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Abstract: This paper presents the performance of a new, floating, mono-hull wind turbine installation
vessel (Nordic Wind) in the installation process. The vessel can transport pre-assembled wind
turbines from the marshalling port to the offshore installation site. Each assembled turbine will be
positioned over the pre-installed floating spar structure. The primary difficulty lies in examining
the multibody system’s reactions when subjected to combined wind, current, and wave forces.
Time-domain simulations are utilized to model the interconnected system, incorporating mechanical
coupling between components, the mooring system for the spar, and the installation vessel. The
primary objective is to focus on the monitoring and connection stages preceding the mating operations
between the turbine and the floating spar. Additionally, it involves examining the impacts of wind,
current, and wave conditions on the motion responses of the installation vessel and the spar, as well
as the relative motions at the mating point, gripper forces, and mooring forces. The simulations show
that the resulting gripper forces are reasonable to compensate. The relative motion at the mating
point is not significantly affected by the orientations of the turbine blades, but it is influenced by
the prevailing wave conditions. In addition, vessel heading optimization can minimize the relative
motions at the mating point and gripper forces. Given the examined environmental conditions, the
presented installation concept exhibits a commendable performance.

Keywords: floating wind turbine; offshore installation; float-over; weather monitoring; spar

1. Introduction

Renewable energy from wind power is expanding globally, establishing itself as a
prominent and increasingly significant source of sustainable energy, as the economic condi-
tions are favorable [1,2]. To address the need for alternative energy sources, a considerable
number of wind power generators are being deployed in wind farms, both on land and
offshore. European offshore wind capacity grew by adding 3.4 GW of offshore capacity
during 2021, reaching a total installed capacity of 17.4 GW [3]. Due to the varying quality of
wind resources and geographical constraints, numerous countries are now contemplating
the utilization of deep-water offshore areas for future wind power facility development. As
of the end of 2020, Europe’s floating wind fleet reached a cumulative capacity of 62 MW,
representing 83% of the global floating wind capacity. Floating offshore wind (FOW) is
seen as a crucial factor in unlocking Europe’s vast and virtually limitless wind energy
potential. Around 80% of the offshore wind resources in European seas are located in wa-
ters with depths of 60 m or greater, where traditional bottom-fixed offshore wind (BFOW)
installations are not economically viable or attractive.

Figure 1 illustrates the three primary designs for floating offshore wind: tension leg
platform, semi-submersible, and spar buoy. The semi-submersible and spar buoy structures,
unlike the tension leg platform, are loosely moored to the seabed. This loose mooring
configuration facilitates simpler installation processes. In contrast, the tension leg platform
is firmly connected to the seabed [4–7].
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Figure 1. Floating wind turbine substructure designs (DNV, [8]). 

The world’s first floating wind turbine farm, utilizing Equinor’s Hywind technology 
from Norway, was commissioned in Scotland in late 2017. The floating wind turbine farm 
comprises five 6 MW turbines, provided by Siemens. Prior to installation, the turbine 
blades, nacelle, and tower are pre-assembled onshore. The installation process involves 
using the SAIPEM 7000, one of the largest semi-submersible crane vessels, to lift and place 
the components onto the spar floaters in the deep fjord of Norway [9]. Subsequently, the 
pre-assembled turbines on the spar floaters are then transported via wet towing to off-
shore Scotland. Once in position, they are connected with mooring systems to secure their 
stability. The Hywind Tampen project, with a capacity of 88 MW, attained the Financial 
Investment Decision in 2019 and is currently in the pre-construction phase. The objective 
of the project is to achieve a cost reduction of 40% compared to Hywind Scotland, which 
served as the initial demonstration of the spar-buoy technology [10]. Nevertheless, the 
current installation method still involves assembling the turbines in a sheltered location 
and then towing each complete assembly individually to the installation site for final com-
missioning. 

