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Abstract: Current methods of fusing side-scan sonar images fail to tackle the issues of shadow
removal, preservation of information from adjacent strip images, and maintenance of image clarity
and contrast. To address these deficiencies, a novel curvelet-transform-based approach that integrates
the complementary attribute of details from side-scan sonar strip images is proposed. By capitalizing
on the multiple scales and orientations of the curvelet transform and its intricate hierarchical nature,
myriad fusion rules were applied at the corresponding frequency levels, enabling a more-tailored
image fusion technique for side-scan sonar imagery. The experimental results validated the effec-
tiveness of this method in preserving valuable information from side-scan sonar images, reducing
the presence of shadows and ensuring both clarity and contrast in the fused images. By meeting the
aforementioned challenges encountered in existing methodologies, this approach demonstrated great
practical significance.

Keywords: side-scan sonar; image fusion; curvelet transform; hierarchical fusion rules

1. Introduction

Side-scan sonar imagery represents the primary wellspring of information for un-
veiling seafloor topography and discerning underwater navigational obstructions. The
prevailing method for side-scan sonar measurements is underwater towed exploration,
which generates images with the following features. Firstly, the positional accuracy of
targets in side-scan sonar imagery is compromised by imprecise towing locations. Sec-
ondly, adjacent strips exhibit complementary details of the same seafloor targets. Thirdly,
shadows formed by measuring strips of different orientations cannot be expressed in a
fused manner, as their length in sonar images reflects the height of the targets. Lastly, the
capricious interplay of intricate marine ambient noise and vessel orientation engenders
volatility in image fidelity. Side-scan sonar image fusion is designed to process side-scan
sonar multiple-strip images in accordance with specific rules and methodologies. While
leveraging the complementary information between overlapping strip images and preserv-
ing the maximum valuable content from strips, the technique maintains the contrast and
clarity of fused imagery, thereby bolstering precision in image interpretation and target
identification [1].

Typically, side-scan sonar image fusion is performed in the spatial domain or trans-
form domain, these two types of methods indeed being interconnected; however, they
exhibit fundamental differences in terms of their underlying concepts and principles. The
spatial domain image fusion technique involves weighted averaging of the pixel values
of the corresponding positions in the overlapping regions of adjacent strips to generate a
new image. Though user-friendly and computationally efficient, the approach falls short
in preserving fine details in side-scan sonar imagery, as it tends to underplay valuable
details and underscore those that are irrelevant [2–6]. In the spatial domain method, the
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multiband image fusion method, however, offers a greater potential for improving fusion
outcomes. It involves decomposing side-scan sonar images into Gaussian or Laplacian
pyramids and fusing the corresponding images at different resolutions before reconstruct-
ing the fused pyramid into a new fused image [7]. Inspired by optical image fusion, the
approach takes no account of integrating the features of side-scan sonar imagery, thus
lacking specific mechanisms for removing shadows and preserving details [2–4]. The
transform domain image fusion technique enables analysis followed by a conversion of
side-scan sonar images from the spatial domain to other domains. For instance, image
fusion based on the wavelet transform [6,8–10] decomposes wavelets of adjacent strip
images into multilevel frequency domain coefficients and fuses these coefficients, which are
then inversely transformed into the new side-scan sonar mosaic image. An examination of
images from the perspective of the frequency domain suggests that the method mitigates
the limitations of spatial domain analysis in capturing critical information. Despite its
exceptional processing of one-dimensional linear signals, the wavelet-transform-based
approach falls short of comprehensively profiling two-dimensional side-scan sonar im-
agery [2–6,11] as it cannot achieve “information integration, shadow removal, and high
clarity and contrast.” In transform domain methods, image fusion built on the multiscale
geometric transform analyzes side-scan sonar images using waveforms with multiple scales
and of various orientations, which complements wavelet-transform-based methods on the
orientational front. The transform domain image fusion approaches are often coupled with
feature extraction algorithms. For instance, the Canny operator can extract edge contours
from the high-frequency components obtained upon wavelet decomposition, prioritizing
edge information during fusion and recombination [12]. The wavelet transform can be
blended with weighted averaging to process wavelet coefficients [8,13,14]. Imagery can be
divided into high-frequency and low-frequency components for processing using pyramid
methods and wavelet transform, respectively [15]. Some researchers performed curvelet
decomposition on images, followed by edge information extraction using edge detection op-
erators. While overcoming the limitations of the wavelet transform, the curvelet transform
also addresses the inadequacy of edge detection operators under multiscale analysis [16].
Despite that, current side-scan sonar image fusion techniques expanding on the curvelet
transform still deliver suboptimal fusion outcomes as they fail to take full account of the
features of side-scan sonar imagery [17].

