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Abstract: A semi-analytical solution is presented for the evaluation of mean drift wave forces on
arrays of structures composed of impermeable vertical cylindrical bodies and surrounded by thin,
porous surfaces. The porous cell is assumed to have fine pores so that a linear pressure drop
can be considered. The mean drift wave forces on the array are determined via two principally
different approaches: the momentum conservation theory and the direct integration of all pressure
contributions upon the bodies’ instantaneous wetted surfaces. A solution method that solves the
corresponding diffraction problem following the multiple scattering approach is proposed to account
for the hydrodynamic interaction phenomena between the waves and the bodies. Numerical results
are presented which illustrate the consistency of each of the two approaches in accurately evaluating
the mean wave drift forces on several examined array configurations. It is shown that the thin,
porous surface significantly reduces the drift forces on the array of bodies, whereas at specific wave
frequencies, local enhancements of the forces’ values are noted due to the amplified wave field
between the members of the array.

Keywords: mean drift wave forces; porous surfaces; Darcy’s law; direct integration;
momentum principle

1. Introduction

The interactions of ocean waves with the supporting columns of an offshore structure
are of fundamental importance in its design. In this context, enhanced hydrodynamic
interactions occur in arrays of bodies due to the amplification of the wave field via the
continuous interactions of the propagating waves with the members of the array and the
scattered waves among the solids, causing large, exciting wave loads and mean drift wave
forces. This phenomenon is paramount, especially for arrays of multi-body arrangements,
creating the so-called trapped-mode phenomenon. A trapped-mode phenomenon appears
at specific wave frequencies at which the hydrodynamic loading components resonate and
consequently elevate the waves in the fluid region between the bodies [1,2]. Therefore, the
main challenge in arrays of large numbers of bodies is to not only withstand the prevailing
environmental conditions at the installation location but also to predict the increased
hydrodynamic wave loads on adjacent solids of the array, which are linked to the trapped
waves.

There is a breadth of literature on porous structures and their effectiveness at reducing
wave loads and wave reflections compared to impermeable solids. Specifically, porous,
rubble-mound, and crip-type breakwaters are applied for shore protection since they can
effectively reduce the transmitted and reflected wave heights. In addition, they allow
water transmission between the open sea and the protected area. In [3,4], theoretical and
numerical formulations for the prediction of ocean wave reflection and transmission at a
permeable breakwater were presented and compared with corresponding experimental re-
sults. Also, in [5], a mathematical model for the transformation of a wave over a submerged
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breakwater was developed on the basis of the linearization of the equation that governs
an unsteady flow through a porous medium. In [6], the influences of the breakwater’s
geometry, the porous material properties, and the wave characteristics on the kinematics
and dynamics over and inside a breakwater were examined by extending the mild slope
equation for waves propagating on a porous layer. In [7,8], an application of the modified
mild-slope equation for the evaluation of wave trapping by a porous breakwater was
described. Recently, a pile-rock breakwater was examined [9], and an analytical solution
for the interactions of a wave with the barriers was provided in the framework of the
linear potential theory. A new analytical solution for wave reflection and transmission by a
surface-piercing breakwater was also presented in [10]. Here, a modified water free surface
condition was applied for the determination of the unknown expansion coefficients in
the velocity potential expressions. A coupled eigenfunction expansion–boundary element
method was presented in [11] for the interaction of surface waves with a submerged, semi-
circular porous breakwater placed on a porous seabed. It was concluded that up to 90%
of the incoming wave energy could be dissipated by the breakwater. In addition, in [12],
a comparative study on the hydrodynamic performances of porous and non-porous sub-
merged breakwaters was conducted. From the presented experiments, the effect of porosity
on the wave transmission and reflection coefficients was highlighted, as was its effect as
on the wave energy loss coefficient for three different types of breakwaters with various
values of porosity. A comparative study on two different types of porous breakwaters,
i.e., bottom-standing and surface-piercing, was presented in [13]. The study revealed that
for a bottom-standing barrier, more waves in interface mode are transmitted and more
waves in surface mode are dissipated. The opposite holds true for the surface-piercing
breakwater.

The above-mentioned wave–structure interaction studies were mainly focused on
porous breakwaters. In addition to these studies, a substantial research interest has been
focused on the interaction of waves with porous submerged plates and surface-pierced
cylindrical bodies. Regarding porous plates, in [14,15], a linearized potential wave theory
was applied to investigate the scattering of waves by a submerged disk with pores, whereas
in [16], the reflection coefficient of water waves interacting with a submerged horizontal
porous plate was examined. Furthermore, in [17], the hydroelastic interactions between
water waves and submerged porous elastic discs were investigated. The use of multiple
discs in an array was found to be a promising approach for wave power dissipation. In
addition, the use of a horizontal, flexible porous membrane as an effective composite
breakwater type was examined in [18,19]. Specifically, a semi-analytical model based on
a matched eigenfunction expansion method was presented, and it was concluded that
an optimal porosity parameter can be obtained which results in better wave-blocking
performance and a smaller vertical force on the flexible porous structure. The use of porous
structures as a future design for wave energy absorption was considered in [20,21], in
which a hydroelastic model was developed. Here, the effects of mooring stiffness and
porous-effect parameters on the structure’s displacement were evaluated. In [22,23], the
hydrodynamic loads on a circular porous plate which was submerged below a free surface
were also presented.

As far as porous cylindrical bodies are concerned, in [24–26], a single impermeable,
bottom-seated vertical cylinder with an exterior porous surface was examined numerically
and experimentally. It was found that the existence of the porous shell could substantially
reduce the hydrodynamic forces and the mean drift wave forces on the solid body. A
truncated cylinder with an upper porous sidewall and an inner impermeable column was
studied in [27,28]. It was concluded that the proper selection of the porous coefficient, as
well as the cylinder’s geometric parameters, can reduce the surge and heave wave forces
acting on the structure. In addition, in [29], a boundary element method for the evaluation of
wave forces on structures composed of solid and porous surfaces was presented. Here, the
porous surface was subjected to linear and quadratic pressure–velocity relations. In [30,31],
a linear and a quadratic resistance law was applied to several porous structures of arbitrary
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shapes. It was found that the exciting forces on the porous geometries considered were
5–20 times smaller than on their solid body counterparts, whereas the mean drift wave
forces on the porous cases were more than four times lower than in the impermeable
cases. A single cylindrical body with a porous cover, bottom, and sidewall surfaces was
examined in [32,33]. Here, the Haskind relations were applied, and an additional damping
coefficient due to the porosity was found. Furthermore, a hydrodynamic analysis of a single
surface-piercing, semi-porous compound cylinder, employing the methods of separation of
variables and matched eigenfunction expansions for the velocity potential, was presented
in [34–36]. It was found that an appropriate optimal ratio of various parameters such as
radius, draught, and porosity can be established for to minimize the adverse hydrodynamic
effects on the structure.

