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Abstract: The moving pseudo-boundary method of fundamental solutions (MFS) was employed to
solve the Laplace equation, which describes the potential flow in a two-dimensional (2D) numerical
wave tank. The MFS is known for its ease of programming and the advantage of its high precision.
The solution of the boundary value can be expressed by a linear combination of the fundamental
solutions. The major issue with such an implementation is the optimal distribution of source nodes
in the pseudo-boundary. Traditionally, the positions of the source nodes are assumed to be fixed to
keep the set of equations closed. However, in the moving boundary problem, the distribution of
source nodes may influence the stability of numerical calculations. Moreover, MFS is unstable in
time iterations. Hence, it is necessary to constantly revise the weighting coefficients of fundamental
solutions. In this study, the source nodes were free, and their locations were determined by solving
a nonlinear least-squares problem using the Levenberg–Marquardt algorithm. To solve the above
least-squares problem, the MATLAB© routine lsqnonlin was adopted. Additionally, the weighting
coefficients of fundamental solutions were solved as a nonlinear least-squares problem using the
aforementioned method. The numerical results indicated that the numerical simulation method
adopted in this paper is accurate and reliable in solving the problem of 2D tank sloshing. The main
contribution of this study is to expand the application of the MFS in engineering by integrating it with
the optimal configuration problem of pseudo-boundaries to solve practical engineering problems.

Keywords: sloshing; method of fundamental solutions; adaptive source nodes’ placement; second-
order Runge–Kutta

1. Introduction

Sloshing refers to the nonlinear changes of the free surface of a partially filled liquid
tank with time under an external force [1,2]. This phenomenon is widespread in engineer-
ing, such as the shaking of aircraft fuel tanks, the sloshing of ship tanks, and the shaking of
oil storage tanks during earthquakes [3]. When the oscillation frequency or resonance is
close to the natural frequency of the numerical wave tank (NWT), it can cause structural
damage, resulting in serious consequences. Therefore, insights into the physical mecha-
nisms of liquid sloshing enable the quick prediction of the free surface changes. Over the
past few decades, many researchers have adopted a variety of research methods to study
the problem of tank sloshing, including theoretical research, experiments, and numerical
simulations. In the study of theoretical research and numerical simulations, the fluid in the
tank is usually assumed to be an inviscid, irrotational, and incompressible potential flow
to simplify the calculations. In this paper, the fluid in the NWT was also assumed to be a
potential flow, and its governing equation was considered to be the Laplace equation.
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In the past few decades, numerical simulation has become a mainstream research
method due to its convenience and low cost. Therefore, many numerical schemes have been
proposed to simulate nonlinear waves in the sloshing problem, including mesh and mesh-
less methods. For the mesh method, several numerical schemes are widely implemented,
including the finite element method (FEM) [4,5], the finite volume method (FVM) [6,7], the
boundary element method (BEM) [8], and the finite difference method (FDM) [9]. Gómez-
Goñi et al. [6] adopted the volume of fluid (VOF) method and compared the numerical sim-
ulation results to the multimodal codes STAR-CCM+ and Open-FOAM. Both open-source
and commercial CFD software packages have high accuracy. Moreover, Tang et al. [7] com-
pared the suppression effect of different height distribution schemes on tank sloshing by
setting different baffle height gradients. Wang et al. [10] investigated liquid sloshing under
irregular excitations and explained the mechanism of sloshing responses. However, since
meshless methods have simple programs and do not require time-consuming numerical
integration, they have progressed rapidly with various formulations, such as the radial
basis function collocation method (RBFCM) [11], the modified collocation Trefftz method
(MCTM) [12], the generalized finite difference method (GFDM) [13], and the meshless
local Petrov–Galerkin (MLPG) method [14]. Zhang et al. [13] proposed the GFDM, an
easy-to-program and simple numerical scheme, to deal with the 2D Laplace equation at
each time step and predict the nonlinear free surface in the NWT efficiently and accurately.
Pal et al. [14] used the MLPG method to evaluate the pressure of fluid in an oscillated rect-
angular tank and developed a local symmetric weak form (LSWF) for linearized sloshing.
It can be observed that the development of efficient and accurate numerical methods holds
significant research value in addressing the sloshing problem. Ren et al. [15] simulated
a series of sloshing phenomena, including sloshing without baffle, sloshing with a rigid
baffle, and sloshing with an elastic baffle, based on SPHinXsys, which is an open-source
SPH-based multi-physics library. Zhang et al. [16] simulated and studied the damping
effect of a vertical slotted screen under rotation excitation based on the BM-MPS method
and discussed the influence of baffle porosity and rotation amplitude on the resonance
period and impact pressure. Li et al. [17] investigated the sloshing effects from baffled and
non-baffled water tanks under different external excitation frequencies and amplitudes
based on the weakly compressible moving particle explicit (WCMPE) method. Additionally,
Gholamipoor et al. [18] developed a meshless numerical method based on local radial
basis functions for studying the sloshing of arbitrarily shaped tanks, such as trapezoidal,
V-shaped, semi-elliptical, and semi-circular tanks under horizontal motion. Moreover,
artificial intelligence (AI) techniques are being used to deal with the sloshing problem [19].
The above survey of the current research status shows that the development of an efficient
and accurate computer simulation model for the liquid sloshing problem is still one of the
key research directions in the international academic community. Although traditional
numerical schemes have been proven and are stable, they often require time-consuming
work, such as building the mesh and performing numerical integration. In this paper, we
propose an easy-to-program and simple numerical scheme to accurately and efficiently
analyze sloshing problems. In this study, the method of fundamental solutions (MFS) and
the second-order Runge–Kutta method were adopted for spatial and temporal discretiza-
tions of this moving-boundary problem. The MFS has the great advantages of decreasing
computational time and being easy to implement. Discretization by the second-order
Runge–Kutta method solved the elevation of the free surface and boundary value problems
(BVPs) at each time step. Likewise, the MFS, a boundary-type meshless method, was
proposed to deal with BVPs at every time step.