On that basis, we propose a curvelet-transform-based, hierarchical image fusion
technique that integrates such features of side-scan sonar strip image information as
complementary. Featuring the curvelet transform’s anisotropy and intricate frequency
bands, the approach involves the application of various rules governing the features of
side-scan sonar imagery to different frequency bands. This way, the fused image can fully
exhibit the valuable details of both images and remove shadows while guaranteeing higher
image clarity and contrast.

2. Process of the Curvelet-Transform-Based Side-Scan Sonar Image Fusion Algorithm
2.1. Curvelet-Transform-Based Algorithm

In processing two-dimensional imagery under the classic wavelet transform, the two-
dimensional wavelet basis formed by the tensor product of one-dimensional wavelets can
only respond to feature information at limited orientations. The curvelet transform, in
contrast, addresses the issue as it is capable of showing a response to such information
at various orientations on a plane. The equation of the continuous curvelet transform is
expressed as follows [16]:

C(k, θ, x, y) =< I, φk,θ,x,y(a, b) >=
x

I(a, b)•φk,θ,x,y(a, b)dadb (1)

where C is the curvelet coefficient; k denotes the curvelet’s scale; θ indicates the curvelet’s
orientation; x, y suggest the curvelet coefficient’s location; I(a, b) is the input image; (a, b)
represents the pixel’s point location; φ(a, b) indicates the curvelet function. As shown
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in Equation (1), curvelets are parameterized by scale, orientation, and location. They
showcase the vector information of point features in a straightforward manner, as displayed
in Figure 1.
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Figure 1. The time domain of curvelets.

As a continuous transformation theory, the curvelet transform theoretically sees seam-
less and constant changes in scale and orientation. However, infinite scale changes are
impractical. As such, it is necessary to render the continuous curvelet transform discrete
and finite.

The discrete curvelet transform is mathematically expressed as:

C(k, θ, x, y) =
A−1

∑
a=0

B−1

∑
b=0

I(a, b)•φk,θ,x,y(a, b) (2)

where A× B represents the image size.
In light of the abovementioned theory, the discrete curvelet transform’s frequency domain,

as shown in Figure 2, features an image decomposed into multiple layers of coefficients, with
each layer comprising curvelets of various orientations and at different scales.
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In a discretized model, the number of layers depends on the size of an image, with a
greater image size engendering more layers. Except for the first and last layers, which are
characterized by a single orientation, each of the remaining layers has 16× n orientations,
with n irrelevant to N, the layer number. In addition, each orientation contains the corre-
sponding curvelet coefficient and information about its location. The first layer, known as
the coarse layer, represents the coarse low-frequency information of the image. The size
of the coefficient matrix in this layer is contingent upon the scale of the curvelet function.
The intermediate layers, collectively referred to as the detail layers, capture the medium- to
high-frequency details. The coefficient matrix’s size in these layers is determined by both
the scale and orientation of the curvelet function. The last or utmost layer, called the fine
layer, epitomizes the intricate details within the high-frequency spectrum. In this layer,
the dimensions of the coefficient matrix correspond precisely to the image size [17], as
presented in Table 1.

Table 1. The hierarchical structure of coefficients in the curvelet transform.

Layer Scale Coefficient Number of Orientations Matrix Form

Coarse C{1} 1 A set of matrices

Detail

C{2} 16 16 sets of matrices

. . . . . . . . .

C{N} 16× n (with n irrelevant to N) 16× n sets of matrices

Fine C{N + 1} 1 A set of matrices of size A× B

2.2. Fusion Process

The algorithmic procedure for fusing side-scan sonar images under the curvelet
transform is as follows:

Step 1: Perform curvelet decomposition on the overlapping portions of two side-scan
sonar strip images separately, and obtain curvelet coefficients;

Step 2: Adopt diverse selection and fusion rules (see Figure 3) to generate the fused
curvelet coefficients;
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Step 3: Implement the inverse curvelet transform on the fused curvelet coefficients to
produce the fused side-scan sonar image.

Rules for fusing curvelet coefficients at different layers were formulated by factoring
in the features of side-scan sonar images.



J. Mar. Sci. Eng. 2023, 11, 1291 5 of 16

3. Rules for Fusion of Curvelet Coefficients
3.1. Fusion Rules at the Coarse Layer

In side-scan sonar imagery, the height of detected targets is generally represented by
the shadow length, but such information is deemed irrelevant during the image fusion
process. Considering that shadows in side-scan sonar strip images typically exhibit low
reflection intensity, these regions, upon the curvelet transform, would yield greater absolute
values of the low-frequency coefficients. Therefore, to mitigate the impact of shadows on
the fused side-scan sonar image [9], the curvelet coefficient at the coarse layer was selected
by retaining the coefficient with the smallest absolute value. The computational equation is:{

C(x, y) = C1(x, y), (|C1(x, y)| < |C2(x, y)|)
C(x, y) = C2(x, y), (|C1(x, y)| > |C2(x, y)|) (3)

where C(x, y) is the fused coefficient; C1(x, y) and C2(x, y) represent the coefficients to
be fused.