With respect to arrays of porous cylindrical bodies, in [37,38], the interaction of water
waves with partially porous, truncated circular cylinders was investigated. The exciting
wave forces and the wave run-up on the multibody arrangement were calculated for various
porosity coefficients and wave conditions. Also, in [39], an array of porous circular cylinders
with and without inner porous plates was theoretically and experimentally investigated in
order to evaluate the transmission rate of the propagating waves. Toward this goal, the
cylinders’ draughts, the locations of the inner porous plates, and the spacing between the
adjacent bodies were adjusted for the optimization of the wave dissipation. Finally, in [40],
the exciting forces and the free surface elevation around an array of dual porous cylinders
were evaluated for various bodies’ geometries, angles of wave propagation, and porosity
coefficients.

The aim of the present paper is to take the analysis of multibody porous arrays a step
further with the evaluation of the mean drift wave forces on the bodies for several-body
arrangements. In arrays of finite impermeable bodies, the waves are trapped at specific
wave frequencies within the local vicinity of adjacent solids, forming a near-standing wave
with a much higher amplitude compared to the wave amplitude at other wave frequencies.
Furthermore, in the analysis presented in [25] on a single porous cylinder, it was derived
that local enhancements on the mean drift wave forces were attained at certain wave
frequencies. Hence, the question that must be answered is whether these phenomena also
occur for arrays of porous cylinders.

Mean drift wave forces are second-order forces and are small in magnitude com-
pared to their first-order oscillatory counterparts. Nevertheless, although they do not
influence the first-order oscillatory body’s motions, they may cause a large excursion
from the body’s mean position in cases in which there is a lack of hydrostatic restoring
forces [41,42]. Two principally different approaches have been presented in the literature for
the evaluation of mean drift wave forces. The first approach, which is based on the momen-
tum conservation principle, relates the forces on the body with the forces on the exterior con-
trol surfaces and the rate of change of the fluid momentum between the body and the control
surfaces [41,43,44]. The second approach relies on the direct integration of the fluid’s pres-
sure over the body’s wetted surface [45,46]. Nevertheless, both formulations require a
solution for the corresponding linearized wave–body interaction problem, considering the
hydrodynamic interaction phenomena between the bodies of the array.

In the present work, both the momentum and the direct integration methods are
applied for the evaluation of the mean drift wave forces on arrays of porous cylindrical
bodies. In the framework of the linear potential theory, the hydrodynamic interaction
effects are determined via first-order potential solutions through the use of the multiple
scattering approach, whereas the hydrodynamic characteristics of the bodies are evaluated
using the method of matched axisymmetric eigenfunction expansions. The porous surface
is assumed to be inflexible with fine pores so that a linear pressure drop can be considered.
The existence of increased wave amplitudes in porous arrays is clearly demonstrated by the
presented results. Nevertheless, the amplitudes of the waves are strongly dependent on the
porous coefficient, the distance between the adjacent bodies, and the wave heading angle.
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2. Hydrodynamic Formulation

An array of N bottom-seated impermeable vertical cylinders is assumed. The radius
of each cylinder is an, n = 1, . . . , N, whereas its draught, which coincides with the water
depth, is d. Each cylinder is surrounded by an exterior thin, porous cylindrical cell of radius
bn, n = 1, . . . , N. Also, N local cylindrical coordinate systems (rn, θn, z), n = 1, . . . , N,
are defined with their origins on the seabed and their vertical axes pointing upwards,
coinciding with the vertical axis of symmetry of the nth body. The array is exposed to
the action of a plane incident wave train of frequency ω, wave number k, and amplitude
H/2, propagating at an angle of ξ with respect to the positive x-axis. The distance between
the centers of two adjacent cylinders j and n is denoted by lnj (see Figure 1). Within
the framework of the linear potential theory, the fluid is assumed to be non-viscous and
incompressible and the flow irrotational.
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The flow field around each body n, n = 1, . . . , N of the array can be described by a
velocity potential function Φn as:

Φn(rn, θn, z; t) = Re
{

ϕn(rn, θn, z)e−iωt
}

, (1)

whereas the spatial function ϕn can be decomposed as [47]:

ϕn = ϕn
0 + ϕn

7︸ ︷︷ ︸
ϕn

D

, (2)

Here, “Re” denotes the real part, whereas ϕn
0 is the velocity potential of the undisturbed

incident harmonic wave, and ϕn
7 is the scattered potential around the nth body. Also, the

sum of ϕn
0 and ϕn

7 is the diffraction potential ϕn
D.

The fluid field around the porous body n is subdivided into two coaxial ring-shaped
regions, I and I I, i.e., I (rn ≥ bn) and I I (an ≤ rn ≤ bn). In each region, different expres-
sions of the velocity potentials ϕn can be made, i.e., ϕI,n and ϕI I,n for the regions I and
I I, respectively. The velocity potentials ϕ

p,n
q , q = 0, 7; p = I, I I; n = 1, . . . , N, satisfy the

Laplace equation in the fluid domain:

∇2 ϕn = 0, (3)

and the boundary conditions below.
The zero-velocity condition on the seabed:

∂ϕn

∂z
= 0; on z = 0, (4)
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the combined linear kinematic and dynamic boundary conditions of the water free surface:

ω2 ϕn − g
∂ϕn

∂z
= 0; on z = d, (5)

and a radiation condition which states that propagating disturbances must be outgoing [47].
Furthermore, since a fine-pore assumption is applied, ϕ

p,n
D must satisfy the boundary

condition on the porous cell [36,48]:

