point of international
strategic development due to their abundance. Underwater vision is the most direct and
effective way for an underwater intelligent body to perceive its environment, as well as the
key to the human observation of the underwater environment and the state of the robot.
However, due to the complex underwater environment, the images taken by the underwa-
ter optical imaging equipment often suffer from severe color distortion, underexposure,
and blur, leading to serious degradation and poor quality [1,2].

Research on underwater image enhancement (UIE) methods is very significant. On the
one hand, compared with raw images, underwater robots can obtain more meaningful
feature information from enhanced images, which is the key to accomplishing underwater
advanced vision tasks (e.g., target tracking) with high quality and performance. On the
other hand, UIE tasks have excellent implications for tasks such as resource exploration, as
enhanced images and videos can help human beings to discover more marine resources.
In recent years, more and more scholars have become interested in UIE tasks, proposing
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many methods to enhance degraded images. However, these approaches are constrained
by different conditions and still face many challenges. Some traditional methods, such
as image processing-based methods and model-based methods, are constrained by com-
plex environments and physical parameters and often show poor enhancement ability.
Although deep learning-based methods solve these problems to some extent; they are
still accompanied by severe color distortion in their enhancement results, and they have
weak generalization ability and unstable enhancement results for different styles of images.
Notably, these problems are particularly evident in images with significant feature loss.

Generative adversarial networks (GANs) have more powerful fitting capabilities and
have achieved significant results in many computer vision tasks [3–5], and many schol-
ars have proposed some satisfactory UIE models based on GANs. However, the above-
mentioned problems have not been effectively solved in most of the works. The work of
Guo et al. [2] showed that the capability of the feature extraction module has a significant
impact on the effectiveness of the UIE task. Therefore, we propose a more capable and
efficient feature extraction module based on self-attention and multi-level residual. In addi-
tion, we find that the model trained using time-domain loss functions still has some bias
in the frequency domain despite the enhancement effect, which leads to a decrease in the
quality of the enhanced results. Based on this finding, we propose a dual path discriminator
model and a frequency domain loss function. Overall, we propose an adaptive UIE method
based on GANs, which we refer to as AUIE–GAN.

Overall, the principal contributions of this paper are as follows:
(1) An efficient and powerful feature extraction module and a new generator struc-

ture. We have changed the learning of the self-attention mechanism by introducing a
trainable weight to balance the effect of the mechanism, improving the self-adaptive capa-
bility of the model. Based on this, we have designed a feature extractor based on residuals
with multi-level residuals for better feature recovery. Based on the module in addition, we
have improved the standard U–NET structure by introducing global feature vectors and
self-attention skip connection, which could improve the model’s ability to grasp global
information and improve the global features of enhanced images (see Section 3.1).

(2) A new discriminator structure and a frequency loss function. We propose a loss
function in the frequency domain and use a dual path discriminator to consider enhanced
images in both time and frequency domains (see Section 3.2).

(3) State-of-the-art enhancement. We show that the performance of AUIE–GAN on
different test datasets produces better processing results than SOTA models (see Sections 4.3
and 4.4). Figure 1 shows a preliminary comparison of the enhancement results in terms
of subjective.

240 Paired SUID datasets 890 Paired UIEB datasets

Training paired images A test input image  

(not in training data)

AUIE-GAN FE RCP DAC

Real underwater images enhanced by different methods on the input image 

FUnIE-GAN MLFcGAN

Semi-UIRPUIE-NETNU^2NETShallow-UWNetUWGAN
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Figure 1. Enhancement comparison of different methods. In this paper, we trained AUIE–GAN on
1130 images and compared it with 10 alternative approaches.
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2. Related Work

With the continuous development of underwater vision technology, UIE tasks have
received widespread attention from related scholars in recent years. In general, the devel-
opment of UIE tasks can be divided into the following parts.

2.1. Enhancement-Based Methods

These methods can obtain high-quality enhanced images by changing the pixel values
in a single degraded underwater image [6]. After changing, the image has a satisfac-
tory distribution. Some traditional works belong to this method including white balance
(WB) [7], Retinex [8], and traditional contrast limited adaptive histogram equalization
(CLAHE) [9]. For example, Li et al. [10] designed a segmented linear function for histogram
transformation, adapting to the entire RGB values. The images processed by this method
had more details on the RGB three channels. The CLAHE color model [11] applied a
hybrid contrast adaptive histogram equalization method to the RGB and HSV models,
effectively improving the underwater image quality, enhancing the contrast, and reducing
noise. Tang et al. [12] proposed a new UIE algorithm based on adaptive feedback and
the Retinex algorithm. The algorithm improved the color saturation, color richness, lo-
cal contrast, and sharpness of underwater images through a series of operations such as
adaptive feedback adjustment, guided filtering, and pixel fusion. Li et al. [13] proposed an
underwater image dehazing algorithm based on the minimum information loss principle
and a contrast enhancement algorithm based on a histogram distribution prior, which could
be used to enhance degraded underwater images when we need to obtain more details
from those. Zhang et al. [14] proposed an UIE algorithm based on extended multiscale
Retinex. It could obtain enhanced images with better visual effects by combining bilateral
and trilateral filtering of the three channels of the image in CIELAB color space according
to the characteristics of each channel. FE [15] is a fusion-based strategy for enhancing
underwater images and videos. It is a single−image method that effectively improves
features such as contrast and enriches the detail information of an image just by deriving
the inputs and weights from the degraded image.