The MFS was proposed in 1964 to solve BVPs governed by certain partial differential
equations [20,21], such as the Laplace equation, Helmholtz equation, modified Helmholtz
equation, and Biharmonic equation [22–24]. Since the MFS was used to analyze the el-
liptic partial differential equation in 1977, it has garnered attention for its simplicity in
programming [25]. The MFS is composed of a linear combination of fundamental so-
lutions of partial differential equations with weightings. These fundamental solutions
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can be expressed by source and boundary nodes, which are allocated in the pseudo- and
physical boundaries, respectively. Since the boundary nodes are known, it is critical to
allocate the source nodes. Traditionally, it has been assumed that the source nodes are
known and fixed [26]. There have been many investigations on the optimal allocation
and shape selection of pseudo-boundaries [27–29]. Furthermore, some researchers have
adopted artificial intelligence, such as the genetic algorithm and immune algorithm, to
deal with the placement of source nodes, which is also known as the adaptive dynamic
approach [30,31]. In 2019, Grabski et al. proposed the moving pseudo-boundary MFS to
solve nonlinear potential problems. The dynamic approach was modified by assuming
that the parameters controlling the position of each source were unknown [32]. The system
of nonlinear equations resulting from the MFS dynamic approach was solved with the
state-of-the-art MATLAB© routine lsqnonlin. Grabski et al. studied steady problems and
further researched unsteady problems where the physical boundary was also moving.

In this study, the Levenberg–Marquardt algorithm was adopted to solve nonlinear
least-squares problems for weighting the coefficients of the fundamental solution and the
appropriate distribution of the source nodes. The parameter that controls the position of
sources is the distance of the sources along the normal to the boundary. The parameters
were updated with time iteration. Additionally, the effect of three shapes of pseudo-
boundaries on the computational accuracy and efficiency was investigated. The shape of
the pseudo-boundary was taken to be similar to that of the boundary, a circle enclosing
the domain, or pseudo-boundaries assigned outward only at each edge of the domain.
The numerical results revealed that the calculation procedure used in this study exhibited
good stability and accuracy, even with a small number of collocation nodes. Although
some scholars have successfully conducted sloshing studies using the MFS [33], some
deployment methods have obtained less-satisfactory results, indicating the poor stability of
the calculation. Therefore, achieving the optimal source node configuration of the pseudo-
boundary in the method of fundamental solutions is crucial. Compared with traditional
methods, the least-squares-based MFS proposed in this paper remains computationally
stable with fewer source nodes. In summary, this paper provides a good example of solving
the optimal configuration problem of pseudo-boundaries for engineering problems.

The paper is organized as follows. Section 2 presents the governing equation and
boundary conditions. Section 3 describes the numerical methods, including the details of
the MFS implementation and time marching. Section 4 presents a comparison between the
numerical results presented in this paper and those reported in the literature. Specifically,
the results include standing waves in a fixed numerical tank, a vertically excited numerical
tank, and a horizontally excited wave tank. Finally, Section 5 provides some concluding
remarks and ideas for future work.