∂ϕI I,n
D

∂rn
= ikG

[
ϕI I,n

D − ϕI,n
D

]
; on rn = bn, (6)

whereas on the cylinder’s impermeable wetted surface S, the following boundary condition
must be imposed [47]:

∂ϕI I,n
7

∂rn
=

∂ϕI I,n
0

∂rn
; on rn = an, (7)

In Equation (6), the term G stands for the dimensionless complex porosity coefficient.
The coefficient can be written as: G = GR + iGI , where GR represents the linearized drag
effect of the porous surface, and GI represents the inertia effect [36]. Furthermore, G also
measures the porosity of the porous surface. Specifically, when G = 0, the cell is considered
impermeable to waves, whereas as G increases, the side cell becomes more permeable until
no sidewall exists (i.e., the porous cell is completely permeable to fluid). The porosity
coefficient is also linked to the opening rate τ of the porous surface (i.e., the ratio of the
open area to the total area) and the wave slope ε = kH/2, found through Equation (8) [33]:

G =

(
17.8

ε + 143.2
)

τ2

2π(1 + 1.06τ)
, (8)

Also, the wave number k satisfies the dispersion relation ω2 = kgtan h(kd), where g is
the gravitational acceleration.

Finally, the velocity potentials, ϕ
p,n
q , are matched by the continuity requirements of

the hydrodynamic radial velocity along the adjacent fluid regions I and I I [47]:

∂ϕI,n
q

∂rn
=

∂ϕI I,n
q

∂rn
; on rn = bn , (9)

The undisturbed incident velocity potential, ϕI,n
0 , is expressed in the cylindrical coor-

dinate system of the nth body as [49]:

ϕI,n
0 (rn, θn, z) = − iωH

2

∞

∑
m=−∞

imΨI,n
0,m(rn, z)eimθn , (10)

Here, the term ΨI,n
0,m equals:

1
d

ΨI,n
0,m(rn, z) = eikl0n cos (θ0n−ξ) Z0(z)

d
.
Z0(d)

Jm(krn)e−imξ , (11)

The symbols l0n and θ0n are defined in Figure 2. Here, Jm is the mth order Bessel
function of the first kind, and ξ is the angle of the wave propagation. Also, Z0 equals:

Z0(z) = N−1/2
0 cos h(kz) =

[
1
2

[
1 +

sinh(2kd)
2kd

]]−1/2
cos h(kz) , (12)
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The term
.
Z0(d) in Equation (12) denotes the derivative of Z0 at z = d.

Similar to Equation (10), the diffraction velocity potential ϕp,n, p = I, I I, in each fluid
region around each body n, expressed in its own cylindrical coordinate system, is written as:

ϕp,n(rn, θn, z) = − iωH
2

∞

∑
m=−∞

imΨp,n
D,m(rn, z)eimθn , (13)

In Equation (13), the terms ΨI,n
D,m and ΨI I,n

D,m denote the principal unknowns of the
problem. These can be expressed appropriately around each body n when it is considered
alone in the wave field, based on the method of separation of variables, i.e., [49]:

1
d

ΨI,n
D,m(rn, z) = gI,n

D,m(rn, z) + FI,n
D,m

Hm(krn)

Hm(kbn)
Z0(z), for rn ≥ bn and 0 ≤ z ≤ d (14)

where:

gI,n
D,m(rn, z) =

{
Jm(krn)−

Jm(kbn)

Hm(kbn)
Hm(krn)

}
Z0(z)

d
.
Z0(d)

, (15)

Here, Hm denotes the mth order Hankel function of the first kind. After introducing
the term a0 = −ik, the mth order Bessel function of the first kind and the mth order Hankel
function of the first kind can be expressed as functions of the mth order modified Bessel
function of first kind, Im, and the mth order modified Bessel function of the second type,
Km, respectively, i.e.,

Im(−ikrn) = Im(a0rn) = (−i)m Jm(krn), (16)

Km(−ikrn) = Km(a0rn) = im+1Hm(krn)
π

2
, (17)

Furthermore, it holds that:

1
d

ΨI I,n
D,m(rn, z) =

(
FI I,n

D,mRI I,n
m0 + F∗I I,n

D,m R∗I I,n
m0

)
Z0(z) for an ≤ rn ≤ bn and 0 ≤ z ≤ d (18)

where:
RI I,n

m0 = Im(c0rn)Km(c0an)−Im(c0an)Km(c0rn)
Im(c0bn)Km(c0an)−Im(c0an)Km(c0bn)

,

R∗I I,n
m0 = Im(c0bn)Km(c0rn)−Im(c0rn)Km(c0bn)

Im(c0bn)Km(c0an)−Im(c0an)Km(c0bn)
,

(19)

From Equation (19), it holds that for an = 0, i.e., the absence of the coaxial impermeable
vertical cylinder, the functions RI I,n

m0 and R∗I I,n
m0 are reformed to:

RI I,n
m0 =

Im(c0rn)

Im(c0bn)
, R∗I I,n

m0 = 0 , (20)
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In Equations (19) and (20), the term c0 = −ik. Furthermore, the eigenfunctions Z0 are
presented in Equation (12).

In order to express the velocity potential in the form of Equation (13) the multiple
scattering approach was applied [49,50]. According to the method, the nth body of the
array is, in the first stage, considered to be excited by the incident wave train, 1 ϕ

p,n
0 , which

is expressed in Equation (10). In response to this first order of excitation, the nth body
scatters the wave train, 1 ϕ

p,n
7 . This corresponds to a first order of a scattered wave for the

nth body. Hence, 1 ϕ p,n = 1 ϕ
p,n
0 + 1 ϕ

p,n
7 . The total velocity potential around the multibody

configuration can be written as:

1 ϕ
p,n
0 +

N

∑
n=1

1 ϕ
p,n
7 , (21)

Continually, the scattered waves of the first order represent waves of the “second”
order of excitation for the body n:

2 ϕ
p,n
0 =

N

∑
u=1

(1− δnu)
1 ϕ

p,u
7 , (22)

Here, δnq is the Kronecher delta, with δnu = 1, n = u and δnu = 0, n 6= u.
The total second-order potential of the nth body equals:

2 ϕ p,n = 2 ϕ
p,n
0 + 2 ϕ

p,n
7 , (23)

where 2 ϕ
p,n
7 is the scattered wave of the “second” order radiated by the nth body.