Although these methods can enhance degraded images in most cases, they often under-
enhance or over-enhance images with challenging scenes because they do not consider the
degradation model.

2.2. Restoration-Based Methods

These methods estimate the parameters in the degradation model and obtain high-quality
enhanced images by inverse-solving the degradation model. Red channel prior (RCP) [16],
maximum intensity prior (MIP) [17], underwater light attenuation prior (ULAP) [18], Dark
channel prior (DCP) [19], and underwater dark channel prior (UDCP) [20] belong to this
method. Nicholas et al. [18] proposed a simple and effective a priori knowledge to estimate
the scene’s depth using the attenuation difference between the three image color channels
in water. Yang et al. [21] proposed an efficient and low-complexity underwater image
enhancement method based on dark channels prior. This method used median filtering to
estimate the depth map of the image and a color correction method to enhance the contrast
of the underwater image. Wang et al. [22] simplified the underwater light propagation
model into a transmission model and proposed the maximum attenuation identification
method based on it. They used this method to extract the depth map of underwater
images for underwater image recovery. Paulo et al. [20] proposed a dark channel based
on observing the R channel’s absorption rate in many underwater images to recover high-
quality images (UDCP). However, the variability of the underwater scene makes UDCP
unstable, and the method requires many physical parameters and underwater optical
properties, so it is usually difficult to implement.

However, using atmospheric degradation models to estimate underwater images
can lead to deterioration in enhancement and poor quality. In addition, the complex
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underwater environment and uncertainty of physical parameters also make the model
modeling difficult.

2.3. Polarization Imaging-Based Methods

These methods are based on optical theory and they use the polarization properties of
light to model and enhance underwater images. They are also a significant branch of the
UIE task due to their low cost and high-quality enhancement [23]. Hu et al. [24] noticed the
non-uniform light situation caused by active illumination. They regarded the backscattered
light polarization as a spatial variable and derived the backscattered light polarization and
intensity by a three-dimensional fitting method, thus obtaining a clear underwater image.
In addition, to solve the degradation of the effect in the case of high turbidity, Hu et al. [25]
utilized the combination of circular polarization and linear polarization and obtained an
excellent enhanced image. Li et al. [26] combined polarization techniques with digital image
processing techniques to preprocess polarized images through histogram equalization
operations, and obtained enhanced images with rich details. Treibitz et al. [27] considered
the polarization characteristics of the target signal together with the classical polarization
equation, which can enhance underwater images efficiently. However, the method suffered
from a serious noise amplification problem. Han et al. [28] further considered forward-
scattered light and improved the enhancement quality by estimating the point diffusion
function for forward scattering, inverting the imaging model.

Although polarization imaging-based methods are characterized by high quality
and low cost, such methods suffer from high subjectivity, noise amplification, and poor
real-time performance.

2.4. Deep Learning-Based Methods

In recent years, deep convolution-based methods have become the preferred base
methods for UIE tasks because they can obtain high-quality enhanced images without
complex modeling. In addition, these methods reduce the dependence on parameters
in traditional methods and have higher generalization capability. Shallow–UWNet [29]
can reduce the number of model parameters while maintaining enhancement quality to
achieve lightweight enhancement. Guo et al. [30] proposed a normalization method for
the tail of UIE methods, which can effectively enhance the enhancement of UIE methods.
Fu et al. [31] proposed that UIE is a one-to-many task, where one input corresponds to
multiple outputs. Therefore, they combined conditional variational autoencoder (cVAE)
with adaptive instance normalization methods to propose PUIE–NET with a high diversity
of enhanced results. However, these results are not bright enough in color and there
is some fogging effect. UIEC^2–Net [32] efficiently and effectively integrates both RGB
Color Space and HSV Color Space in one single CNN and obtains high-quality images.
Successively captured underwater images are usually accompanied by the same type
of degradation, and the images can integrate with each other. Qi et al. [33] proposed a
cooperative processing and joint learning strategy in the same scene, which can process
multiple images at once and obtain better enhancement results.

Generative adversarial networks (GANs) have been widely used in various tasks
of computer vision with great success because of their own powerful fitting ability [3–5].
In recent years, many UIE works have used generative adversarial networks as their
baseline model, obtaining higher-quality images. Inspired by the cycle consistency loss of
Cycle–GAN, Li et al. [34] designed a multinomial loss function, and proposed a weakly
supervised color transfer method to correct the color. UWGAN [2] proposed a multi-scale
feature extraction module and obtained enhanced images based on GANs. However,
the images obtained by UWGAN have color distortion and checkerboard artifacts, and the
quality needs to be improved. FUnIE–GAN [35] is a real-time enhancement network, but the
quality of the enhancement is lower due to the fewer parameters. The MLFcGAN [36] used
global features to enhance local features at each scale to perform color correction and image
detail preservation. Wu et al. [6] proposed a multi-scale fusion enhancement method based
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on GANs to improve the enhancement and generalization ability of the model by encoding
and combining three different priors.