2. Governing Equation and Boundary Conditions

In this paper, we considered the two-dimensional liquid sloshing problem in a rectan-
gular NWT. The NWT was moved by excitation in the horizontal and vertical directions,
respectively, in an inertial Cartesian coordinate system (X, Z), where the horizontal and
vertical axes are denoted by X and Z, respectively. To describe the fluid motion, it is
convenient to refer to a moving Cartesian coordinate system (X, Z), as shown in Figure 1.

Since the liquid was assumed to be inviscid, incompressible, and irrotational, it is
governed by the Laplace equation for velocity potential:

∇2φ =
∂2φ

∂x2 +
∂2φ

∂z2 = 0 , (x, z) ∈ Ω , (1)

where φ is the velocity potential and Ω is the computational domain. The wall of the
NWT is rigid and impenetrable, corresponding to the second type of boundary condition.
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Therefore, the bottom boundary and the vertical walls on both sides of the NWT need to
satisfy the impenetrable boundary condition:

∂φ

∂z

∣∣∣∣
z=0

= 0 , (2)

∂φ

∂x

∣∣∣∣
x=0,b

= 0. (3)

where b is the breadth of the tank.

free surface

η 
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Figure 1. The schematic diagram of the NWT of the sloshing phenomenon.

As for the free liquid surface, also known as the first boundary condition, the following
dynamic boundary conditions must be satisfied:

φ|z=η+h = φ , (4)

where η = η(x, t) denotes the free surface elevation, which is calculated from the still water
level, and h denotes the height of the still water.

The dynamic and kinematic boundary conditions, denoted by φ and η, respectively,
are updated in the time domain using the following equation: [9]:

∂φ

∂t

∣∣∣∣
z=η+h

=
1
2

[(
∂φ

∂x

)2
+

(
∂φ

∂z

)2
]
−
(

g + Z′′T(t)
)
η − xX′′T(t) , (5)

∂η

∂t

∣∣∣∣
z=η+h

=
∂φ

∂z
− ∂φ

∂x
∂η

∂x
, (6)

where g denotes the acceleration due to gravity and X′′T and Z′′T denote the acceleration in
the horizontal and vertical directions of the NWT, respectively.

Therefore, the dynamic and kinematic boundary conditions for the free surface can be
expressed using the following semi-Lagrangian approach [13]:

∂φ

∂t

∣∣∣∣
z=η+h

=
1
2

[(
∂φ

∂x

)2
+

(
∂φ

∂z

)2
]
+

∂φ

∂z

(
∂φ

∂z
− ∂φ

∂x
∂η

∂x

)
−
(

g + Z′′T(t)
)
η − xX′′T(t) , (7)

∂η

∂t

∣∣∣∣
z=η+h

=
∂φ

∂z
− ∂φ

∂x
∂η

∂x
. (8)

3. Numerical Methods

For temporal discretization, the second-order Runge–Kutta method was adopted due
to its second-order accuracy and ease of implementation. The MFS was proposed for spatial
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discretization. The boundary nodes collocated on the free surface were only allowed to
move vertically, and the task of distributing nodes was executed twice at each time step.

Since the potential flow was governed by the Laplace equation, the MFS was im-
plemented to analyze the solutions. Additionally, the MATLAB© routine lsqnonlin was
utilized to solve the weightings of the fundamental solutions and the locations of the
fundamental solutions. Detailed descriptions of the time-marching method using the
second-order Runge–Kutta and MFS are provided in the following subsections.

3.1. The Implementation of MFS

The values of the boundary nodes and inner nodes can be expressed as a linear combi-
nation of the fundamental solution and the weightings of the source nodes.
Figure 2 illustrates the schematic diagram of the MFS. The boundary nodes are arranged
on physical boundaries, and the source nodes are arranged on a pseudo-boundary outside
the computational domain. The fundamental solution of the Laplace equation is defined
as [20–22]:

u∗i = ln
(
rij
)

, (9)

where rij is the distance from any boundary nodes xi, where xi = (xi, zi) ∈ Γphysical, to the

source nodes sj, where sj =
(

sx
j , sz

j

)
∈ ΓPseudo. It can be expressed as:

rij =
∣∣xi − sj

∣∣ , (10)

Since the boundary conditions already satisfied the governing equation, they could
be expressed as a linear combination of the fundamental solutions with various weight-
ings. Furthermore, the boundary condition is also known. Therefore, the weightings can
be solved:

φ(xi, zi) =
N

∑
j=1

αju∗i , (11)

where αj represents the weightings of u∗i and N denotes the number of source nodes.



physical

pseudo
Physical boundary

Pseudo boundary

Boundary nodes

Source nodes

Figure 2. The sketch of the boundary nodes and source nodes distributed on the physical boundary
and pseudo-boundary.