To continue cost reduction and development of floating offshore wind projects, the 
following key areas shall be considered: 
• Industrialization: optimize design of substructure and mooring and reduce the cost 

per ton towards mass production levels. 
• Economics of scale: larger parks will drive down costs for infrastructure and logistics. 
• Upscaling: follow the bottom-fixed industry towards turbine sizes of 10–15 MW. 
• Technology development: establish new and more efficient methods for installation, 

operation, and maintenance. Offshore wind developers have recognized the prefer-
ence for new installation methods that rely on cost-effective large crane vessels when 
developing commercial wind farms. This shift is driven by the aim to reduce ex-
penses associated with installation operations. This will enhance the development of 
mass production towards potential future long-term markets. In the context of the 
Hywind installation challenge, there is a preference for innovative installation con-
cepts that prioritize the use of novel installation vessels and facilities. The goal is to 
minimize offshore lifts and reduce the overall operation time involved in the instal-
lation process. The assembly and installation cost for offshore wind turbines (OWT) 
is relatively high and can account for approximately 20% of the total capital expend-
itures incurred in the development of offshore wind farms [11–14]. It is, therefore, 
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The world’s first floating wind turbine farm, utilizing Equinor’s Hywind technology
from Norway, was commissioned in Scotland in late 2017. The floating wind turbine farm
comprises five 6 MW turbines, provided by Siemens. Prior to installation, the turbine
blades, nacelle, and tower are pre-assembled onshore. The installation process involves
using the SAIPEM 7000, one of the largest semi-submersible crane vessels, to lift and place
the components onto the spar floaters in the deep fjord of Norway [9]. Subsequently, the
pre-assembled turbines on the spar floaters are then transported via wet towing to offshore
Scotland. Once in position, they are connected with mooring systems to secure their stability.
The Hywind Tampen project, with a capacity of 88 MW, attained the Financial Investment
Decision in 2019 and is currently in the pre-construction phase. The objective of the project is
to achieve a cost reduction of 40% compared to Hywind Scotland, which served as the initial
demonstration of the spar-buoy technology [10]. Nevertheless, the current installation
method still involves assembling the turbines in a sheltered location and then towing each
complete assembly individually to the installation site for final commissioning.

To continue cost reduction and development of floating offshore wind projects, the
following key areas shall be considered:

• Industrialization: optimize design of substructure and mooring and reduce the cost
per ton towards mass production levels.

• Economics of scale: larger parks will drive down costs for infrastructure and logistics.
• Upscaling: follow the bottom-fixed industry towards turbine sizes of 10–15 MW.
• Technology development: establish new and more efficient methods for installation,

operation, and maintenance. Offshore wind developers have recognized the preference
for new installation methods that rely on cost-effective large crane vessels when
developing commercial wind farms. This shift is driven by the aim to reduce expenses
associated with installation operations. This will enhance the development of mass
production towards potential future long-term markets. In the context of the Hywind
installation challenge, there is a preference for innovative installation concepts that
prioritize the use of novel installation vessels and facilities. The goal is to minimize
offshore lifts and reduce the overall operation time involved in the installation process.
The assembly and installation cost for offshore wind turbines (OWT) is relatively high
and can account for approximately 20% of the total capital expenditures incurred in
the development of offshore wind farms [11–14]. It is, therefore, crucial to employ cost-
effective installation methods in order to mitigate the high assembly and installation
costs associated with offshore wind turbines. Implementing efficient and economical
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installation techniques is vital for the overall financial viability and success of offshore
wind farm projects.

2. Current Installation Vessels

Two common types of vessels used for offshore wind turbine installation are jack-up
vessels and floating crane vessels. Jack-up vessels offer a stable working platform for the
installation of foundations, allowing for safe and efficient operations. These vessels are
equipped with extendable legs that can be lowered to the seabed, providing stability during
installation activities. However, the process of installing and retrieving the jack-up legs is
time-consuming and highly dependent on weather conditions. Additionally, the stability
of the jack-up unit relies heavily on the specific characteristics of the seabed, which can
introduce uncertainties. Furthermore, jack-up vessels have limitations regarding the water
depth in which they can operate effectively. In contrast to jack-up vessels, floating crane
vessels offer greater flexibility for offshore installations and are particularly effective in
the mass installation of wind farms. These vessels can swiftly move between foundations,
facilitating efficient and rapid deployment. Their enhanced mobility makes them well-
suited for large-scale wind farm projects. However, during the installation process, the
motions of the floating installation vessel and the lifted objects are intricately coupled
and are highly responsive to environmental conditions. This interdependence introduces
challenges, as the movement of one affects the stability and control of the other. Therefore,
careful consideration of environmental factors is crucial to ensure safe and successful
installations. It is important to note that the installation cost associated with floating crane
vessels is typically higher compared to jack-up crane vessels. Therefore, when making the
selection of a crane vessel for practical operations, a well-balanced consideration between
technical feasibility and cost is necessary. Finding the right balance ensures that the chosen
vessel meets the technical requirements, while keeping the overall project cost within a
feasible range.