We propose AUIE–GAN, a UIE method based on GANs. Compared with enhanced-
based methods, AUIE–GAN has better enhancement quality and adaptivity, and its pro-
cessing performance is robust to different scenes; unlike restoration-based methods and
polarization imaging-based methods, AUIE–GAN does not require complex modeling
steps and has faster processing speed. In conclusion, the proposed method achieves better
enhanced qualitative and quantitative results than existing methods.

3. Methods
3.1. Generator Architecture

Ref. [2] stated that the feature extraction ability of the generator directly affects
the number and quality of features that can be learned by the model from degraded
images, which directly affects the enhancement quality. In our AUIE–GAN, we designed
an Encoder–Decoder structure generator based on the U–Net [37]. The inputs and outputs
of U–Net have the same size, and it is the most commonly used network structure for end-
to-end models and is widely used for various types of vision tasks [35,37]. The difference
is we propose to use an efficient and powerful feature extraction module in the backbone
of the U–Net. Moreover, we combine self-attention skip connecting with global feature
embedding in the up-sampling stage to improve the global ability of the model.

Self-attention mechanism has been successfully applied to computer vision tasks
because it can focus on the correlation between pixel points at different locations in an
image. Although the degradation of the underwater images is uniform, with the entire
image exhibiting almost the same degradation style, the degree of degradation of different
images is again diverse and uncontrollable, which leads to the standard self-attention
mechanism not being able to learn the complex degradation style and reduces the self-
adaptive capability of the model. Through numerous experiments, we found that this
problem can be solved using a simple method. In this paper, we propose to use a trainable
weight to balance the output of the self-attention block, shown in the bottom right corner
of Figure 2.
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Figure 2. Self-Attention Residual Module. WSAM is the weight self-attention module, and the
topology is shown in the bottom right corner. CIL blocks are used to change the number of channels
of the image to facilitate feature computation. In the CIL block, we use a 3× 3 convolution, an
instance normalization, and a Leaky-Relu activation function.

Several end-to-end UIE models have used complex multi-scale convolutional modules
to improve the feature extraction capability of the model [2]. The U–Net-based end-to-
end UIE method uses an encoder to convert the input image into coded information in
the latent space and achieves the enhancement of the image by processing the latent
vectors accordingly. These complex multi-scale convolutional modules indeed improve
the handling of hidden vectors and enhance the quality of enhancement. Based on this,
in this paper, we use multi-level residuals, which allows the model to learn more useful
information and improve enhancement by simply computing different fusion features at
different stages; we refer to this module as Self-Attention Residual Module (SARM).
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Based on SARM, we propose a new generator topology, shown in Figure 3. The struc-
ture is based on an improved U–Net as the main structure. In the structure, we have
consider color priori information using global feature vectors, which are considered by [38]
to eliminate artifacts that appear in enhanced images in image enhancement tasks. Because
there are often uniform color projections in underwater images, inspired by [38], we have
embedded these global vectors with color projection information at the start of the up-
sampling operation. Moreover, we have added the self-attention mechanism in the middle
of the skip connection, which can help the network recover the features better. In details,
we have replaced all Batch Normalization (BN) layers with Instance Normalization (IN)
layers because BN layers show a significant weakening effect when trained in a small batch.
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Figure 3. Generator structure in the AUIE–GAN. In this paper, both input and output image sizes are
2562. The right side of the figure shows the residual block structure used in this paper, which is used
three times in our AUIE–GAN. In the figure, IN is an instance normalization operation, L–Relu is a
Leaky–Relu function, and N–UP–Smp is the nearest up-sample operation.

3.2. Discriminator Architecture

Ref. [39] proposed that the Fourier transform changes the spatial coherence of the
image, and it is not possible to use convolutional neural networks to extract the features of
the spectrogram. Therefore, in this paper, we propose a dual path discriminator to consider
enhanced images in both time and frequency domains. The discriminator can be divided
into a time domain path and a frequency domain path, as shown in Figure 4. It is worth
noting that the time domain here is relative to the frequency domain and is not the real
existing time axis. On the time domain path, the input is a combination of a degraded
image and a reference or enhanced image. We used a Patch–GAN structure to extract
feature information from the input images. In addition, we used a spectral normalization
operation to stabilize the training of GANs, which is shown to have significant effects on
the generation task [40]. We input spectrograms corresponding to the inputs on the time
domain path to the frequency domain path, which was composed of fully connected layers.
At the end of the frequency domain path, we used a single neuron to output the probability.
Finally, this probability was mapped to the same scale as the probability matrix of the
time domain path by replication and weighted superposition to obtain the final probability
matrix. It is well known that the discriminator is used to determine the source of the input
image and to guide the generator in updating the weights during the backpropagation
process. The output of the dual-path discriminator considers the authenticity of the input
image from both time and frequency domains, which can further improve its guiding
ability. In addition, different from the standard GAN’s discriminator, we used tanh as the
activation function of the output layer to accommodate the hinge loss. The structure of the
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discriminator of the AUIE–GAN is shown in Figure 4. Therefore, the output probability
matrix is:

D(·) = αtDt + (1− αt)D f (1)

where αt is the weight of the two path outputs of the dual-path discriminator, Dt is the
probability matrix of the time-domain path outputs, and D f is the probability matrix of the
frequency-domain path outputs.
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Figure 4. Discriminator structure of the AUIE–GAN. In the time domain path, we set the stride of the
convolution layer to 2 to complete the down-sampling instead of the pooling layer. In the frequency
domain path, all fully connected layers except the last one have 512 neurons. The LN in the figure is
the layer normalization operation.