Conventionally, the source nodes are fixed, and only the weightings αj are unknown.
The number of boundary nodes is denoted by M, and it was set to be greater than or equal
to the number of source nodes, i.e., M ≥ N.

However, in the current approach, the source nodes are free, which means that the param-
eter controlling the source position is unknown. Therefore, more boundary nodes are required
to ensure that the number of equations is at least as large as the number of unknowns. Two
schemes were proposed to allocate the source nodes. The boundary nodes are denoted by
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(xi)
M
i=1, where xi = (xi, zi) ∈ Γphysical, and

(
x̃j
)M

j=1, where x̃j =
(

xj, zj
)
∈ Γphysical. Here,

Γphysical represents the physical boundary of the NWT.

In Scheme 1, the source node is defined as
(
sj
)N

j=1, where sj =
(

sx
j , sz

j

)
:(

sx
j , sz

j

)
= (xc, zc) + β

[(
xj, zj

)
− (xc, zc)

]
, (12)

where (xc, zc) denotes the coordinates of the center of the domain. The unknown parameter
β controls the magnification of the distance of the node x̃j from the center of the domain.
The rules for laying out the nodes should satisfy M ≥ N + 1.

In Scheme 2, the source node is defined as
(
sj
)N

j=1, where sj =
(

sx
j , sz

j

)
:(

sx
j , sz

j

)
= (xc, zc) + σj

[(
xj, zj

)
− (xc, zc)

]
, (13)

where σj = (σ1, σ2, . . . , σN) is a set of column vectors that give sj, a unique parameter
controlling the distance between the source sj and the node x̃j. Since a total of 2N unknown
quantities are introduced, the deployment method should satisfy M ≥ 2N.

In addition, it was assumed that the weightings are known and the initial values
are zero. The initial values of the parameters β and σ, which denote the normal distance
between the physical and pseudo-boundaries, were set to 2.0. The numerical solution can be
obtained from the linear combination of the fundamental solutions with various weightings.
If these solutions are incorrect, a corrective action should be taken. The MATLAB© routine
lsqnonlin was used to analyze the following discretized nonlinear equation system:

yi =

{ (
φ(xi)−∑N

j=1 αju∗i
)

(xi, yi) ∈ Free surface ,(
0−

∂
(

∑N
j=1αju∗i

)
∂n

)
(xi, yi) ∈ Other boundary ,

(14)

and the routine lsqnonlin was used to converge yi, where i = (1, 2, . . . , M), to 0. In this
process, the computational program iterates until the convergence criterion is reached. The
options of lsqnonlin that were set are displayed in Table 1. At the end of the lsqnonlin
iteration, the approximate values of the weightings α and the parameter β or σ are obtained.
The parameters β and σ are updated adaptively with lsqnonlin, meaning that the pseudo-
boundary moves with each iteration.

Table 1. Customization options of lsqnonlin.

Options of lsqnonlin Default Value Set Value

StepTolerance 1× 10−6 1× 10−7

FunctionTolerance 1× 10−6 1× 10−16

MaxFunctionEvaluations 100 × number of variables 1× 10−7

MaxIterations 400 1× 105

OptimalityTolerance 1× 10−6 1× 10−12

3.2. Time Marching

In order to solve Equations (1)~(6), the second-order Runge–Kutta method was used
to perform the time marching of φ and η. This method provides second-order accuracy
in time. Since Equations (2) and (3) are time-independent, the second-order Runge–Kutta
method were used to update the free surface boundary Equations (5) and (6) as follows:

φn|z=η+h =
1
2

(
φn−1 + φn∗

)
, (15)

ηn|z=η+h =
1
2

(
ηn−1 + ηn∗

)
, (16)
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where φn−1 and ηn−1 represent the velocity potential and free surface elevation at the
n− 1th time step, respectively, while φn and ηn represent the velocity potential and free
surface elevation at the nth time step, respectively. Additionally, φn∗ and ηn∗ can be
expressed as follows:

φn∗|z=η+h = φn∗−1+

∆t

1
2

( ∂φn∗−1

∂x

)2

+

(
∂φn∗−1

∂z

)2
+

∂φn∗−1

∂z

(
∂φn∗−1

∂z
− ∂φn∗−1

∂x
∂ηn∗−1

∂x

)
−
(

g + Z′′T
(

tn∗−1
))

ηn∗−1 − xX′′T
(

tn∗−1
) ,

(17)