Currently, there are ongoing efforts to utilize floating crane vessels for various offshore
wind turbine installation tasks. These include the installation of monopile foundations for
bottom-fixed wind turbines, the assembly of the tower-rotor-nacelle components for floating
wind turbines, as well as the installation of tower-nacelle assemblies and rotors for floating
wind turbines. These attempts demonstrate the exploration of alternative installation
methods to meet the specific requirements of different types of wind turbine structures.
The installation of blades for offshore wind turbines presents greater challenges compared
to other components, such as foundations and transition pieces. This is primarily due to the
need for precise installation during the final blade mating phase, which demands a high
degree of accuracy. Additionally, at significant lifting heights, there is relatively large motion
between the turbine hub and the blade root, further complicating the installation process.
The combination of high installation precision and substantial motion necessitates careful
planning and specialized techniques to ensure successful blade installation. Enhancing
the weather window and mitigating unforeseen delays emerge as crucial challenges in
reducing the cost of offshore installations. To accomplish this, it is essential to conduct
precise evaluations of the installation vessels and methods to gauge their performance
accurately. Furthermore, there is a need to develop numerical methods and models that
can estimate the dynamic responses of systems during the installation process. These
efforts aim to enhance the understanding and prediction of system behavior, allowing for
informed decision-making and optimization of offshore installation operations [15–24].

Due to its substantial capacity and cost-effectiveness, the float-over method has gained
significant popularity in the oil and gas industry for installing large decks onto offshore
platforms. The float-over method offers several notable advantages for installing integrated
topsides onto a floating substructure, especially when dealing with large topsides that
surpass the lifting capacity of existing heavy-lift fleets. These advantages encompass time
and cost savings by allowing the integration and commissioning of modules to take place
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on land, instead of at sea. Additionally, decoupling the fabrication schedules of the topside
from the availability of heavy-lift vessels is another significant benefit [25–30].

The innovative installation concept, named by the current author as Nordic Wind,
draws inspiration from the float-over method. The primary objective of this concept is
to eliminate weather-dependent high lifts conducted from a floating vessel and reduce
offshore installation time. This concept has the versatility to be employed for both fixed
and floating offshore wind turbine installations.

3. The Installation Concept
3.1. Concept Overview

The design of the installation vessel allows for the transportation of at least three
pre-assembled wind turbines. The actual number of turbines that can be transported will
vary, based on their individual capacity and weight. When compared to the previously
mentioned methods, this innovative concept will significantly reduce the need for offshore
lifts and installations. As a result, it will lead to a decreased operational time and cost.
To ensure a safe installation operation, the vessel is equipped with precisely designed
complex mechanisms. The concept includes a motion compensation gripper positioned
at the stern of the vessel, along with two lifting grippers and a skidding truss structure
system. The connection between the vessel and the floating spar will be established using
the motion compensation gripper. The primary purpose of the motion compensation
gripper is to minimize the horizontal plane motions that occur between the vessel and the
floating spar. The truss structure system is designed with the capability to move in both
forward and backward directions. This allows for the selection and lifting of the turbine
assembly using both the upper and lower lifting grippers. The design of the lifting grippers
should enable them to securely hold turbine assemblies weighing a minimum of 1200 tons.
Additionally, the lifting grippers will be designed with heave compensation capabilities to
reduce the impact forces experienced during the mating operation. To secure the floating
spar to the seabed, three mooring chain lines will be utilized. On the other hand, the
installation vessel will rely on its own thrusters and employ a dynamic positioning system
(DP). Figures 2 and 3 illustrate the key components of the installation concept. The stability
of the vessel has been assessed under different loading conditions, considering both the
transit and installation phases.
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3.2. Installation Procedure