3.3. Loss Functions

We found that the performance of GANs-based models trained with single or fewer
losses tended to be limited, and these models did not better represent their advantages in
UIE tasks. Although several image translation works have proposed many effective loss
functions in recent years, there are no UIE works that integrate the rich loss functions and
train their GANs-based models. We found that the weighted fusion of loss functions with
different capabilities can lead to further enhancement of the models by choosing reasonable
weights. In this paper, we trained our AUIE–GAN using a loss function with multiple
weighted fusions.

In this section, the following definitions are available: x is the ground-truth image
(GT), y is the degenerate image, and z is the enhanced image output by the generator of
the AUIE–GAN.

We used a hinge loss of GANs to improve the stability of the training, which is
mathematically expressed as:

LH(G, D) = LD + LG (2)

LD = E[max(0, 1− D(x))] + E[max(0, 1 + D(G(y)))] (3)

LG = −E[D(G(y)] (4)

where D(x) is the probability that the image input to the discriminator is the GT image,
and D(G(y)) is the probability that the image input to the discriminator is the enhanced
image.
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We trained L1 and L2 losses alternately to avoid fitting problems when training with
a single loss, and we referred to this alternate training as the L loss. The loss can be
expressed as:

lossL =


1
N

N
∑

i=1
|xi − zi| epochs%200 < 100

1
N

N
∑

i=1
(xi − zi)

2 epochs%200 > 100
(5)

where, in this paper, we used an alternation frequency of 100 epochs.
SSIM loss is a common objective function in image translation tasks, which can

effectively enhance the quality of enhanced images. It can be expressed as:

lossS = 1− SSIM(x, z) = 1− (2µxµz + C1)(2σxz + C2)

(µ2
x + µ2

z + C1)(σ2
x + σ2

z + C2)
(6)

where µx and µz denote the mean value of each image pixel, σx and σz are the unbiased
estimate of the standard deviation of the image, σxz is the correlation coefficient of the two
images, and C is constant.

Enhanced images often suffer from feature-level color loss because L loss neglects
phase angle information between pixels [41]. Ref. [42] proposed image processing using
Gaussian blurring, preserving only color information and fitting at the color level. This
operation can be expressed as:

lossC = ‖Zb − Xb‖2
2 (7)

where Zb and Xb are the blurred images of z and x.
The perceptual loss [43] can be fitted to the features of the image in the latent space,

which improves the quality of the image. It can be expressed as:

lossV =
1
N

N

∑
i=1

(VGG(xi)−VGG(zi))
2 (8)

where VGG(·) is the output of the Conv4–3 layer in the pre-trained VGG16 network.
Actually, the difference between the enhanced image and the ground-truth image

is also evident in the spectrum, and this bias causes different degrees of loss of certain
feature information (e.g., texture, color, etc.) in the enhanced image. Unfortunately, the loss
function in the time domain does not solve this problem well [2,35,36,39]. Therefore, we
propose to fit distributions on the frequency domain.

In this section, we assumed that F(a, b) is the frequency domain information after the
FFT transform of the image. The information can be expressed as Equation (9).

Fqm(a, b) = aqm + bqmi (9)

where qm denotes the image’s pixel with coordinates (q, m). In this paper, we use F(a, b) to
denote the enhanced image and F(a′, b′) to denote the ground-truth image.

In contrast to existing work, we discussed amplitude and phase separately to ensure
reasonableness. The loss of amplitude and phase in this paper can be expressed as:∣∣F(a, b)− F(a′, b′)

∣∣2 = (a− a′)2 + (b− b′)2 (10)

∣∣∠F(a, b)−∠F(a′, b′)
∣∣ = ∣∣∣∣arctan

b
a
− arctan

b′

a′

∣∣∣∣ (11)
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Therefore, we can obtain the loss function of amplitude and phase:

loss f a =
1

HWC

H

∑
q=0

W

∑
m=0

√
[(aqm − a′ qm)

2
+ (bqm − b′ qm)

2
]
2
+ ε2 (12)

loss f∠ =
1

HWC

H

∑
q=0

W

∑
m=0

√
[a′qmbqm − aqmb′qm]

2
+ ε2 (13)

where ε takes 1× 10−3, W, H and C denote the width, height, and channel of the image.
Finally, the frequency domain loss can be expressed as:

lossF = 0.5× loss f a + 0.5× loss f∠ (14)

Considering all the above loss functions comprehensively, the weights of each loss
were determined by repeated experiments and combined with experience. The total loss
function is:

Loss = LH(G, D) + λL × LL(G) + λS × LS(G) + λV × LV(G) + λC × LC(G) + λF × LF(G) (15)

We set λL = 2, λS = 15, λV = 4, λC = 20, and λF = 10.