3.2. Fusion Rules at the Detail Layers

The process of side-scan sonar image fusion necessitates the use of complementary
information from adjacent strips [6]. The overlapping parts of side-scan sonar strip images
contain both redundant and complementary details. While redundant data can be partially
retained, those complementary details need to be equally preserved. Hence, the selection
of fusion rules at the detail layer is expanded by a fusion algorithm based on the regional
matching degree. This algorithm calculates the extent to which the intermediate-frequency
curvelet coefficients of two images within the same region match, thereby distinguishing
between redundant and complementary information. When calculating the matching
degree, it is optimal to choose the 7× 7 window size [18,19], which effectively represents
the gray-level characteristics in the region. A small window size may reduce the amount of
information, rendering the matching degree calculation useless. Conversely, a large window
size is likely to cause an imbalanced distribution algorithm, as there would emerge an
overwhelming number of regions with low matching degrees given the excessive irrelevant
details produced. The equation for calculating the matching degree is as follows:

M =

2
49

5
∑

i,j=−1
w(1 + i, 1 + j)× (C1(x + i, y + j)×C2(x + i, y + j))

E1 + E2
(4)

E1 =
1

49

5

∑
i,j=−1

w(1 + i, 1 + j)× C1(x + i, y + j)2 (5)

E2 =
1

49

5

∑
i,j=−1

w(1 + i, 1 + j)× C2(x + i, y + j)2 (6)

w =
1

484
wT

1 × w1 (7)

where M is the matching degree; E denotes the regional activity degree [18]; w represents
the weighting coefficient matrix; w1 = [1, 2, 4, 8, 4, 2, 1].

The matching degree is determined by a set threshold value, which decides whether
the information is redundant or complementary. An empirical threshold value of 0.7 is
preferred, as employing other values would engender imbalances in the distribution rules.
The threshold was determined by testing nine threshold values ranging from 0.1 to 0.9
on two types of side-scan sonar images, namely “side-scan sonar images with strong
noise” and “side-scan sonar images with larger shadow areas”. The threshold value of 0.7
exhibited the best visual effect and performance evaluation among all the tested values.
A threshold greater than 0.7 comes with a higher matching degree, which leaves most
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coefficients ineffective and valuable information elusive. This is also known as the “Type
I Error” or a “false positive” finding. On the other hand, when the threshold is lower
than 0.7, a large amount of low-value information is included in the weighted averaging,
thus leading to the “Type II Error” or a “false negative” conclusion. Both of these “errors”
contribute to a decrease in the fidelity evaluation of the fused image.

The matching degree exceeding the threshold indicates that the part of that region is
redundant. In this case, a fade-in and fade-out weighted averaging algorithm should be
employed to increase the weighting coefficients for low-activity regions and relate these
coefficients to the matching degree value. Higher matching degrees correspond to a larger
proportion of low-energy coefficients, making the fused coefficient closer to the low-activity
coefficient value. This approach is designed to minimize the error caused by the distortion
of side-scan sonar images while preserving information of high similarity. The equations
for the fade-in and fade-out weighted averaging are expressed as follows:C(x, y) = 1

2

{
(1− 1−M

1−0.7 )C1(x, y) + (1 + 1−M
1−0.7 )C2(x, y)

}
, (E1 > E2)

C(x, y) = 1
2

{
(1 + 1−M

1−0.7 )C1(x, y) + (1− 1−M
1−0.7 )C2(x, y)

}
, (E1 < E2)

(8)

When the matching degree falls below or equals the threshold value, it signifies the
presence of the complementary region, where one image exhibits shadowed areas, while the
other contains valid information. In such instances, the coefficients with elevated activity
within the region are selectively retained [18] to preserve the complementary details from
both strip images. The algorithmic equations for this procedure are:{

C(x, y) = C1(x, y), (E1 > E2)
C(x, y) = C2(x, y), (E1 < E2)

(9)

To guarantee the smoothness of image information and avoid outliers, the central
point coefficient served as the coefficient during the selection and fusion processes.