ηn∗|z=η+h = ηn∗−1 + ∆t
(

∂φn∗−1

∂z
− ∂φn∗−1

∂x
∂ηn∗−1

∂x

)
, (18)

where φn∗−1 and ηn∗−1 can be expressed in a similar form as φn−1 and ηn−1:

φn∗−1
∣∣∣
z=η+h

= φn−1+

∆t

1
2

( ∂φn−1

∂x

)2

+

(
∂φn−1

∂z

)2
+

∂φn−1

∂z

(
∂φn−1

∂z
− ∂φn−1

∂x
∂ηn−1

∂x

)
−
(

g + Z′′T
(

tn−1
))

ηn−1 − xX′′T
(

tn−1
) ,

(19)

ηn∗−1
∣∣∣
z=η+h

= ηn−1 + ∆t
(

∂φn−1

∂z
− ∂φn−1

∂x
∂ηn−1

∂x

)
, (20)

In Equations (17)~(20), variables ∂η
∂x , ∂φ

∂x , and ∂φ
∂z can be gained through the following

expressions.

{ ∂η
∂x = η(0+∆x)−η(0)

∆x , x = 0
∂η
∂x = η(x+∆x)−η(x−∆x)

2∆x , x ∈ [∆x, b− ∆x],
∂η
∂x = η(b)−η(b−∆x)

∆x , x = b

(21)



(
∂φ
∂x1

, ∂φ
∂z1

)(
∂φ
∂x2

, ∂φ
∂z2

)
...(

∂φ
∂xn

, ∂φ
∂zn

)


=



~r11 ~n1
r2

11

~r12 ~n1
r2

12
· · · ~r1n ~n1

r2
1n

~r21 ~n2
r2

21

~r22 ~n2
r2

22
· · · ~r2n ~n2

r2
2n

...
... · · ·

...
~rm1 ~nm
r2

m1

~rm2 ~nm
r2

m2
· · · ~rmn ~nm

r2
mn




α1
α2
...

αm

 , onΓFS , (22)

In Equation (21), the first term of ∂η
∂x is obtained using the forward difference scheme,

the last term is obtained using the backward difference scheme, and the remaining terms
are obtained using the central difference scheme. In Equation (22), r2

mn denotes the square
of the distance between the boundary node and the source node, where m is the number of
boundary nodes and n is the number of source nodes. Here,~n represents the normal vector
of the free surface and αm denotes the previously obtained weighting coefficients.

To stabilize the solution, ninth-order polynomials were used to fit the free surface, dy-
namic, and kinematic boundary conditions. The coefficients of the ninth-order polynomials
were determined using the least-squares method. The form of a ninth-order polynomial is
as follows (The flowchart of the proposed meshless numerical scheme for solving sloshing
phenomena is presented in Figure 3.):

p(x) = p1x9 + p2x8 + . . . + p9x + p10 , (23)
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Distribute physical boundary and 

pseudo-boundary nodes and input 

initial conditions

Adopt MFS to solve Laplace equation 

with MATLAB routine lsqnonlin

Check the arrival of lsqnonlin 

convergence criterion

Calculate the derivate term of η and ϕ 

and update η and ϕ  in next time

Check the arrival of final time step

Output the simulation results

Yes

No

Yes

No

Figure 3. Flowchart of the proposed numerical method.

4. Numerical Results and Comparisons

All numerical computations were performed on a MATLAB© R2018b platform running
on Windows 10 (64 bit) with an Intel Core(TM) i5–10600KF CPU and 32 GB of memory.
To verify the accuracy of the proposed numerical method, three examples are provided,
including standing waves in a fixed NWT, a vertically excited NWT, and a horizontally
excited NWT. These examples have been studied by other researchers in the past [9,34,35],
allowing for comparisons to verify the accuracy and reliability of the numerical method
presented in this paper. It was assumed that the width of the NWT is b = 1 m, the still
water elevation is h = 0.5 m, and the number of waves is k1 = π/b. The natural frequency
of water can be expressed as:

ω1 =
√

gk1 tanh(k1h) , (24)

4.1. Standing Waves in Fixed NWT

For the fixed NWT with standing waves, the NWT was not subjected to any external
forces in the horizontal and vertical directions, i.e., X′′T = 0 and Z′′T = 0. The following
functions represent the initial dynamic and kinematic boundaries:

φ(x, z)|t=0 = 0 , (25)