Similarly, the sth order incident s ϕ
p,n
0 , scattered s ϕ

p,n
7 , and total s ϕ p,n, wave potentials

are derived by:

s ϕ
p,n
0 =

N

∑
u=1

(1− δnu)
s−1 ϕ

p,u
7 ,s ϕ p,n = s ϕ

p,n
0 + s ϕ

p,n
7 , (24)

Assuming infinite wave interactions, the total incident waves to and the total scattered
waves from the nth body are expressed as:

ϕ
p,n
0 =

∞

∑
s=1

s ϕ
p,n
0 = 1 ϕ

p,n
0 +

∞

∑
s=2

N

∑
u=1

(1− δnu)
s−1 ϕ

p,u
7 ,ϕp,n

7 =
∞

∑
s=1

s ϕ
p,n
7 , (25)

In conclusion, the total velocity potential, ϕp,n = ϕ
p,n
0 + ϕ

p,n
7 , will satisfy the corre-

sponding boundary conditions presented above since the s ϕ p,n wave potentials are already
satisfying them. Following this method, the unknowns of the problem are the velocity
potentials s ϕ p,n. These can be written in the form of Equation (13) by substituting ϕp,n with
s ϕ p,n and Ψp,n

D,m with sΨ p,n
D,m.

The functions sΨ p,n
D,m, p = I, I I are expressed in form of a Fourier series with coeffi-

cients sF I,n
D,mq, sF I I,n

D,mq, and sF∗I I,n
D,mq, satisfying the corresponding conditions at the vertical

boundaries of each fluid region: the linearized condition on the free surface, the boundary
condition on the seabed, and the radiation condition at infinity. Consequently, a linear
system of equations for the calculation of the Fourier coefficients in each fluid domain
is obtained, and the total velocity potentials s ϕ p,n are determined. It should be noted
that the scattered waves, s−1 ϕ

p,u
7 , also contribute to the total velocity potentials, s ϕ p,n (see

Equation (25)). These are, however, expressed in different coordinate systems compared to
the coordinate system of the nth body. Therefore, the Bessel function addition theorem [51]
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is applied in order the sth order velocity potentials, s ϕ p,n, to be expressed in the nth body’s
coordinate system [52]:

Kν(a0ru)eiνθu =
∞

∑
m=−∞

(−1)mKν−m(a0lnu)Im(a0rn)ei(v−m)θnu eimθn , for ru < βnu (26)

where a0 = −ik.
By applying the method of multiple scattering, the nth body of the configuration is

treated separately, taking into account the effect of the remaining bodies of the array on the
nth body’s flow potential. Therefore, the sth order velocity potential, s ϕ I,n, equals:

s ϕ I,n = − iωH
2

∞

∑
m=−∞

im sΨ I,n
D,m(rn, z)eimθn , (27)

Here,

1
d

sΨ I,n
D,m(rn, z) =

[
sQ I,n

D,m
Im(a0rn)

Im(a0bn)
+ sF I,n

D,m
Km(a0rn)

Km(a0bn)

]
Z0(z), for rn ≥ bn and 0 ≤ z ≤ d (28)

In Equation (28), the term sQ I,n
D,m equals:

sQ I,n
D,m =

N

∑
u=1

(1− δun)
∞

∑
v=−∞

im+v Kv−m(a0lun)

Kv(a0bn)
Im(a0bn)

s−1F I,u
D,vei(v−m)θun , for s ≥ 2 (29)

whereas for s = 1, the term 1Q I,n
D,m is obtained by:

1Q I,n
D,m = im eikl0n cos (θ0n−ξ)e−imξ

d
.
Z0(d)

Im(a0bn) , (30)

In conclusion, for the total wave field ϕI,n, which is expressed by Equation (13), it
holds:

1
d

ΨI,n
D,m(rn, z) =

[
QI,n

D,m
Im(a0rn)

Im(a0bn)
+ FI,n

D,m
Km(a0rn)

Km(a0bn)

]
Z0(z), for rn ≥ bn and 0 ≤ z ≤ d (31)

where

QI,n
D,m =

∞

∑
s=1

sQ I,n
D,m, and FI,n

D,m =
∞

∑
s=1

sF I,n
D,m (32)

3. Evaluation of the Mean Drift Wave Forces

Having determined the velocity potential around and inside the nth body of the array,
the mean drift wave forces are evaluated from the quadratic products of the quantities
obtained from the applied linear potential theory. In the present work, two alternative
approaches for the evaluation of the mean drift wave forces are described. The first one
is based on the direct pressure integration method, whereas the second is based on the
principle of momentum conservation.

3.1. Direct Pressure Integration Method

According to this method, the mean drift wave forces on the multibody array are
evaluated via the direct integration of the fluid pressure upon the instantaneous wetted
surface of the uth body of the array, u = 1, . . . , N, keeping all terms up to the second
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order. Following [45,52], the vector of the mean drift wave forces on a porous and/or
impermeable cylinder can be expressed as:

F(2)u
T
= −1

2
ρg
∫

WL
[ζu

r ]
2T

︸ ︷︷ ︸
F(2)

1

nudl +
x

Su

1
2

ρ|∇Φu|2
T

nudS︸ ︷︷ ︸
F(2)

2

, (33)

where ρ is the water density, nu is the unit normal vector pointing outwards toward the
body, Su is the mean uth body’s wetted surface, and WL is the mean water line on the body.

The bars ( )
T

denote the time average.
The total mean drift wave force on each porous cylindrical body of the array is equal

to the sum of the mean drift wave forces on the porous surface with the corresponding
forces on the impermeable surface of the coaxial vertical cylinder, whereas the mean drift
wave forces on the porous surface are due to the difference between the fluid pressure on
its outer and inner surfaces.