3.3. Fusion Rules at the Fine Layer

Beyond the intricate target features of side-scan sonar images, high-frequency co-
efficients contain significant amounts of noise, which remain even upon pre-processing
and denoising. That means a technique equivalent to enhancement or sharpening should
be applied to coefficients at the fine layer, ensuring that the fused side-scan sonar image
exhibits contrast and clarity equal to or greater than the individual strip images. To meet
these requirements, parameters that reflect contrast and clarity must be considered. Com-
monly used ones are the average gray-level gradient [7,18] and the regional gray-level
variance [8,19]. The preferred approach is an extremum selection algorithm based on the
average gray-level gradient. Under the algorithm, the extreme value, upon the calculation
of the average gradient, is retained, a technique similar to enhancement or sharpening,
which ensures the fused side-scan sonar image possesses contrast and clarity that are not
inferior to the individual strip images. The distinctive feature of this algorithm is that
higher average gradient values correspond to a stronger contrast of the coefficients in the
region and clearer target features in the side-scan sonar image. By contrast, lower average
gradient values indicate weaker contrast and blurrier target features. The equation for
calculating the average gray-level gradient is expressed as:

S =
1

m× n

m−1

∑
i=0

n−1

∑
j=0

√√√√1
2
×
[(

∂C(x, y)
∂x

)2

(i,j)
+

(
∂C(x, y)

∂y

)2

(i,j)

]
(10)
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where S is the average gray-level gradient; m× n denotes the size of the matrix of gray-
level gradient values, the same as that of the curvelet coefficients. The coefficient fusion
equations under this algorithm are:{

C(x, y) = C1(x, y), (S1 > S2)
C(x, y) = C2(x, y), (S1 < S2)

(11)

4. Evaluation Indicators

The indicators typically employed to assess the effectiveness of side-scan sonar image
fusion include information entropy, normalized mutual information, average gradient,
spatial frequency, and standard deviation:

(1) Information entropy:

Information entropy can be used to quantify the information value of the fused side-scan
sonar image. A higher numerical value indicates more uncertainty and greater information
value of the fused image, thus suggesting higher image fidelity [2,3,6,8,11,18–23].

H(x) = −
L

∑
i=1

hx(i) log2hx(i) (12)

In Equation (12), L is the gray level of an image; H(x) represents the information
entropy; hx(i) denotes the probability distribution of the gray level of the image pixels.

(2) Normalized mutual information:

The fusion of side-scan sonar images using normalized mutual information preserves
the information proportionality of strip imagery, whereby a higher ratio value signifies a
greater extent of information preservation and superior fidelity [2,21,23]. Nonetheless, this
indicator tends to allow for distortion and errors pertaining to underwater features and
seafloor topography. With matching and correction in the early stages, error information
can be diminished to render the indicator more effective and reliable.

MNI(x, y; f ) =
NMI(x, f ) + NMI(y, f )

2
(13)

NI(x, f ) =
I(x, f )

(H(x) + H( f ))/2
(14)

I(x, f ) = H(x) + H( f )− H(x, f ) =
L

∑
i=1

L

∑
j=1

hx, f (i, j) log2
hx, f (i, j)

hx(i)h f (j)
(15)

H(x, f ) = −
L

∑
i=1

L

∑
j=1

hx, f (i, j) log2hx, f (i, j) (16)

In the above equations, x and y represent the location of the pixel of a pre-mosaic strip
image; f is the mosaic image; hx, f (i, j) denotes the joint probability distribution of x and f ;
H(x, f ) indicates the joint entropy.

(3) Average gradient:

The average gradient is a measure of image clarity and contrast, which is also ap-
plicable to the fused side-scan sonar image, with a higher value leading to a clearer and
higher-fidelity fused image [8,19–23].

grad =
1

A× B

A

∑
a=1

B

∑
b=1

√√√√1
2
×
[(

∂I
∂x

)2

(a,b)
+

(
∂I
∂y

)2

(a,b)

]
(17)

where A× B is the image size; I suggests the matrix of image pixel values; ∂I
∂x represents
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the partial derivative of the gradient; (a, b) indicates where the pixel point or the partial
derivative of the gradient is located.

(4) Spatial frequency:

The spatial frequency describes how spatially active an image is, and as its numerical
value goes up, the fidelity of the fused side-scan sonar image increases [3,18].

SF =
√

CF2 + RF2 (18)

CF =

√√√√ 1
A× B

A

∑
a=2

B

∑
b=1

(I(a, b)− I(a− 1, b))2 (19)

RF =

√√√√ 1
A× B

A

∑
a=1

B

∑
b=2

(I(a, b)− I(a, b− 1))2 (20)

where CF is the spatial column frequency; RF denotes the spatial row frequency.

(5) Standard deviation:

Indicative of gray-level value dispersion, the standard deviation also reflects the
contrast of the fused side-scan sonar image, and a larger numerical standard deviation
value is accompanied by a higher level of contrast, thus delivering fusion results of higher
fidelity [2,3,6,8,11,20].