4. Experiment
4.1. Datasets and Metrics

In this work, we trained our AUIE–GAN using paired UIEB datasets and part of SUID
dataset. UIEB is an underwater image benchmark dataset open-sourced by Li et al. [44]
in 2020. It consists of 890 pairs of real underwater images, with the reference images
selected from the best of various enhancement methods. The SUID datasets [45] acquire
30 ground truth images and algorithmically simulated degraded images with different
degradation levels, including fogging and blue-green tint. To demonstrate the performance
of the AUIE–GAN, on the one hand, we tested our AUIE–GAN on the real image datasets
which are Challenge60, U45, and RUIE datasets. On the other hand, we tested the model
on the SUID dataset because it is a synthetic dataset that can test the color realism of
the enhanced images. The Challenge60 and U45 datasets are common test sets of real
underwater images used in UIE tasks, and they include a variety of styles of degraded
images. The RUIE dataset [46] is the first large database of realistic underwater images
specifically set up for multi-angle algorithm evaluation, proposed by Liu et al. in 2020.
The RUIE dataset was sampled at Roe Deer Island near the Yellow Sea, with over 250 h
of video taken under natural marine ecosystems, covering a wide range of illumination,
depth of field, and color shift.

We quantified the effect of AUIE–GAN testing on real underwater image datasets
using the UIQM and UCIQE metrics, and the test results on synthetic datasets using the
SSIM and PSNR metrics. PSNR was used for image evaluation by mean square error (MSE).
It estimates the similarity between the target image and the enhanced image by comparing
their MSE values and is a standard evaluation metric in image enhancement. SSIM more
closely resembles human visual perception and evaluates the similarity of two images by
focusing mainly on edge and texture similarity. UCIQE evaluates enhanced images using a
linear combination of chromaticity, saturation, and contrast to quantify uneven color cast,
blur, and low contrast. UIQM is obtained by weighted summation of underwater image
color metric (UICM), underwater image sharpness metric (UISM), and underwater image
contrast metric (UIConM).

4.2. Implementations and Baselines

To train AUIE–GAN, we used 890 pairs of images in UIEB and 240 pairs of images
in SUID as the training set, which contains a total of 1130 pairs of images. In addition,
we trained AUIE–GAN for 400 epochs using the Adam optimizer with default parameter
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values (β1 = 0.9, β2 = 0.999). In addition to the loss function weights set in Section 3.3, we
set the learning rate = 1× 10−4 and set the output weights of the dual path discriminator
αt = 0.8. We converted input images to 2562 for model training. All experiments were
implemented using Tensorflow on an NVIDIA GeForce RTX 3090 GPU.

To demonstrate that AUIE–GAN promotes the development of the UIE task, we
compared it with the mainstream UIE methods in recent years, which include FE (2012) [15],
RCP (2015) [16], DAC (2022) [47] among traditional methods, FUnIE–GAN (2020) [35],
MLFcGAN (2020) [36], UWGAN (2020) [2], Shallow–UWNet (2021) [29], NUˆ2NET
(2022/SOTA) [30], PUIE–NET(2022/SOTA) [31] and Semi–UIR (2023/SOTA) [48] among
deep learning-based methods.

4.3. Results on Full-Reference Datasets

We tested the AUIE–GAN on the SUID dataset to demonstrate the fitting ability of the
model. The qualitative results are shown in Figure 5.

Raw FE RCP FUnIE-GAN MLFcGAN UWGAN Shallow-

UWNet
NU^2NET PUIE-NET Semi-UIR

traditional Deep Learning
2020 2023

DAC AUIE-GAN ReferenceRaw FE RCP FUnIE-GAN MLFcGAN UWGAN Shallow-

UWNet
NU^2NET PUIE-NET Semi-UIR

traditional Deep Learning
2020 2023

DAC AUIE-GAN Reference

Figure 5. Comparison of the enhancement effects on synthetic images. The four images on the left that
possessed different degrees and different styles of degradation were selected from the SUID dataset.

In Figure 5, compared to the degraded image, different methods showed diverse fitting
effects. Compared with other methods, FE, UWGAN, and our AUIE–GAN had significantly
excellent visualization results. Furthermore, we plotted the frequency distribution curves
of the degraded image, the enhanced image and the reference image, which can visualize
our enhancement results and further illustrate the contribution of AUIE–GAN to the UIE
task, as in Figure 6.

In Figure 6, the graphs on the left are frequency distribution of pixels on RGB space
for each degraded image. The faulty color projection in the image is caused by the high
frequency component of the corresponding channel. The graphs on the right are frequency
distribution of the corresponding enhanced image and the reference image. The enhanced
image has the same curve shape as the reference image, with the difference that the position
of the curve is shifted, which is expressed in the image as a difference in brightness
and contrast.

We sampled 71 images from the SUID dataset that had different degradation styles
for testing. The PSNR and SSIM metrics were used to quantify the test results of different
methods on the SUID dataset, as in Table 1.