The installation method consists of several key steps, which are as follows:

• Fully assembling the turbine onshore using a crane before the arrival of the installation vessel.
• Loading the turbine assembly onto the installation vessel.
• Transporting the turbine assembly to the installation site.
• Approaching the floating spar with the installation vessel and connecting it to the spar

using the motion compensation gripper.
• Transferring the turbine assembly from the installation vessel to the floating spar.
• Mating the turbine assembly in place.

In Figure 4, the installation steps were illustrated starting from assembly, loadout,
transportation, and, finally, the mating operation. The installation process will be started
once the installation vessel connects the motion compensation gripper to the floating spar.
The marine and operational crew will monitor the weather and the forecasted motion and
response in order to allow for safe lifting and mating operations. The weather and vessel
motions can be monitored by any decision support tool onboard, such as the Octopus
system or any other system of the same type. This kind of system can accurately and clearly
show how the incoming weather will impact the operation execution. The forecasted
motions will be presented in a simple way to aid the crew of the vessel to make decisions
based on the available data [31–33].
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Once the vertical relative motion is within the limits, the mating operation between
the turbine and the spar can start. The mating process will be considered complete when
the guiding pins located at the bottom of the tower successfully enter the docking device
situated inside the floating spar. Once the mating operation is completed, the spar draft
will be increased by 5 m–10 m, depending on the tower weight. Table 1 summarizes the
installation vessel, floating spar, and turbine main particulars used during the dynamic
study. The vessel hydrostatic stability has been checked during several stages of the
operation and a fully loaded condition has been considered for this study.



J. Mar. Sci. Eng. 2023, 11, 1373 7 of 22

Table 1. Installation vessel, floating spar, and turbine main parameters [20].

Installation Vessel Floating Spar Turbine

Length overall 165 m Length 92 m Weight 1200 MT
Breadth 38 m Beam WL 9.5 m Dia_Bottom 7.5 m
Draft 7 m Draught 76 m Dia_Top 4.0 m
Displacement 30,500 MT Displacement 12,600 MT Height 115 m

This paper primarily focuses on the monitoring and positioning phases that precede
the mating operations. The lifting grippers are not included in the modelling process, since
they do not impact the relative motions in the horizontal plane or the forces exerted by the
grippers. The design of the lifting grippers should prioritize the minimization of impact
forces. These modelling features will be subject to future investigations. Furthermore, an
analysis of the operational limits will be taken into consideration.

4. Dynamic Model
4.1. General

The primary objective of this study is to examine the hydrodynamic performance of
the new installation concept during wind turbine installation. To achieve this, accurate and
realistic modelling is essential in order to accurately quantify the dynamic responses during
various installation phases and critical stages. This detailed analysis will facilitate improved
operational planning. There are several key challenges to model the entire installation
process, as explained in Figure 5.
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To overcome the above challenges, the dynamic model has been divided into several
key stages in Figure 6, and are explained as follows:

• Loading condition 1: which corresponds to the monitoring stage, where structure
responses are monitored prior to gripper connection.

• Loading condition 2: which corresponds to the connection stage between the floating
spar and the installation vessel.

• Loading condition 3: which corresponds to the installation phase for lowering the
turbine to the floating spar (mating operation).
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4.2. Numerical Model

The coupled dynamic system of the installation vessel and the floating spar was
simulated and modelled using ANSYS AQWA software for numerical analysis. ANSYS
AQWA offers a comprehensive set of tools specifically designed to analyze and assess
the impact of environmental loads on various types of offshore and marine structures,
including both floating and fixed structures [35].