D =

√√√√255

∑
i=0

(i− ave)2h(i) (21)

In Equation (20), i is the gray level, whose value ranges from 0 to 255; ave denotes
the average gray-level value of pixels in an image (or a selected box); h(i) represents the
probability distribution of pixels with gray level i.

5. Experiments and Analyses

The fidelity of side-scan sonar images is profoundly impacted by noise, which finds its
expression in low noise and strong noise. Image shadows can be classified based on their area.
For experimental purposes, we selected two representative types of images.

5.1. Testing on the Side-Scan Sonar Image with Low Noise and Large Shadow Areas

To analyze and compare the strengths and weaknesses of various fusion algorithms
and validate the applicability of our proposed algorithm, we carefully handpicked a dataset
from the SonarWiz side-scan sonar software website. The dataset, as depicted in Figure 4,
was obtained on 12 May 2009, in the eastern coastal waters of New Hampshire, United
States of America, using a Klein towed side-scan sonar system. The local water depth was
approximately 30 m, and the instrument’s measurement range was set to a single-sided swath
of 100 m. Notably, the dataset demonstrates low noise levels, expansive shadow areas, and
distinct geomorphic features.
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Taken from Figure 4, the cropped image apparently containing distinct geomorphic
features was converted into a gray-level one before matching image feature points [10],
with the matching results shown in Figure 5. To match the images, the specific method
involved selecting the corresponding feature points of common targets in both images,
using the left image as the reference, and moving the right image to align with the same
feature points. Matching serves as a pre-work for fusion. The algorithm proposed in this
paper was designed based on the accurate matching of image positions. Therefore, the
matching method was not relevant to the fusion algorithm proposed in this paper.
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Figure 6 illustrates the overlaid display of the positional relationship following the
matching process. A region of overlapping coverage measuring 439 × 175 pixels was
selected from the experimental image for the curvelet transform, with the hierarchical
structure presented in Table 2.
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Table 2. The hierarchical structure of the experimental image upon the curvelet transform.

Layer Scale Coefficient Number of Orientations Matrix Form

Coarse C{1} 1 37 × 15

Detail

C{2} 16 30 × 16 (4 sets) 27 × 14 (4 sets)
37 × 13 (4 sets) 37 × 11 (4 sets)

C{3} 32
58 × 16 (4 sets) 55 × 15 (8 sets)
55 × 16 (4 sets) 37 × 24 (4 sets)
38 × 22 (8 sets) 37 × 22 (4 sets)

C{4} 32 115 × 30 (4 sets) 110 × 30 (12 sets)
74 × 46 (4 sets) 74 × 44 (12 sets)

Fine C{5} 1 439 × 175
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When the selected region was gradually reduced, the number of layers decreased from
5 to 4 and further to 3, which is the minimum number of layers. The number of orientations
per layer was as follows: 1 and 16 (for 3 layers), 1 (for 4 layers), and 1. When the selected
region was expanded, the number of layers increased from 5 to 6, 7, and so on, depending
on the image size. In this case, the number of orientations per layer was as follows: 1, 16,
32, and 32 (for 5 layers), 64 (for 6 layers), 64 (for 7 layers) . . . and 1.

To demonstrate the effectiveness of the proposed method in this paper, a compara-
tive analysis was conducted with such techniques as the curvelet-transform-based fusion
method factoring in the extremum and the fade-in and fade-out weighted averaging rule,
the wavelet-transform-based fusion method following this study’s rules, the Laplacian
pyramid fusion method following this study’s rules, and the fade-in and fade-out fusion
strategy based on the rules stated in this paper.

The images depicted in Figure 7 were all locally cropped and arranged from left to
right as follows: 1© left strip image; 2© right strip image; 3© fused image using the proposed
method; 4© image using the curvelet-transform-based fusion method incorporating the
extremum and the averaging rule; 5© fused image upon the wavelet transform; 6© image
adopting a three-layer Laplacian pyramid fusion approach; 7© image using a four-layer
Laplacian pyramid fusion technique; 8© image employing a five-layer Laplacian pyra-
mid fusion method; 9© image using the gray-level-based fade-in and fade-out weighted
averaging fusion method. Data on the evaluation indicators are illustrated in Table 3.
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Table 3. Data on evaluation indicators for various image fusion methods.