On the SUID dataset, AUIE–GAN achieved the best PSNR and SSIM metrics, with a
1.52% improvement in PSNR metrics and a 0.02% improvement in SSIM metrics compared
to the second-best metrics. Referring to the qualitative experimental results, the results of
AUIE–GAN are more similar to the reference ground-truth image. In general, AUIE–GAN
achieved excellent enhancement results on the synthesized dataset, and the enhanced
images not only removed the color projection but also had clearer features and more
realistic colorimetry in the images.
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Figure 6. Comparison of the frequency distribution curves.

Table 1. Quantitative comparison results of different methods.

Baselines PSNR SSIM

Raw 12.2289 0.7598
FE (2012) 20.3589 0.8007

RCP (2015) 20.2441 0.8780
DAC (2022) 13.8407 0.7531

FUnIE–GAN (2020) 16.2501 0.8058
MLFcGAN (2020) 13.7275 0.5767
UWGAN (2020) 28.7628 0.9138

Shallow–UWNet (2021) 14.4293 0.6985
NUˆ2NET (2022) 23.2156 0.9300
PUIE–NET (2022) 19.6275 0.9028
Semi–UIR (2023) 22.3050 0.9192

AUIE–GAN (ours) 29.1992 0.9302
Red indicates the best metrics in each column, and blue indicates the second–best metrics in each column.

4.4. Results on Non-Reference Datasets

In this section, we tested AUIE–GAN on real underwater image datasets, which are
Challenge60, U45, and RUIE. In fact, the enhancement results on real underwater images
are more representative of the quality of the model because the realism of color bias present
in these images cannot be synthesised by algorithm. Therefore, we sampled images with
different degraded tones from above datasets for demonstration. Figures 7–9 show the
qualitative results on different datasets.

In these comparison methods, various methods had different enhancement effects on
each style of image. The FE method had high robustness, but it showed significant red
distortion when processing blue images. RCP only faded the degradation when processing
these images and did not do an excellent job (especially the blue images and green images).
The result of DAC achieved poor visual results because it only stretched in RGB space and
did not consider real underwater degradation models. FUnIE–GAN and Shallow–UWNet
improved the real-time performance by reducing the parameters of the model, so they
showed weaker performance in processing images with higher degradation. MLFcGAN
was designed to solve the color bias problem, but it still suffers from poor results when
processing these highly degraded images. UWGAN uses a complex feature extraction
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module to improve the enhancement quality, but some artifacts can appear in the enhanced
images. Moreover, the enhancement stability of the model was different when processing
different styles of images. Although NUˆ2NET and PUIE–NET achieved more pleasant
results, they also suffered from some problems, such as the low brightness and contrast of
the results of NUˆ2NET and the fogging effect of the results of PUIE–NET. Semi–UIR was
the latest deep learning-based UIE method, and it achieved more pleasant enhancement
results in our experiment. However, some enhanced images would appear blurred (the
bottom image in Figure 7). AUIE–GAN had better visual results for all styles of images,
they did not blindly increase brightness, contrast, and color, but targeted enhancement
of different features, which cannot be achieved without the role of our WSAM module
(Section 4.5 proved this point). However, qualitative analysis is highly subjective due to
the different preferences of users. Therefore, the performance evaluation of UIE methods
requires a combination of qualitative and quantitative results [48].

Raw FE RCP FUnIE-GAN MLFcGAN UWGAN
Shallow-

UWNet
NU^2NET PUIE-NET Semi-UIR

traditional Deep Learning
2020 2023

DAC AUIE-GANRaw FE RCP FUnIE-GAN MLFcGAN UWGAN
Shallow-

UWNet
NU^2NET PUIE-NET Semi-UIR

traditional Deep Learning
2020 2023

DAC AUIE-GAN

Figure 7. Comparison of results on the Challenge60 dataset. These images had different styles: blue,
green, haze, and low light. The boxes are examples, zoom in on the image to see better results.

We quantified the enhancement results using UIQM and UCIQE and presented them
in Table 2. Our AUIE–GAN achieves the best test results in most cases on three datasets.
Specifically, for the UIQM metric, AUIE–GAN improves over the second-best result by
4.99%, 3.86%, and 0.11% on the three datasets, respectively. For the UCIQE metric, our
AUIE–GAN achieved the best results on the Challenge60 and U45 datasets, with 0.17% and
2.70% improvement compared to the second-best results, respectively.

Considering the qualitative and quantitative experimental results together, we believe
that AUIE–GAN achieved pleasant enhancement results and obtained better processing
results compared to SOTA models.
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Complex underwater environments cause uncontrollable degradation of the images
acquired by underwater imaging equipment. Present UIE methods are weakly adaptive,
making them less effective in enhancing some specific image styles (e.g., the red noise
that appears in the FE method). To further illustrate the contribution of AUIE–GAN, we
divided U45 and Challenge60 into four categories according to degradation styles, which
are blue, green, haze, and low-light. Based on the classification, we performed independent
quantitative calculations for each class of images to evaluate the enhancement of different
models for different styles of images. The quantitative results are shown in Table 3 and
Figure 10.