The term ζu
r stands for the first-order wave elevation with respect to the static water

line, i.e.,

[ζu
r ]

2T
=

1
2

Re
{

ω2

g2 ϕp,u ϕp,u
}

, p = I, I I; u = 1, . . . , N (34)

Here, the bar ( ) denotes the complex conjugate of ϕp,u.
Substituting Equation (34) into the first term of Equation (33), i.e., F(2)

1 , and after

normalizing the result with the term πρgbu(H/2)2, the F(2)
1 terms in the x and y directions,

i.e., F(2)
1,x and F(2)

1,y , respectively, are expressed:

F(2)
1,x

πρgbu

(
H
2

)2 = −1
2

ω4d2R
bug2 Im

[
∞

∑
m=−∞

Λm,0Z0(d)Λm+1,0Z0(d)

]
, (35)

F(2)
1,y

πρgbu

(
H
2

)2 =
1
2

ω4d2R
bug2 Re

[
∞

∑
m=−∞

Λm,0Z0(d)Λm+1,0Z0(d)

]
, (36)

Here, bu is the radius of the exterior thin, porous cylindrical cell of each body u. The
term R equals bu for the evaluation of the mean drift wave forces on the porous cell, while
R = au for the evaluation of the corresponding forces on the inner impermeable vertical
cylinder of the uth body. Also, the function Λm,0 is provided in Appendix A.

The second term of Equation (33), F(2)
2 , for the x direction normalized by the term

πρgbu(H/2)2, equals:

F(2)
2,x

πρgbu( H
2 )

2 = − 1
2

ω2d3R
bug Im

[
∑∞

m=−∞
.

Λm,0
.

Λm+1,0 − 1
R2

(
∑∞

m=−∞ m(m + 1)Λm,0Λm+1,0
)

+∑∞
m=−∞

(
a2

0

(
N−1

0 − 1
)

Λm,0
(
Λm−1,0 −Λm+1,0

))] (37)

whereas the corresponding value for the y direction can be written as:

F(2)
2,y

πρgbu( H
2 )

2 = 1
2

ω2d3R
bug Re

[
∑∞

m=−∞
.

Λm,0
.

Λm+1,0 − 1
R2

(
∑∞

m=−∞ m(m + 1)Λm,0Λm+1,0
)

+∑∞
m=−∞

(
a2

0

(
N−1

0 − 1
)

Λm,0
(
Λm−1,0 −Λm+1,0

))]
,

(38)

The term N0 in Equations (37) and (38) is presented in Equation (12), while the function
.

Λm,0 is given in Appendix A.
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In conclusion, the mean drift wave forces on each body’s wetted surface (permeable
and impermeable) in the x and y directions can be expressed as the sums of Equations (35),
(36), (37) and (38), respectively.

3.2. Momentum Method

The hydrodynamic forces on each body u of an array of N bodies are equal to:

Fu =
x

Su

punudS =
x

Su

−ρ

(
∂Φu

∂t
+

1
2
∇Φu∇Φu + gz

)
nudS, (39)

Here, pu denotes the fluid pressure on the uth body and nu is the unit normal vector
to the boundary surface.

Based on the divergence theorem, we assume a finite control volume Vu, which is
bounded by the water free surface outside and inside the porous surface, SFS1 , SFS2 respec-
tively; the seabed surface outside and inside the porous surface, SB1 , SB2 ; the impermeable
body’s mean wetted surface, Su; the body’s mean wetted porous surface, Sp; and a fixed
vertical control surface, SR (see Figure 3).
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Hence, Equation (39) can be rewritten as:

y

Vu

∇pudV =
y

Vu
1

∇pudV +
y

Vu
2

∇pudV =
x

Su∪SR∪SFS1∪SB1∪SB2∪Sp(+)∪SFS2∪Sp(−)

pnudS, (40)

Here, the terms Sp(−) and Sp(+), denote the outside and inside mean wetted porous
surfaces (see Figure 3).

From Equations (39) and (40), we obtain:

−ρ
y

Vu
1

(
∂Φu

∂t
+

1
2
∇Φu∇Φu + gz

)
dV = −ρ

x

SR∪SB1∪Sp(+)

(
∂Φu

∂t
+

1
2
∇Φu∇Φu + gz

)
nudS, (41)

−ρ
y

Vu
2

(
∂Φu

∂t
+

1
2
∇Φu∇Φu + gz

)
dV = −ρ

x

Sp(−)∪SB2

(
∂Φu

∂t
+

1
2
∇Φu∇Φu + gz

)
nudS + Fu, (42)

Applying the transport theorem to the first term of the volume integrals and the
divergence theorem to the last two terms of the above volume integrals, the following
equations are obtained:

d
dt

y

Vu

ρ∇ΦudV = ρ
y

Vu

∇∂Φu

∂t
dV + ρ

x

S

∇Φu(Unu)dS, (43)
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1
2

ρ
y

Vu
1 ,Vu

2

∇(∇Φu∇Φu)dV = ρ
x

S1,S2

∂Φu

∂n
∇ΦudS, (44)

ρg
y

Vu
1 ,Vu

2

∇zdV =
→
k ρg

y

Vu
1 ,Vu

2

dV =
→
k ρg

x

S1,S2

znzdS , (45)

where U is the velocity of the boundary surface S = Su ∪ SR ∪ SFS1 ∪ SB1 ∪ SB2 ∪ Sp(+) ∪
SFS2 ∪ Sp(−) and nz is the z-component of the unit normal vector on these surfaces. There-
fore, Unu = 0 on the fixed surfaces SR, SB1 , and SB2 , and Unu = ∂Φ

∂n on the material

surfaces, Su, SFS1 , Sp(+), SFS2 , and Sp(−). Also,
→
k is the unit vector on the z-axis.