Normalized
Mutual

Information
Information

Entropy
Average
Gradient

Spatial
Frequency

Standard Deviation
of Gray Level of

Image

Proposed Method 0.1433 7.6675 14.3056 37.6845 54.4358

Curvelet-Transform-Based Fusion Method Incorporating the
Extremum and the Fade-In and Fade-Out Weighted Averaging

Rule
0.0954 6.7515 11.9239 36.6779 38.5593

Fusion Method Based on the Wavelet Transform 0.1033 7.3513 13.6859 37.1228 41.2944

Laplacian Pyramid Fusion
Method

Three Decomposed Layers 0.1205 7.5844 13.6903 37.1458 49.5006

Four Decomposed Layers 0.1047 7.5831 13.5391 37.0545 48.4813

Five Decomposed Layers 0.0881 7.4808 12.7595 33.1743 50.3156

Gray-Level-Based Fade-In and Fade-Out Weighted Averaging
Fusion Method 0.0802 7.1200 8.4047 22.8736 34.8301

The analysis of Figure 7 shows that the wavelet-transform-based fusion method
displayed a relatively diminished visual contrast. The curvelet-transform-enabled fusion
technique incorporating the extremum and the fade-in and fade-out weighted averaging
rule exhibited unsatisfactory performance in terms of both image clarity and contrast, even



J. Mar. Sci. Eng. 2023, 11, 1291 11 of 16

falling below the outcomes of its counterpart built on the wavelet transform. The Laplacian
pyramid fusion method manifested the presence of white shadows, which obscured the
valid information, and varying degrees of mottling. A decrease in the number of layers
resulted in reduced shadowing, thereby minimizing information loss, but increasing the
occurrence of mottling. By contrast, an increasing number of layers amplified shadowing
while mitigating the emergence of mottling. Furthermore, the gray-level-based fade-in and
fade-out weighted averaging fusion method incurred conspicuous information loss. In
stark contrast, the proposed method in this paper delivered a markedly superior visual
performance when compared to the aforementioned approaches.

As shown in the data of Table 3:
The evaluation ranking of Indicator 1 was: proposed method > Laplacian 3-layer

pyramid fusion method > Laplacian 4-layer pyramid fusion method > fusion method based
on the wavelet transform > curvelet-transform-based fusion method incorporating the ex-
tremum and the fade-in and fade-out weighted averaging rule > Laplacian 5-layer pyramid
fusion method > gray-level-based fade-in and fade-out weighted averaging fusion method.

The evaluation ranking of Indicator 2 was: proposed method > Laplacian 3-layer
pyramid fusion method > Laplacian 4-layer pyramid fusion method > Laplacian 5-layer
pyramid fusion method > fusion method based on the wavelet transform > gray-level-based
fade-in and fade-out weighted averaging fusion method > curvelet-transform-based fusion
method incorporating the extremum and the fade-in and fade-out weighted averaging rule.

The evaluation ranking of Indicator 3 was: proposed method > Laplacian 3-layer
pyramid fusion method > fusion method based on the wavelet transform > Laplacian
4-layer pyramid fusion method > Laplacian 5-layer pyramid fusion method > curvelet-
transform-based fusion method incorporating the extremum and the fade-in and fade-out
weighted averaging rule > gray-level-based fade-in and fade-out weighted averaging
fusion method.

The evaluation ranking of Indicator 4 was: proposed method > Laplacian 3-layer pyra-
mid fusion method > fusion method based on the wavelet transform > Laplacian 4-layer
pyramid fusion method > curvelet-transform-based fusion method incorporating the ex-
tremum and the fade-in and fade-out weighted averaging rule > Laplacian 5-layer pyramid
fusion method > gray-level-based fade-in and fade-out weighted averaging fusion method.

The evaluation ranking of Indicator 5 was: proposed method > Laplacian 5-layer
pyramid fusion method > Laplacian 3-layer pyramid fusion method > Laplacian 4-layer
pyramid fusion method > fusion method based on the wavelet transform > curvelet-
transform-based fusion method incorporating the extremum and the fade-in and fade-out
weighted averaging rule > gray-level-based fade-in and fade-out weighted averaging
fusion method.

The indicator data provided in Table 3 confirmed that, by incorporating the rules
proposed in this study, the curvelet-transform-based image fusion method outperformed
the approach of incorporating the extremum and the averaging rule. Therefore, with
optimal indicator performance among other fusion methods, the proposed technique
that integrates the rules on fusing the features of side-scan sonar images with curvelet
decomposition demonstrated a strong applicability to side-scan sonar images with low
noise and large shadow areas.