Raw FE RCP FUnIE-GAN MLFcGAN UWGAN
Shallow-

UWNet
NU^2NET PUIE-NET Semi-UIR

traditional Deep Learning
2020 2023

DAC AUIE-GANRaw FE RCP FUnIE-GAN MLFcGAN UWGAN
Shallow-

UWNet
NU^2NET PUIE-NET Semi-UIR

traditional Deep Learning
2020 2023

DAC AUIE-GAN

Figure 8. Comparison of results on the U45 dataset. These images had different styles: green, haze,
and blue. Different from the images sampled in the Challenge60 dataset, these images suffered from
more severe degradation. The boxes are examples, zoom in on the image to see better results.

Raw FE RCP FUnIE-GAN MLFcGAN UWGAN Shallow-

UWNet
NU^2NET PUIE-NET Semi-UIR

traditional Deep Learning
2020 2023

DAC AUIE-GANRaw FE RCP FUnIE-GAN MLFcGAN UWGAN Shallow-

UWNet
NU^2NET PUIE-NET Semi-UIR

traditional Deep Learning
2020 2023

DAC AUIE-GAN

Figure 9. Comparison of results on the RUIE dataset. More detailed information on the comparison
graph can be viewed by enlarging the image.

From Table 3 and Figure 10, AUIE–GAN achieved better results in most of the experi-
ments, and the metric curves were smoother compared with other methods. The experi-
mental results indicate that AUIE–GAN can perform stable enhancement for underwater
images with different styles.
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Table 2. Comparison of objective evaluation of different methods.

Baselines UIQM (↑) UCIQE (↑)
U45 Challenge60 RUIE U45 Challenge60 RUIE

RAW 2.3821 2.9388 3.6634 0.3754 0.3590 0.3571
FE 4.1226 4.3528 4.8685 0.4791 0.4782 0.4464
RCP 3.5829 4.1845 4.7307 0.4365 0.4243 0.4047
DAC 3.6855 3.7572 4.8680 0.3274 0.3049 0.3354
FUnIE–GAN 4.3503 4.2946 5.3997 0.4000 0.3592 0.3633
MLFcGAN 4.2029 4.2923 5.3902 0.3909 0.3681 0.3740
UWGAN 3.9840 4.2963 5.4074 0.4836 0.5043 0.3887
Shallow–UWNet 4.0523 4.1125 5.3939 0.3704 0.3348 0.3719
NUˆ2NET 4.3921 4.4623 5.3521 0.4186 0.4125 0.4088
PUIE–NET 4.2863 4.0633 5.1813 0.3874 0.3772 0.3820
Semi–UIR 4.5154 4.3051 5.0206 0.4283 0.4357 0.4041
AUIE–GAN 4.7409 4.6346 5.4136 0.4844 0.5179 0.4326

Red indicates the best metrics in each column, and blue indicates the second-best metrics in each column.

Table 3. Comparison of enhancement results by styles.

Baselines Blue Green Hazy Low-Light
UIQM UCIQE UIQM UCIQE UIQM UCIQE UIQM UCIQE

RAW 2.1982 0.4229 1.8274 0.3857 3.7035 0.2788 4.2557 0.3322
FE 3.7578 0.4943 4.1200 0.4702 4.7638 0.4621 5.0450 0.4719
RCP 3.4218 0.4579 3.3204 0.4190 4.7891 0.4134 4.9475 0.3943
DAC 3.6714 0.3600 3.6919 0.3414 3.4419 0.2312 4.5746 0.2912
FUnIE–GAN 3.6850 0.3992 4.5069 0.3848 4.8411 0.3452 4.8492 0.3449
MLFcGAN 3.6804 0.3935 3.9696 0.3408 5.1186 0.3865 4.8290 0.3884
UWGAN 3.4863 0.4247 4.1250 0.3808 4.6873 0.4020 5.4309 0.4413
Shallow–UWNet 3.5399 0.3616 4.0139 0.3249 4.6907 0.3536 4.7070 0.3445
NUˆ2NET 4.0057 0.4295 4.4596 0.4052 4.7934 0.4124 4.9543 0.4028
PUIE–NET 3.7370 0.3888 4.2769 0.3818 4.4543 0.3783 4.6661 0.3713
Semi–UIR 3.8503 0.4312 4.6147 0.4113 4.6627 0.4422 5.1683 0.4611
AUIE–GAN 4.1562 0.4904 4.6068 0.4699 4.7696 0.4963 5.9332 0.5360

Red indicates the best metrics in each column, and blue indicates the second-best metrics in each column.

(b) (d)(a) (c)(b) (d)(a) (c)

Figure 10. Comparison of enhancement results by styles. We show the traditional enhancement
methods and deep learning-based enhancement methods separately. Graphs (a) and (c) represent
the UIQM and UCIQE metrics of the traditional approaches, respectively, while graphs (b) and (d)
represent the UIQM and UCIQE metrics of the deep learning-based approaches, respectively.

4.5. Ablation Study

We performed a series of ablation experiments to demonstrate the effectiveness of
our proposed method. To improve the model’s adaptive enhanced ability, we proposed to
use the weight self-attention module (WSAM). In this section, firstly, we investigated the
contribution of the WSAM to the model.
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On the one hand, we reduced the number of WASM from the full model (Model
Pruning) and used regular convolution layers to match the number of parameters of the
full model; on the other hand, we used WASM without trainable weights (WASM w/o tw)
in the full model.