From Equations (41)–(45), we can write:

− d
dt

y

Vu
2

ρ∇ΦudV − ρ
x

Sp(−)

∂Φu

∂n
∇ΦudS−

→
k ρg

x

SFS2∪Sp(−)∪Su

znzdS = −ρ
x

Sp(−)

(
∂Φu

∂t
+

1
2
∇Φu∇Φu + gz

)
nudS + Fu, (46)

− d
dt
t

Vu
1

ρ∇ΦudV − ρ
s

Sp(+)∪SR
∂Φu

∂n ∇ΦudS−
→
k ρg

s
SFS1∪Sp(+) znzdS = −ρ

s
Sp(+)∪SR

(
∂Φu

∂t + 1
2∇Φu∇Φu + gz

)
nudS

−ρ
s

SB

(
∂Φu

∂t + 1
2∇Φu∇Φu

)
nudS,

(47)

whereas from Equations (46) and (47), we obtain the horizontal forces on the uth body
equal to:

Fu = − d
dt
t

Vu ρ∇ΦudV + ρ
s

SR

((
∂Φu

∂t + 1
2∇Φu∇Φu + gz

)
nu − ∂Φu

∂n ∇Φu
)

dS− ρ
s

Sp(+)∪Sp(−)
∂Φu

∂n ∇ΦudS

−
→
k ρg

s
SFS∪Su znzdS + ρ

s
SB

(
∂Φu

∂t + 1
2∇Φu∇Φu

)
dS,

(48)

Therefore, in order to evaluate the mean drift wave forces on an array of imper-
meable cylindrical bodies which is surrounded by porous surfaces, an additional term,
ρ
s

Sp(+)∪Sp(−)
∂Φu

∂n ∇ΦudS, should be evaluated, compared to the expression of the mean
drift wave forces on an impermeable solid. This term of the mean drift wave forces, which
are due to the energy dissipation through the external porous surface, can be expressed
with respect to the horizontal directions x and y, i.e., F(2)

porous,x and F(2)
porous,y, respectively, as:

F(2)
porous,x

πρgbu

(
H
2

)2 = −1
2

ω2d3

bug
Re

[
i

∞

∑
m=−∞

.
Λm,0((m− 1)Λm−1,0 + (m + 1)Λm+1,0)

]
+

ω2d3R
bug

2Im

[
∞

∑
m=−∞

.
Λm,0

.
Λm+1,0

]
, (49)

F(2)
porous,y

πρgbu

(
H
2

)2 =
1
2

ω2d3

bug
Re

[
∞

∑
m=−∞

.
Λm,0((m− 1)Λm−1,0 − (m + 1)Λm+1,0)

]
− ω2d3R

bug
2Re

[
∞

∑
m=−∞

.
Λm,0

.
Λm+1,0

]
, (50)

The terms Λm,0 and
.

Λm,0 are presented in Appendix A, while the bar ( ) denotes the
complex conjugate.

4. Numerical Results

This section is dedicated to confirming the validity of the presented formulations
and their computational implementation within the literature as well as to presenting the
mean drift wave forces on different array configurations of impermeable vertical cylinders
surrounded by porous surfaces.



J. Mar. Sci. Eng. 2023, 11, 1269 12 of 23

4.1. Result Validation

A single surface-piercing vertical impermeable cylinder surrounded by a porous
surface is considered. The cylinder is bottom-seated at a water depth d = 3a. The porous
surface has a radius b, while the radius of the impermeable cylinder is a = 0.5b. Two
different porous coefficients are examined, i.e., G = 0; 0.1. The mean drift wave forces on
the porous structure (i.e., the impermeable cylinder and the porous surface), calculated
using the two methodologies, are compared with the outcomes from [25] with excellent
correlation. Specifically, in Figure 4, the horizontal mean drift forces on the structure
are presented. The results are normalized by the factor ρga(H/2)2. It can be seen that
the outcomes of the presented methodologies (i.e., the momentum principle and direct
integration method) attain similar results, which are also in excellent agreement with the
results from [25]. Therefore, it can be concluded that the present formulation can effectively
describe the mean drift forces on porous structures.
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Figure 4. Horizontal mean drift wave forces on a porous, bottom-mounted cylindrical body for
different porous coefficients G based on the momentum principle and direct integration method. The
results are compared against those reported in [25].

As far as the accuracy of the applied methodology with respect to the interaction
phenomena between the bodies of an array is concerned (i.e., the method of multiple
scattering), this is verified in Figure 5. Specifically, a four-cylinder array of bottom-mounted
and free-surface-piercing porous cylinders in a square arrangement is considered (see
Figure 5a). Here the cylinders are identical, each with a radius b. Also, d = 5b, lnj = 4b,
an = 0, n = 1, . . . , 4, and ξ = 0. Figure 5b depicts the total horizontal exciting forces
in the x-direction on the four-cylinder array for several values of porous coefficients, i.e.,
G = 0, 1, 2. The results are normalized by the term 2ρgb2(H/2) and are compared with
the results derived in the work of Williams and Li [48]. An excellent comparison with the
outcomes from [48] can be seen in Figure 5b; hence, it can be concluded that the applied
methodology can effectively describe the wave interaction phenomena between porous
bodies of an array.

4.2. Test Cases

The objective of the numerical work carried out herein is twofold. Firstly, it aims to
present the mean drift wave forces on arrays of porous bodies for several different array
configurations, and secondly, it examines whether the near-trapped modes are also notable
in the mean drift forces in dependence on the distances between the bodies and the porous
coefficients. The array configurations chosen for the comparisons are illustrated in Figure 6.
These form some indicative arrangements for supporting a pier, a floating building, and a
floating PV system (an array of cylinders placed in a row, A1, and in star and hexagonal
arrangements, i.e., A2 and A3, respectively) [53,54]. The bodies of the array are considered
identical, with geometric characteristics as described in Section 4.1, i.e., d = 3a; a = 0.5b; b
(see Figure 6).
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The most consuming part of the numerical analysis is the evaluation of the Fourier
coefficients in each fluid domain, I and I I. For the present calculations, q = 80 and m = 15
(i.e., −7 ≤ m ≤ 7) terms are considered for the velocity representation, whereas the number
of interactions between the bodies of the array is taken equal to 7. These values are properly
selected since it has been found that the outcomes of the present formulation are correct to
within an accuracy of 1% [55,56]. The applied programming formulation sets the CPU time
to less than one second for each wave frequency.
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4.2.1. Effect of the Distance between the Bodies

First, the effect of the distance between the bodies of the array configurations on the
mean drift wave forces is investigated. Here, the porous coefficient of the side surface is
G = 0.1, while the wave heading angle is ξ = 0. The examined distances between the centers
of two adjacent cylinders are l = 10b, 11b, 12b. In Figure 7, the mean drift wave forces on
the middle body of each examined array (i.e., body 4 for the A1, body 3 for the A2, and
body 2 for the A3 configurations, see Figure 6) are depicted. The forces normalized by the
term ρgb(H/2)2 are derived based on the momentum principle and the direct integration
method.