5.2. Testing on the Side-Scan Sonar Image with Strong Noise and Small Shadow Areas

Utilizing an AUV to collect side-scan sonar images is a valuable research method, and
several studies in the industry are currently based on this approach [24–26]. The image
depicted in Figure 8 illustrates the data collected during a field experiment conducted
in February 2023 at the Nanshan Port Terminal located in Sanya, China. The data were
acquired using an advanced autonomous underwater vehicle (AUV) equipped with the
state-of-the-art ES100 side-scan sonar system developed by Hydro-tech Marine. The
experimental data comprised two distinct measurement ranges, specifically 50 m for the
left strip and 75 m for the right strip. Notably, the data featured intricate noise patterns
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and relatively small shadow areas. The image was of a hollow spherical target with a
one-meter radius composed of thin ferrous metal plates and supported by a metal rack.
Furthermore, the details on the pit caused by the target, moored vessels along the shoreline,
and fixed structures constituting the port’s embankment were contained. The aim of this
experiment was to evaluate the effectiveness of fusion algorithms in mitigating the effects
of strong-noise, small-shadow sonar images. The post-matching results are presented in
Figure 9, the red square is where the fusion effect is displayed.
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The images presented in Figure 10 are as follows: 1© left strip image; 2© right strip
image; 3© fused image adopting the proposed method in this paper; 4© image using the
curvelet-transform-based fusion method incorporating extremum and the averaging rule;
5© fused image upon the wavelet transform; 6© image adopting a three-layer Laplacian

pyramid fusion approach; 7© image using a four-layer Laplacian pyramid fusion technique;
8© image employing a five-layer Laplacian pyramid fusion method; 9© image using the gray

level-based fade-in and fade-out weighted averaging fusion method. Data on evaluation
indicators are displayed in Table 4.

As shown in Figure 10, in terms of visual effects evaluation, the analysis results were
the same as the previous experiment.

As shown in Table 4 for the indicator data:
The evaluation ranking of Indicator 1 was: proposed method > Laplacian 3-layer

pyramid fusion method > Laplacian 4-layer pyramid fusion method > fusion method based
on the wavelet transform > Laplacian 5-layer pyramid fusion method > curvelet-transform-
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based fusion method incorporating the extremum and the fade-in and fade-out weighted
averaging rule > gray-level-based fade-in and fade-out weighted averaging fusion method.
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Table 4. Data on evaluation indicators for various image fusion methods.

Normalized
Mutual

Information
Information

Entropy
Average
Gradient

Spatial
Frequency

Standard
Deviation of Gray

Level of Image

Proposed Method 0.2253 7.8747 17.5501 45.9045 66.0877

Curvelet-Transform-Based Fusion Method Incorporating
the Extremum and the Fade-In and Fade-Out Weighted

Averaging Rule
0.1315 6.7791 13.0497 40.1973 55.4402

Fusion Method Based on the Wavelet Transform 0.1580 7.6189 17.1930 45.6154 56.5425

Laplacian Pyramid Fusion
Method

Three Decomposed Layers 0.2076 7.7646 16.8575 44.0948 62.6314

Four Decomposed Layers 0.1584 7.8249 17.2029 45.5797 65.4208

Five Decomposed Layers 0.1463 7.7782 17.0879 45.4595 63.5135

Gray-Level-Based Fade-In and Fade-Out Weighted
Averaging Fusion Method 0.0552 7.3745 10.3284 29.2600 48.9517

The evaluation ranking of Indicator 2 was: proposed method > Laplacian 4-layer
pyramid fusion method > Laplacian 5-layer pyramid fusion method > Laplacian 3-layer
pyramid fusion method > fusion method based on the wavelet transform > Laplacian
5-layer pyramid fusion method > gray-level-based fade-in and fade-out weighted averaging
fusion method > curvelet-transform-based fusion method incorporating the extremum and
the fade-in and fade-out weighted averaging rule.

The evaluation ranking of Indicator 3 was: proposed method > Laplacian 4-layer
pyramid fusion method > fusion method based on the wavelet transform > Laplacian
5-layer pyramid fusion method > Laplacian 3-layer pyramid fusion method > curvelet-
transform-based fusion method incorporating the extremum and the fade-in and fade-out
weighted averaging rule > gray-level-based fade-in and fade-out weighted averaging
fusion method.

The evaluation ranking of Indicator 4 was: proposed method > fusion method based
on the wavelet transform > Laplacian 4-layer pyramid fusion method > Laplacian 5-layer
pyramid fusion method > Laplacian 3-layer pyramid fusion method > curvelet-transform-
based fusion method incorporating the extremum and the fade-in and fade-out weighted
averaging rule > gray-level-based fade-in and fade-out weighted averaging fusion method.
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The evaluation ranking of Indicator 5 was: proposed method > Laplacian 4-layer
pyramid fusion method > Laplacian 5-layer pyramid fusion method > Laplacian 3-layer
pyramid fusion method > fusion method based on the wavelet transform > curvelet-
transform-based fusion method incorporating the extremum and the fade-in and fade-out
weighted averaging rule > gray-level-based fade-in and fade-out weighted averaging
fusion method.