The global coordinate system (GCS) employed in this context is a right-handed coordi-
nate system. Its orientation is defined as follows: the X-axis points towards the bow, the
Y-axis towards the port side, and the Z-axis points upwards. The origin of the GCS is situ-
ated at the mid-ship, center line, and still waterline position when the vessel is at rest. Each
floating body exhibits six degrees of freedom. Assuming a linear and harmonic response,
the coupled differential equations of motion for the floating bodies can be expressed in the
following format:

n

∑
J=1

[
−ω2 (Mij + Aij

)
− iωBij + Cij

]
ξ j = Fi (1)

where:

ω = Wave frequency.
Mij = the generalized mass matrix for the floating bodies.
Aij and Bij = the added mass and potential damping matrix, respectively.
Cij = the restoring force matrix.
ζj = the response motion in each of the six degrees of freedom for each floating body.
Fi = the complex amplitude of the wave exciting force acting on the floaters.

The utilization of the generalized mode concept proves to be effective in addressing
multi-body hydrodynamic interaction problems. By employing this concept, a multi-body
system consisting of NB body units can be represented by 6 multiplied by the number of
bodies (6XNB) degrees of freedom, assuming that each body behaves as a rigid body. In the
case of multi-bodies that are hydrodynamically and mechanically coupled, the equation
mentioned above needs to be solved in a coupled matrix equation. In the model, the
installation vessel and the spar foundation are represented as two rigid bodies that are
interconnected through mechanical and hydrodynamic couplings at their interfaces. Both
bodies experience wave-induced forces, hydrodynamic reaction forces, and mechanical
coupling effects [36–38].

The equation of multi-body motion is given below:

(M + A(∞))
..
x + D1

.
x + D2 f (

.
x) + Kx +

∫ t

0
h(t − τ)

.
x(τ)dτ = q(t, x,

.
x) (2)

where:

M = the total mass matrix of the vessel and the spar.
x = the vector of rigid body motion with 12 degrees of freedom (DOFs).
A = the frequency-dependent added mass matrix.
D1 = the linear damping matrix.
D2 = the quadratic damping matrix.
K = the coupled stiffness matrix.
h = the coupled retardation function of the vessel and the spar, calculated based on the
frequency-dependent added mass or potential damping.
q = the vector of external forces, which includes wave exciting forces, wave drift forces, or
any other external force.

In this initial study, all wind turbine assemblies present on the installation vessel are
connected rigidly. Mooring systems were separately incorporated for both the spar and the
installation vessel.
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4.3. Frequency Domain

In the present study, the added mass and potential damping were computed in
the frequency domain and subsequently utilized in time domain simulations. These
calculations were performed to analyze the coupled motion of two bodies through the
implementation of retardation functions. The analysis also considers the viscous damping
effects on both the vessel and spar. Figure 7 illustrates the hydrodynamic panel model
employed for the installation vessel and the floating spar. The calculations incorporate
first- and second-order hydrodynamics, based on the potential theory. Figure 8 depicts the
Response Amplitude Operators (RAOs) for heave and pitch motions of both the installation
vessel and the spar. These RAOs were evaluated under specific sea conditions, known as
following sea conditions.
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4.4. Wind Loads

Within ANSYS AQWA, wind loads can be simulated using various spectrum options
or by specifying a constant velocity. This allows for flexible modelling of wind-induced
loads in the analysis. The wind field in the analysis is assumed to propagate parallel
to the horizontal plane. The fluctuating component of the wind velocity in the mean
direction is described using the NPD spectrum, as defined in API RP2A. This spectrum
provides a characterization of the varying wind velocity for the simulation. The average
wind speed profile at a specific elevation z, denoted as Uz, can be approximated by the
following equation:

Uz = U10 ×
[
1 + C

(
ln
( z

10

))]
(3)

where:

U10 = wind speed averaged over 1 h at reference elevation of 10 m.
C = 0.0573 ×

√
(1 + 0.15 × U10).
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The wind spectrum is defined by the following equation:

S( f ) =
320 ×

(
U10
10

)2
×
( z

10
)0.45

(1 + f 0.468)
3.561 (4)

where:

S(f ) = spectral energy density at frequency f [(m/2)2: Hz].
f = frequency (Hz).
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In the present study, the wind forces generated by the wind turbines installed on
the vessel deck were considered. The wind coefficients required for the calculations were
determined using HAWC2 software, as detailed in Reference [34]. The wind coefficients for
the installation vessel were obtained through model tests. Figure 9 illustrates the changes
in force and moment coefficients, with respect to wind direction for the wind turbine.
Specifically, two blade orientations were taken into consideration: blade pitch angles of
0 degrees and 90 degrees.
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4.5. Current Loads