It can be seen from Figure 7 that the distance between the bodies of the array, as well
as the array configuration, affect the mean drift forces. Clearly, the continuous interaction
of the wave field diffracted by the bodies of the arrays with the incoming wave train causes
strong disturbances which are reflected on the mean drift wave forces. Specifically, the
variation pattern of the forces attains an oscillatory behavior, which is more tense for the A1
case (see Figure 7a) compared to the A2 and A3 cases (Figure 7b,c). Furthermore, the wave
number in which this behavior begins is strongly dependent on the type of configuration
i.e., the tense variation pattern of the forces begins at kb ∼ 0.25 in A1, at kb ∼ 0.40 in
A2, and at kb ∼ 0.60 in A3. Also, as the distances between the centers of the adjacent
bodies increase, this oscillatory behavior is transferred to lower wave numbers. It is also
noteworthy that there is an excellent correlation between the results obtained through the
two computation methods. In Appendix B, the results from the two methodologies are
presented in a table format for comparison purposes.
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Figure 7. Mean drift wave forces on porous structures for different l values: (a) on body 4 of A1;
(b) on body 3 of A2; (c) on body 2 of A3.

Regarding the trapped waves occurring around the bodies of the array, the A1 case
is further examined since it exhibits amplified wave interaction phenomena between the
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members of the array compared to the A2 and the A3 cases [2,57]. Figure 8 depicts the
comparisons of the mean drift wave forces, F(2), normalized by the term ρgb(H/2)2, on
body 4 in the A1 case, with the horizontal exciting forces, Fexc, on the same body of the
configuration. The latter are normalized by the term πρgb2(H/2). Here, G = 0.1 and
l = 10b. It can be observed that the exciting forces attain local maxima at specific wave
numbers. In particular, the “Neumann” and “Dirichlet” trapped waves are noted, whereas
the rest of the presented peaks (i.e., at kb ∼ 0.9, 1.2, 1.5) correspond to the “nearly trapped
waves” occurring between the bodies. These trapped and nearly trapped waves are also
noted in the mean drift forces; however, the drift forces have lower values compared to the
exciting forces. Hence, it can be concluded that trapped mode phenomena also occur in the
mean drift forces on a finite array of porous bodies.
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Figure 8. Comparison of the mean drift wave forces with the exciting forces on body 4 of A1
configuration.

4.2.2. Effect of the Porous Coefficient

Next, the effect of the porosity coefficient on the mean drift forces acting on the
considered arrays is examined. Here, the wave heading angle ξ = 0 and the distance
between adjacent cylinders is l = 10b. Also, several values of G are examined, i.e.,
G = 0, 0.05, 0.1, 0.2, 0.5. In Figure 9, the mean drift wave forces along the x-axis, on a
single body of the array when it is considered isolated, and on the middle bodies of the
examined arrays (i.e., body 4 for A1, body 3 for A2, and body 2 for A3) are presented. The
results are derived based on the momentum principle and the direct integration method.

It can be seen from Figure 9a that the mean drift forces on the isolated body for G 6= 0
differ from those for G = 0. Specifically, the forces behave reverse proportionally with G.
As the porosity coefficient increases, the forces decrease since the incident wave energy
is absorbed by the side porous surface. On the other hand, the opposite trend seems
to hold for small values of kb, i.e., kb < 0.6. Furthermore, a series of peaks is depicted
at kb ∼ 1.35, 2.7. At these wave numbers, local enhancements of the mean drift wave
forces are attained which decrease as G increases. Following the conclusions of [25] for
an isolated porous vertical cylinder, at these kb values, the dissipation effect of the side
porous surface is significantly weakened; thus, the forces on the body tend toward those
on an impermeable cylinder, whereas as G increases, this phenomenon is less pronounced.
Regarding the mean drift wave forces on the body when it is considered part of an array, it
can be seen (Figure 9b–d) that their variation pattern differs from that of an isolated body.
In particular, a large oscillatory behavior appears which is enhanced reverse-proportionally
with G. This can be attributed to the amplified wave field between the members of the array
(see Section 4.2.1). Also, in comparison with the isolated case, the values of the mean drift
forces on the examined arrays generally attain higher values. Furthermore, the decrease
in the dissipation effect of the side porous surface at specific wave numbers also seems
valid here. Nevertheless, the phenomenon is dominated by the large oscillatory behavior
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of the forces due to the wave interactions between the bodies of the array. Finally, from the
comparison of the calculation methods of the mean drift wave forces it can be concluded
that both methodologies attain similar results for the impermeable case (G = 0) and for the
permeable cases (G 6= 0).
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Figure 9. Mean drift wave forces on the porous structures for different G values: (a) on an isolated
body; (b) on body 4 of A1; (c) on body 3 of A2; (d) on body 2 of A3.

4.2.3. Effect of the Wave Heading Angle

In this subsection, the effect of the wave heading angle ξ on the mean drift forces of
the examined arrays is presented. Here, the distance between adjacent bodies is l = 10b,
and the porosity coefficient is G = 0.1, and several wave heading angles are considered,
i.e., ξ = 0, 30, 60, 90 degrees. In Figure 10, the mean drift wave forces on the middle
body of the examined arrays (i.e., body 4 for the A1 configuration; body 3 for the A2
configuration; and body 2 for the A3 configuration), as evaluated via the momentum and
the direct-integrations methods, are presented. Regarding the A1 configuration, it can
be seen from Figure 10a that as the wave heading angle increases, the tense oscillatory
behavior of the forces is transferred at higher values of kb, whereas due to the symmetry
of the configuration, the forces on body 4 are zero for ξ = 90. As far as the A2 case
is concerned, the values of the mean drift forces on body 3 are comparable to those on
body 4 in the case of A1, whereas here, the forces attain a non-zero value for ξ = 90 (see
Figure 10b). Concerning the A3 configuration, it can be seen from Figure 10c that due to
the symmetry of the array, the mean drift forces for ξ = 0 show a similar variation pattern
as for ξ = 60, whereas for ξ = 90, the forces are zero. Finally, it can be concluded that the
two methodologies applied for the evaluation of the mean drift wave forces attain similar
results. In Appendix B, indicative results from the two methodologies are presented in a
tabular format.
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Figure 10. Mean drift wave forces on the porous structure for different ξ values: (a) on body 4 of A1;
(b) on body 3 of A2; (c) on body 2 of A3.