The strip images offered a clear and detailed depiction of the spherical target and
showcased the specific shape and texture of the port with remarkable fidelity. Additionally,
the pits formed by the target in other locations on the seafloor were discernible. The
fused image obtained through the proposed method adeptly combined the target and
pit information from the left strip image while faithfully preserving the port’s shape and
texture from the right strip image. Overall, the experimental results provided compelling
evidence for the effectiveness of the proposed method. By combining the image fusion
rules that factor in the features of side-scan sonar images with the curvelet transform’s
decomposition attribute, the technique is also highly applicable to side-scan sonar images
with complex noise and small shadow areas.

6. Discussion

The rule proposed in this study suggested employing different algorithms to process
coefficients at varying scales, orientations, and locations. Such a proposal aligned with the
characteristics of side-scan sonar images and the inherent properties of the curvelet transform.

The experiment employed a comparative approach based on control variables, cat-
egorizing the fusion methods into three groups: the proposed method, which combines
the fusion rule that incorporates the features of side-scan sonar images with the curvelet
transform; methods that integrate other fusion rules with the curvelet transform; and
methods that blend the proposed fusion rules with other principles. The experimental
results indicated that, from the perspective of performance and indicator data, the tech-
nique combining the curvelet transform with our proposed fusion rules was superior to
methods that integrate the curvelet transform with other fusion rules and to fusion ap-
proaches that merge the proposed rules with other principles. The proposed image fusion
method outperformed the wavelet-transform-based equivalent in multi-angle geometric
analysis and exhibited significant advantages over multi-resolution pyramid analyses and
gray-level-based fusion methods. Additionally, compared to the curvelet-transform-based
algorithm without incorporating the proposed rules and the methods blending the curvelet
transform and other fusion rules, the fusion method that integrates the proposed rules
with other principles still holds advantages. All these showcased the advantage of the
curvelet transform in side-scan sonar image fusion, the strong applicability of the proposed
rules even without the employment of the curvelet transform, and most importantly, the
superiority manifested when our proposed rules were merged with the curvelet transform.
On top of proving the proposed method’s theoretical advantages, the experimental results
also served as a testament to how applicable the technique is to the side-scan sonar imagery
with either low noise and large shadows or strong noise and small shadows. The method
still holds, irrespective of the size of shadow areas and the level of noise. Nonetheless, these
experimental findings also suggested that the proposed technique has limited effectiveness
in reducing noise, meaning denoising needs to be conducted prior to the fusion of side-scan
sonar images.

From the above discussion, we concluded that the side-scan sonar image fusion
algorithm put forth in this paper holds the lead among its counterparts.

One drawback of the proposed theory in this study lied in its limitations regarding
image clarity and contrast, which are inherently constrained by the original side-scan
sonar strip images. The proposed approach lacks advanced enhancement capabilities.
Additionally, when handling the curvelet coefficients, the processing was conducted on
a point-by-point basis without aligning with the approach to handle adjacent coefficient
points within localized regions, which may lead to a gray-level jump. Going ahead,
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there will be a concerted research effort to bolster the investigation into the enhancement
techniques for the fused images and to explore methodologies that ensure consistency in
the processing of regional coefficients.

7. Conclusions

Given that current fusion methods for side-scan sonar images fail to achieve optimal
results, we put forth a novel image fusion approach that blends the curvelet transform with
the features of side-scan sonar imagery. The technique is ingenuous for it factors in the
unique features exhibited by side-scan sonar images, making it widely applicable to the
fusion of such images. To be specific, the proposed method:

(1) Combines fusion rules based on the regional matching and activity degrees of imagery,
which preserves the valid details of side-scan sonar images while eliminating those
that are irrelevant;

(2) Incorporates fusion rules centering on the average gray-level gradient of imagery as a
way of enhancing the clarity and contrast of side-scan sonar images;

(3) Merges fusion rules involving curvelet coefficients and extreme values, thereby reduc-
ing the impact of strip image shadows on the fused results.

The side-scan sonar image fusion method proposed in this paper stands as the only
fusion algorithm that aptly incorporates the characteristics of side-scan sonar imagery and
leverages the properties of the curvelet transform. In comparison to the other methods
discussed in the paper, it exhibited superior performance over the method with the highest
numerical value in each metric mentioned, with a minimum margin of 0.0177 and a
maximum margin of 4.1202. The experimental results indicated that the fairly reliable
technique outperformed its image fusion equivalents while holding significant relevance
for both practical applications and engineering endeavors. However, further research is
warranted to augment the theoretical foundation of this method and emphasize the study’s
core objectives, such as advancing methodologies that utilize side-scan sonar image fusion
to profile seafloor topography precisely. Beyond improving the visual outcomes and values
of evaluation indicators, such as enhancing image clarity and contrast without neglecting
data features, subsequent research endeavors should focus on preventing gray-level jumps
in fusing images and keeping processing across regional domains consistent.
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