In this study, the current was modeled using the power law method, where the current
direction remains fixed and does not vary with depth. The current speed, denoted as S,
varies with position (X, Y, Z), according to the following formula:

S = Sb +
(

S f − Sb

) [ Z − Zb
Z f − Zb

] 1
p

(5)

where:

Sf and Sb are the current speeds at the surface and the seabed, respectively.
p is the power law exponent.
Zf is the Z coordinate of the still water level.
Zb is the Z coordinate of the seabed directly below (X, Y).

4.6. Mechanical Coupling

Understanding the effects of modelling mechanical couplings on the dynamic charac-
teristics of a system is important. In this study, the mechanical coupling between the ship
and the floating spar substructure was achieved using a motion compensation gripper. In
the dynamic model, the motion compensation gripper is simplified using a mechanical
joint. This mechanical joint enables independent rotation of both bodies, allowing them
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to move freely, with respect to each other. However, it should be noted that, despite the
independent rotation allowed by the mechanical joint, the two bodies will remain rigidly
connected in the longitudinal and transverse directions. The primary objective of the mo-
tion compensation gripper frame is to facilitate the installation process by compensating for
the relative motions in the horizontal plane between the floating spar and the installation
vessel [39,40]. By mitigating these relative motions, the motion compensation gripper
frame helps to ensure smoother and more efficient installation operations. Figure 10 shows
the mechanical joint between the installation vessel and the floating spar, as modelled in
ANSYS AQWA.
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4.7. Mooring System

The mooring system for the spar is composed of three separate lines that are connected
to the substructure through bridles. The pretension and configuration of the bridles provide
sufficient yaw stiffness, which helps prevent slack in the mooring lines during normal
operation. This ensures the stability and proper functioning of the spar structure. Figure 11
illustrates the arrangement of the catenary mooring lines for the spar-type floating wind
turbine. For further information on the specific characteristics of the mooring lines, please
refer to Table 2.
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Table 2. Mooring lines’ properties, [20].

Parameter Spar Unit

Type Chain grade R4S -
Mooring line length 644 m

Diameter 0.23 m
Mass/unit length 315.36 kg/m

Pre-tension 1167 kN
Stiffness EA 1.45 × 106 kN

Maximum tension 13,570 kN

4.8. Hydrodynamic Interaction

The computation of linearized hydrodynamic wave-loading on floating bodies is
performed using AQWA-LINE, which utilizes three-dimensional radiation/diffraction
theory. The concept of fluid interactive loading between bodies is commonly discussed
in the context of radiation/diffraction theory. Radiation forces, in essence, pertain to the
impact of one body’s flow field on another. The significance of such interaction depends
on factors such as the separation distance between the bodies and the relative sizes of
the bodies involved. During the connecting phase between the installation vessel and the
floating spar, the importance of this interaction becomes apparent as the two bodies come
into close proximity. In addition to the radiation coupling, the hydrodynamic interaction
also includes the shielding effect, which refers to the change in the flow field around a body
due to the presence of another nearby body. This effect can have a significant impact on the
wave loads and motions of the interacting bodies [41]. A series of time domain simulations
were initially conducted without incorporating the mechanical gripper connection between
the installation vessel and the spar. These simulations aimed to assess the dynamic behavior
and response of the system under various operating conditions and environmental loads.
By conducting these simulations, it was possible to establish a baseline understanding of
the system’s behavior before introducing the mechanical gripper connection. Moreover, it
was feasible to assess how the hydrodynamic interaction between the two bodies affected
the resultant movements of the motion reference point (MRP).