η(x)|t=0 = a cos(k1x) , (26)

where the amplitude of the initial wave profile is a = gε/ω2
1 , where g is the acceleration due

to gravity, ε = 0.0014 represents the wave steepness, and ω1 denotes the natural frequency
of water. Based on the given boundaries and initial conditions, the free surface will vibrate
freely in the form of standing waves due to gravity.
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4.1.1. Convergence Study of the Number of Nodes and Time Step Size

To investigate the dependency between the number of boundary nodes and the
accuracy of the numerical results, four cases were simulated to check for the convergence
of the numerical results. The specific settings for each case are displayed in Table 2. The
number of nodes along the x and z directions for the physical boundaries is denoted by
Mx and Mz, respectively, while for the pseudo-boundaries, the number of nodes along
the x and z directions is denoted by Nx and Nz, respectively. Two allocation methods
were adopted to investigate the computational efficiency. In Scheme 2, the introduction
of more variables complicated the nonlinear system of equations, thereby disrupting the
computational convergence process and increasing the computation time. Thus, Scheme 1
was adopted to allocate the source nodes. The convergence of the solution was checked
at each time step, and the allocation of fewer nodes on the boundaries did not result in
shorter computation times. While fewer nodes were allocated at the boundaries in Case 4
of Table 2, the computation time was still high.

Table 2. Details of nodes’ convergence case settings.

Case Number
Number of

Physical Boundary
Nodes

Number of
Pseudo-Boundary

Nodes

Time Cost
(Scheme 1)

Time Cost
(Scheme 2)

Case 1 Mx = 59, Mz = 30 Nx = 29, Nz = 15 3232.9 s 6998.1 s
Case 2 Mx = 49, Mz = 25 Nx = 19, Nz = 10 1094.1 s 2658.6 s
Case 3 Mx = 39, Mz = 20 Nx = 19, Nz = 10 1021.7 s 2186.1 s
Case 4 Mx = 19, Mz = 10 Nx = 9, Nz = 5 1245.2 s 2879.5 s

The numerical results for the four cases are presented in Figure 4a, which displays
the free surface elevation at both walls. As shown in the figure, the numerical results for
all cases were in good agreement with Faltinsen’s analytical solutions [35], confirming the
accuracy and reliability of the proposed numerical method. Considering the time cost and
the fact that the numerical solutions were very close, the node-allocation method used in
Case 3 was chosen. The results were then compared with those obtained by Lin et al. [33],
under the condition that the source node configuration method was consistent. The
calculated results exhibited good accuracy and stability.

In order to investigate time step independence, a time step analysis was conducted, as
shown in Figure 4b. Time step sizes of ∆t = 0.001 s, 0.0025 s, 0.005 s, and 0.01 s were selected.
Even with a relatively large time step, the calculated results were still in good agreement
with the literature [35]. The figure demonstrates that the proposed numerical scheme has
good reliability and accuracy, while also possessing good computational efficiency. In
future research, a larger time step may be selected to save the computation time.

(a) number of nodes (b) time step size

Figure 4. The convergence study of the free surface elevation at both walls for the standing wave problem.
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4.1.2. The Numerical Solution of Standing Waves

After conducting the convergence study of the number of nodes and the time step
sizes, a complete numerical simulation was performed, and the calculated results were
compared with Frandsen’s numerical solution [9]. In addition, to further verify the accuracy
of the method, the complete numerical results were also compared with those obtained
by the finite difference method [9] and radial basis function (RBF) method [18]. As shown
in Figure 5, the peaks and troughs of the relative amplitudes were the same, indicating
that the sloshing amplitude of the free surface would remain constant without any energy
loss, as long as gravity was considered in the potential flow field. The profiles of the free
surface at t×ω1 = 0, t×ω1 = 19.94, t×ω1 = 20.73, t×ω1 = 21.80, and a still water level
are evaluated in Figure 6. As the free surface profile varied with time, the computational
domain required node reallocation at each time step. However, node reallocation was easily
managed by the MFS, highlighting its advantages as a meshless method.

Figure 5. Comparison of the relative amplitude of left-end node of the free surface under free vibrations.

Figure 6. Wave profiles along the free surface at some specific time.

4.2. Vertically Excited NWT

For the simulation of sloshing in a vertically excited NWT, the acceleration in the
vertical direction is expressed as follows:

Z′′T = −avω2
v cos(ωvt) , (27)

where av = gkv/ω2
v is the vertical forcing amplitude, kv = 0.5 is the non-dimensional

forcing amplitude, and ωv = ω1/1.253 is the angular frequency. In this case, the hor-
izontal acceleration was assumed to be zero. The initial velocity potential condition is
φ(x, z)|t=0 = 0 and X′′T = 0. The initial kinematic condition is η(x)|t=0 = a cos(k1x),
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where k1 = π/b is the wave number, a = (gε)/ω2
1, and ε = 0.0014 is the wave steepness.