The model pruning operation is shown in the Figure 11. We cut the complete model in
turn and filled it with different numbers of convolution layers.

The results were shown in Figure 12 and Table 4. We sampled four images with
different styles in the Challenge60 and processed them using the model with different
connections (see Figure 11).
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Figure 11. Pruning of SARM at different stages. (a) is the complete SARM, and (b,c) reduce one
WSAM in turn. Significantly, model pruning would break the flow of the feature maps, so we jumped
the connection to these locations where the corruption occurred. The role of the convolution layer
that appears in the figure was to balance the number of parameters of the model, and the size of the
perceptual field is 3.

Raw AUIE-GAN WSAM-2 WSAM-1 w/o twRaw AUIE-GAN WSAM-2 WSAM-1 w/o tw

Figure 12. Visual comparison of different pruning situations. WSAM-n represents the number of
WSAM in each SARM as n. tw represents the trainable weights w in the WSAM.

Table 4. Comparison of objective evaluation metrics in different pruning situations.

Raw WSAM-1 WSAM-2 w/o tw AUIE–GAN

UIQM 2.9388 4.1141 4.3672 4.2390 4.6346
UCIQE 0.3590 0.4133 0.4104 0.4173 0.5179

Qualitatively, the number of WSAM corresponded to the quality of the enhanced
image. As the number increased, the enhanced image was not only significantly optimized
in terms of global features such as brightness and contrast, but also the details of the
features were gradually enriched and the image was more detailed. When the trainable
weights were removed from the model (the last column in Figure 12), there was a single
enhancement effect in the processed image, although there was no collapsing drop in the
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enhancement effect. Specifically, these results simply removed the color projection from the
input image and were not targeted to the specific image.

Quantitatively, the complete model achieved the highest values of evaluation metrics.
Incomplete models showed varying degrees of indicator jitter, which may be caused by
changes in the signal flow of the model during the pruning process. Compared to the model
with a single WSAM module, the complete model improved by 12.65% in the UIQM metric
and 25.31% in the UCIQE metric; the trainable weight also had a significant improvement
on the model, with 9.33% and 24.11% improvement in the UIQM and UCIQE metrics,
respectively. However, the need for calmness is that quantitative analysis had a certain
result bias and needed to be considered in combination with qualitative analysis [48].

We proposed to use some improved structures and techniques, which could effectively
improve the enhancement of the model. Therefore, we performed ablation experiments on
these improvement points in the second part of the ablation study. In general, they include:

(1) AUIE–GAN removes Self-Attention Residual Module (w/o SARM);
(2) AUIE–GAN removes Self-Attention Skip Connections and Global Feature vectors

of U–Net (w/o SAKC&GF);
(3) AUIE–GAN removes Frequency Loss function and dual path Discriminator struc-

ture (w/o FL&dpD).
We evaluated the results of ablation experiments on the Challenge60 and SUID datasets.

Qualitative experimental results were shown in Figure 13. On the one hand, there was
a severe grid effect occurred and the image was not smooth enough in the result of w/o
SAKC&GF. On the other hand, severe color imbalance appears when AUIE–GAN removed
the SARM or FL&dpD modules. The complete model is able to balance color and seman-
tic continuity.

(AUIE-GAN)(AUIE-GAN)

(w/o SAKC&GF)(w/o SAKC&GF)

(w/o SARM)(w/o SARM)

(w/o FL&dpD)(w/o FL&dpD)

(AUIE-GAN)

(w/o SAKC&GF)

(w/o SARM)

(w/o FL&dpD)

Figure 13. Results of the ablation experiment. The local zoom in the lower left corner was used to
show more detailed texture information.

Quantitative experimental results were shown in Figure 14. Compared with the
complete model, ablation models showed some decreases in all evaluation metrics. Fur-
thermore, for different evaluation metrics, the lowest point of the curve appears in different
models. In general, the Self-Attention Skip Connections and Global Feature vectors of
U–Net had the greatest enhancement to the model.
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(a) (b) (c) (d)(a) (b) (c) (d)

Figure 14. Comparison of quantitative evaluation of ablation experiments. We tested the UIQM
and UCIQE of different ablation models on the Challenge60, and the PSNR and SSIM metrics on
the SUID dataset. In the figure, (a,b) are results quantified using no-reference metrics, and (c,d) are
results quantified using full-reference metrics.

5. Conclusions

In this paper, we present a new GANs-based model to resolve the color cast present in
underwater images, which we refer to as AUIE–GAN. We have improved the self-attentive
mechanism with a trainable weight and proposed WSAM; based on this module, we
propose SARM for the generator backbone layer to improve the model’s adaptability for
different styles of underwater degraded images. Furthermore, we propose to use a discrim-
inator network with a dual path structure and a frequency domain loss function to improve
the enhancement quality. In general, AUIE–GAN not only achieved excellent visual results
but also outperformed the best existing UIE methods in several evaluation metrics.

However, the frequency domain paths in the AUIE–GAN’s discriminator were de-
signed using fully-connected layers, which resulted in the model taking up a large amount
of GPU resources during the training process. In addition, we found that AUIE–GAN
shows a bias in fitting the R channel in RGB space, which led to some results is red. We
will publish these results in our future works.
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