5. Results and Discussion
5.1. Simulations Framework

The primary goal of the study is to assess the performance of the installation concept
under varying wind, wave, and current conditions. To achieve this, multiple time domain
simulations were conducted, considering different environmental conditions specific to
the Hywind Tampen location. The selected environmental conditions for the study are
provided in Table 3. Here, HS is the significant wave height. TP is the wave peak period.
VW is the 1-h average wind speed at 10 m height. β is the wave heading. α is the blade
pitch angle. VC is the current speed. For simulating irregular waves, the JONSWAP
spectrum, with a peak factor γ of 3.3, was utilized [42,43]. In the time domain analysis, each
combination of environmental conditions was simulated with intervals of 0.1 s, allowing
for a detailed assessment of the system’s behavior. The total duration of each simulation
for every environmental condition combination was set to 10,800 s. It is worth noting that,
in all simulation cases, the wave, wind, and current were assumed to be collinear, ensuring
a consistent alignment of these factors throughout the analyses.

Table 3. Environmental conditions.

Condition HS [m] TP [s] B [deg] VW [m/s] VC [m/s] α [deg]

1 1.5
6, 7, 8, 9,
10, 11, 12

0, 30, 150,
180, 210,

330

7.0
0, 902 2.0 9.0 0.5

3 2.5 12.0
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For time-domain simulations, some reference points are considered to give insight
into vessel and spar motions. The following points are considered and shown in Figure 12:

• Vessel center of gravity (Vessel COG)
• Spar center of gravity (Spar COG)
• Motion reference point (MRP)
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The motion reference point (MRP) is located at the top of the spar. The mean value for
the vertical motion at the MRP is 16.0 m from the water level.

5.2. Multibody Interactions Effects

As can be seen in Figure 13, the hydrodynamic interaction effects are variable and can
be seen over all wave peak periods. When considering a wave period of 9 s, as an example,
the wave surface elevation at the spar is less when considering multibody interaction (vessel
and spar) and spar only, as shown in Figures 14 and 15. Figure 15 show the maximum
and the minimum relative motions at MRP, with and without multibody interaction, for
various wave peak periods ranging from 6–12 s, with a maximum significant wave height
of 2.5 m and wave heading of 180◦. This explains the reduction in the longitudinal and
vertical motions at the motion reference point (MRP).
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Figure 15. Wave surface elevation spar only, modelled in AQWA.

Figure 13 illustrates a comparison between the maximum and minimum relative
motions at the motion reference point (MRP) for both the installation vessel and the spar.
The mechanical gripper will function to compensate these motions to facilitate and ease the
turbine mating operation. In addition to compensating for the relative motions between
the installation vessel and the spar during the connection phase, it is also important to
address the heave motion of the installation vessel during the lifting and mating phase of
the wind turbine assembly. This can be achieved by implementing a control system for the
lifting grippers that compensates for the heave motion of the installation vessel, ensuring
a safe and efficient mating operation. Since the lifting grippers do not affect the relative
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motions in the horizontal plane, they were not modelled in the simulations evaluating the
performance of the motion compensation gripper.

5.3. Gripper Forces

Figure 16 shows the gripper forces in the x and y directions. The forces are presented
for Hs 2.5 m and wave heading of 180◦. As can be seen, the multibody interaction has more
effect on reducing gripper force in the x direction compared to the y direction. Figure 17
shows the standard deviation of gripper forces in x and y directions, respectively.
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Figure 19. (a) Minimum and maximum Z-relative motion at MRP (Hs 2.5 m and TP 12 s); (b) Mini-
mum and maximum relative motion for different Hs and Tp 12 s. 

Figure 17. (a) Standard deviation gripper forces at the x direction, with and without multibody interac-
tion; (b) Standard deviation gripper forces at the y direction, with and without multibody interaction.

Figure 18 shows results for the gripper forces in the x and y directions for different
wave headings. The results show that the force in the x direction is more sensitive to the
wave heading compared to the force in the y direction. Figure 19 presents the results of the
vertical relative motion at MRP for different wave headings and significant wave heights.
Figure 20 shows the results of the gripper forces for different significant wave heights.
The results presented in Figures 16–20 shall be used together with the onboard weather
forecasted decision tool to further optimize the mating operation.
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Figure 20. (a) Maximum gripper forces at x direction for different wave headings; (b) Maximum
gripper forces at y direction for different wave headings (Heading 180 deg and Tp 12 s).