The parameter ω1 is the inherent frequency of the liquid, which can be obtained from
Equation (24). Likewise, the allocation method of Case 3 in Table 2 was chosen to improve
the calculation efficiency. The time step size was set to ∆t = 0.0025 s.

In this section, we investigated the effect of different pseudo-boundaries on the calcu-
lation accuracy and efficiency. Three types of pseudo-boundaries were considered. The
first type was the domain-dependent pseudo-boundary given by Equation (12). The initial
value of β was set to 2.0.

For the second type of pseudo-boundary geometry, a circular shape was selected, with
the pseudo-boundary points evenly distributed around the circle.(

sx
j , sz

j

)
=
(
xc + R cos θj, zc + R sin θj

)
, (28)

where R is the radius of the circle and θj is the corresponding radian.
The third pseudo-boundary is defined by the following equation:(

sx
j , sz

j

)
=
(
xj, zj

)
+ β−→n , (29)

where −→n is the normal vector of the boundary nodes.
Figure 7 displays a comparison of the results for all three pseudo-boundaries. The

evolutionary profile at the left-end node of the free surface exhibited high nonlinearity and
irregularity. The time cost was evaluated to further investigate the computational efficiency
under different pseudo-boundary types (Table 3).

(a) Calculation results under the first pseudo-boundary geometry

Figure 7. Cont.
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(b) Calculation results under the second pseudo-boundary geometry

(c) Calculation results under the third pseudo-boundary geometry

Figure 7. Evolutionary profile of the left-end node of the free surface.

Table 3. Details of time consumption.

Case Number of Physical
Boundary Nodes

Number of
Pseudo-Boundary

Nodes
Time Consumption

Domain-dependent
pseudo-boundary type

148 58 3.36 h

Circular
pseudo-boundary type

148 58 2.10 h

Boundary-dependent
pseudo-boundary type

148 58 4.19 h

As observed in Table 3, the circular pseudo-boundary type was the most-efficient
type, with approximately twice the efficiency of the boundary-dependent type. The shape
of the pseudo-boundary affects the computational efficiency. On the contrary, the type
of pseudo-boundary does not affect its efficiency, but has an impact on accuracy. In the
current approach, the shape of the pseudo-boundary affected the convergence of the
lsqnonlin routine, indicating the importance of an optimized pseudo-boundary geometry.
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Likewise, this reflected the stability of the correction function of lsqnonlin in solving the
Laplace equation.

Boundaries and source nodes are located in their respective physical and pseudo-
boundaries (Figure 8). Figure 8a–c the show domain-dependent-type, circular-type, and
boundary dependent-type pseudo-boundary, respectively. In the current approach, the
shape of the pseudo-boundary was fixed, but its size was adaptively changing in each
iteration. The wave profile along the free surface at t× ω1 = 19.13 and t× ω1 = 22.33
is depicted in Figure 9. As shown in Figure 9, the profile of the free surface will change
with time. Meanwhile, the irregular computational domain will vary at each time step as
well. Therefore, the MFS, one kind of meshless method, has advantages in dealing with
such problems.

(a) Calculation results under the first pseudo-boundary geometry

(b) Calculation results under the second pseudo-boundary geome-
try

(c) Calculation results under the third pseudo-boundary geometry

Figure 8. Distribution of source and boundary nodes using lsqnonlin at t = 14.0 s.



J. Mar. Sci. Eng. 2023, 11, 1448 14 of 18

(a) t×ω1 = 19.13 (b) t×ω1 = 22.33

Figure 9. Profiles of the free surfaces at some specific time.

4.3. Horizontally Excited NWT
4.3.1. Validation of Numerical Scheme

In the simulation of horizontally excited NWT, the initial velocity potential condition
was φ(x, z)|t = 0 = 0, and ZT′′ = 0. The tank oscillated as follows:

X′′T(t) = −ahω2
h sin(ωht) , (30)

where ah = gkh/ω2
h is the amplitude and ωh is the horizontal radial acceleration. For the

simulation, four sets of cases were set up based on the different relationships between ωh
and ω1, which were ωh = 0.7ω1, ωh = 1.0ω1, ωh = 1.1ω1, and ωh = 1.3ω1. The results
were compared with those of Frandsen [9] and Faltinsen [35]. The time step size was
selected as 0.0025 s, and the allocation method refers to Case 3 in Table 2.

Figure 10 displays the evolutionary profiles of the left-end node of the free surface
under different oscillation frequencies. When ωh was closer to ω1, the amplitude of the
free surface was larger. When the horizontal forced oscillation frequency ωh was equal
to the natural frequency ω1, the sloshing amplitude of the free surface would be higher,
implying regularity (Figure 10b). Although there was no obvious continuous resonance, a
“first-order beat” was observed (Figure 10c). Under other oscillation frequencies, irregular
evolutionary profiles were observed (Figure 10a,b).

When resonance occurred, the sloshing amplitude of the free surface increased sharply.
When using the traditional MFS collocation method, the accuracy and reliability of the
calculation were affected. This study utilized the adaptive allocation method and yielded
comparable results based on lsqnonlin.

(a) ωh = 0.7ω1 (b) ωh = 1.0ω1

Figure 10. Cont.
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(c) ωh = 1.1ω1 (d) ωh = 1.3ω1

Figure 10. Evolutionary profiles of the left-end node of the free surface.

4.3.2. Distribution of Source Nodes after Iterations

The distribution of the source nodes after the iterations when ωh = 1.0ω1 is displayed
in Figure 10. In addition, the distribution of the boundary nodes and source nodes at
t = 8.00 s, t = 10.00 s, t = 12.00 s, and t = 14.00 s is presented in Figure 11, respectively.
These figures illustrate the changes in the boundary nodes and source nodes over time and
allow for a clear visualization of the adaptive reconfiguration process of source nodes at
the pseudo-boundary. This demonstrates the superiority of the MFS proposed in this study
in terms of computational stability.

(a) ωh = 0.7ω1 (b) ωh = 1.0ω1

(c) ωh = 1.1ω1 (d) ωh = 1.3ω1

Figure 11. Distribution of source nodes after iterations using lsqnonlin.

The geometry of the pseudo-boundary evolved over time, which improved the stability
and accuracy of the calculation. The parameter σ, which represents the normal distance
between the physical and pseudo-boundaries, was updated adaptively. As a result, the
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combination of the MFS and lsqnonlin was able to effectively analyze dynamic-boundary
problems related to sloshing with good efficiency and accuracy.

5. Conclusions

In this study, a meshless method was proposed to simulate sloshing in a 2D rectangular
NWT. The second-order Runge–Kutta method and the MFS, based on moving pseudo-
boundaries, were implemented for temporal and spatial discretization, respectively. The
second-order Runge–Kutta method guarantees the accuracy and stability of dynamic
and kinematic free surface boundary updates. The MFS, a meshless method with easy
programming and high computational accuracy traits, was responsible for dealing with
the Laplace equation at each time step. This study treated the position of the source
nodes as an unknown variable to be solved simultaneously with the weighting coefficients,
which avoided the need for fixing the position of the source nodes. This enabled adaptive
calculations and improved the stability of the calculations and the numerical methods. The
solution of the Laplace equation can be obtained easily by combining weighting coefficients
and the fundamental solution. Meanwhile, the parameters β and σ were adaptively updated
using lsqnonlin.

Three numerical simulations were analyzed to verify the accuracy and stability of
the proposed numerical method. The numerical results were compared to other works.
Through the convergence study of the number of nodes and time steps, the MFS based on
the least-squares algorithm reported good computational stability and accuracy with fewer
collocation nodes and a larger time step. Besides that, the geometry of the pseudo-boundary
could affect the computational efficiency of the calculation. Likewise, the computational
efficiency of the circular pseudo-boundary was approximately twice that of the boundary-
dependent type. The main contribution of this study was expanding the application
of the MFS in engineering by integrating it with the optimal configuration problem of
pseudo-boundaries to solve practical engineering problems. The research in this paper
showed that the MFS we proposed has great potential to be applied to other related marine
engineering problems.

In this study, the time increment was assumed to be a constant number. Moreover, the
arrangement of the source nodes was still relatively fixed in this study, and only the normal
distance was adjusted. In principle, the source nodes can be arranged arbitrarily outside
the computational domain, prompting future research to examine the effect of source node
positioning on computational efficiency. The findings from this study indicated that the
MFS can accurately calculate the nonlinear free surface in 2D sloshing and can be applied
in other related studies.
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Nomenclature
η free surface elevation (m)
h height of still water (m)
b width of the tank (m)
a amplitude of the initial wave profile
g acceleration due to gravity (m/s2)
k1 number of waves
Z′′T acceleration in the vertical direction (m/s2)
X′′T acceleration in the horizontal direction (m/s2)
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