Figure 21 shows the effect of the wind and current on the gripper forces. Two blade
pitch angles, 0 and 90 degrees, respectively, were considered. As can be seen, an increase
in the gripper forces in the x and y directions were observed. The wind and current has
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more effect on the gripper force in the x direction compared to the gripper force in the y
direction. Moreover, the effect of wind on the gripper forces is higher when the blade pitch
angle is 0 degrees, compared to a blade pitch angle of 90 degrees.
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5.4. Mooring Line Tension

Considering the mooring layout and wave headings illustrated in Figure 11, it is
anticipated that lines 1 and 3 will endure higher loads compared to line 2. The top tension
in line 1 at β = 180 deg, Hs of 2.5 m, and Tp of 12 s, is studied here. Figure 22 presents the
dynamic top tension for three conditions: wave only; wave, wind and current for blade
pitch angle of 0 degrees; and wave, wind, and current for blade pitch angle of 90 degrees.
As can be seen in Figure 22, the mooring line tension has increased due to wind and
current effects. Furthermore, it is worth noting that the mooring line tension experiences a
significant increase when the blade pitch angle is set to 0 degrees, as compared to when it
is set to 90 degrees.
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6. Conclusions

The main findings of this study can be summarized as follows:

• Offshore wind turbine installation concept: The study proposes a new method for
installing offshore wind turbines using a floating vessel. The concept involves the use
of a numerical model that includes a floating vessel, a spar foundation, a mechanical
gripper, and mooring lines.

• Monitoring and positioning phases: The study focuses on the monitoring and posi-
tioning phases that precede the mating of the wind turbine assembly. These phases
are crucial for ensuring a successful installation process.

• Multibody interactions: The study explores the impact of multibody interactions on the
installation process. It demonstrates that these interactions have a substantial effect on
reducing relative motions and gripper forces within a specific range of wave periods
(6–9 s). However, their influence becomes negligible as the wave period increases.

• Relative motion: The relative motion between the wind turbine and the spar at the
mating point is identified as a critical factor in the success of the mating operation. The
study determines that this relative motion is primarily influenced by the first-order
motions and is particularly sensitive to the significant wave height and wave peak
period. However, it is found to be less affected by wind and current conditions.

• Blade orientations: Two blade orientations, with blade pitches of 90 degrees and
0 degrees, respectively, are considered in the study. It is observed that the choice
of blade pitch has an impact on low-frequency motions and mooring line tensions.
Specifically, the 0-degree blade pitch leads to a greater increase in the tension forces
compared to the 90-degree blade pitch. Gripper forces, on the other hand, show less
sensitivity to blade orientation angles.

• Gripper forces and hydraulic cylinder capacity: The study finds that the resulting
gripper forces are within reasonable limits for compensation. These forces can be
utilized to determine the appropriate hydraulic cylinder capacity for relative motion
compensation during the installation process.

• Vessel heading optimization: The study highlights the importance of vessel heading
optimization in minimizing relative motions and gripper forces between the installa-
tion vessel and the floating spar. For example, the gripper forces in the x direction are
more sensitive to wave heading compared to the y direction. This optimization can
facilitate the mating operation and reduce the impact force. Decision support tools,
such as the Octopus system, are suggested for monitoring weather and vessel motions,
providing accurate information on how incoming weather conditions may affect the
operation execution. These tools can guide offshore crew in the optimization process.
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Nomenclature, Abbreviations, and Symbols
ANSYS AQWA Dynamic Analysis Software
α Blade pitch angle
COG Center of gravity
DP Dynamic Positioning
HAWC2 Horizontal Axis Wind turbine simulation Code 2nd generation
GCS Global coordinate system
MRP Motion Reference Point
NB Number of bodies
NPD Norwegian Petroleum Directorate
OWT Offshore wind turbine
Vc Current speed
Octopus Offshore motion forecasting and decision support tool
BFOW Bottom Fixed Offshore Wind
β Wave heading
Dia Diameter
FOW Floating Offshore Wind
Hs Significant wave height
γ Peak factor
MW Megawatt
Nordic Wind Current installation method name
RAOs Response amplitude operators
Tp Wave peak period
Vw Wind Speed
WL Waterline
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