4.2.4. Effect of the Porous Side Surface on the Central Solid Body

Here, the effect of the porous side surface on the mean drift wave forces acting on
the central solid body on the x-axis is examined. The drift forces on the central cylindrical
surface of the middle body of each of the three examined array configurations, i.e., body 4
in case A1, body 3 in case A2, and body 2 in case A3, for G = 1, 1.5, 2, 5, are compared
with the corresponding ones on the same arrays of bodies without; however, the presence
of the side porous surface, i.e., G � 0 (the porous cell is completely permeable to fluid).
The wave heading angle is ξ = 0, and the distance between the vertical axes of adjacent
bodies is l = 10b. Here, the direct integration methodology is applied. It can be seen
from Figure 11 that the mean drift forces on the central body decrease as G increases in all
examined cases. Hence, the side porous surface can effectively reduce the exciting forces
on the central body. It is worth noting that this reduction in the mean drift forces due
to the energy dissipation caused by the side porous surface is of major importance since
in finite-number porous body arrays, wave trapped modes also occur. As a result, this
type of porous body can become preferable for applications such as the protection of a
semi-submerged floating structure in severe wave conditions.
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Figure 11. Mean drift wave forces on the central solid body for different G values: (a) on body 4 of
A1; (b) on body 3 of A2; (c) on body 2 of A3.

5. Conclusions

This study considered the evaluation of the mean drift wave forces on arrays of
circular cylinders surrounded by porous side surfaces. The methods employed relied
on the momentum principle and the direct integration method and were based on semi-
analytical formulations of the diffraction problem. A multi-parameter impact analysis
was conducted regarding (a) the type of array configuration; (b) the distance between the
members of the array; (c) the porosity coefficient of the side surface; and (d) the wave
heading angle. A summary of the main conclusions of this work is as follows:

• The variation pattern of the mean drift wave forces on a body when it is considered
part of an array attains an oscillatory behavior that is dependent on the type of body
arrangement. Nevertheless, this behavior is not valid for isolated solids. This can be
traced back to continuous wave interactions with the bodies of the array, which cause
strong disturbances on the mean drift wave forces;

• Trapped and nearly trapped waves are also noted in the mean drift forces on a finite
array of porous bodies with lower values when compared to their exciting counter-
parts;

• The porosity coefficient G influences the mean drift wave forces. The oscillatory trend
of the forces that appears is enhanced reverse-proportionally with G. Furthermore,
the porosity of the side surface can effectively reduce the acting forces on the central
impermeable body. This energy dissipation caused by pores can become preferable for
applications such as the protection of a semi-submerged floating structure in severe
wave conditions;

• Finally, the semi-analytical model proposed in this study for the evaluation of the
mean drift wave forces has demonstrated that both computational methodologies
attain high-accuracy results.
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Appendix A

The function Λn
m,0, n = 1, . . . , N, presented in Equations (35)–(38), depends on the

considered wave field. Thus, for the outer fluid domain I, it can be expressed as:

Λn
m,0 = QI,n

D,m
Im(a0rn)

Im(a0bn)
+ FI,n

D,m
Km(a0rn)

Km(a0bn)
, (A1)

whereas for the inner fluid domain I I, it holds that:

Λn
m,0 = FI I,n

D,mRI I,n
m0 + F∗I I,n

D,m R∗I I,n
m0 , (A2)

The functions RI I,n
m0 and R∗I I,n

m0 are presented in Equation (19).

The function
.

Λm,0, presented in Equations (37) and (38), corresponds to the derivative
of Λm,0 with respect to rn. Therefore, for the outer fluid domain, it is written:

.
Λm,0 = QI,n

D,m
1

Im(a0bn)

∂Im(a0rn)

∂rn
+ FI,n

D,m
1

Km(a0bn)

∂Km(a0rn)

∂rn
, (A3)

whereas for the inner fluid domain, it holds that:

.
Λm,0 = FI I,n

D,m
∂RI I,n

m0
∂rn

+ F∗I I,n
D,m

∂R∗I I,n
m0

∂rn
, (A4)

Appendix B

Table A1 depicts the results attained from the two methodologies for the evaluation
of the mean drift forces on the x-axis on the middle body of each examined configuration.
Here, G = 0.1, l = 10b, and ξ = 0, while the indicative wave numbers, kb, are considered
for the three examined array configurations A1, A2, and A3. The results are normalized
using the term πρgb2(H/2).
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Table A1. Mean drift wave forces on the middle body of each examined configuration for
G = 0.1, l = 10b, and ξ = 0.

Configuration A1 Configuration A2 Configuration A3

kb Momentum Direct Momentum Direct Momentum Direct

0.3000 0.41458 0.40937 0.00067 0.00033 0.13020 0.12469

0.3500 0.58951 0.58488 −0.03784 −0.03457 0.30948 0.30457

0.6000 1.07580 1.07090 0.52373 0.51868 0.80431 0.79942

0.6500 1.02990 1.02820 0.68133 0.67722 0.85257 0.84807

0.7000 0.53172 0.52782 0.35413 0.35977 0.77201 0.76696

0.9000 0.63288 0.62943 1.37200 1.37010 1.36400 1.36220

1.0000 0.55855 0.55704 0.48237 0.48098 0.71450 0.71347

1.0500 0.55293 0.55152 0.69343 0.69188 0.33544 0.33374

1.1500 0.46890 0.46763 0.29084 0.28909 0.21517 0.21285

1.3000 0.55671 0.55643 0.70065 0.70038 0.52146 0.52087

1.3500 0.50852 0.50815 0.8629 0.86249 0.59692 0.59624

1.4000 0.45879 0.45829 0.53241 0.53189 0.50219 0.50146

1.6000 0.37314 0.37248 0.22745 0.22676 0.25414 0.25327

1.8000 0.26170 0.26146 0.42581 0.42546 0.74094 0.74061

2.0000 0.28323 0.28303 0.39497 0.39473 0.55834 0.55804

2.2000 0.41584 0.41573 0.30100 0.30091 0.36445 0.36429

2.4000 0.25634 0.25630 0.37928 0.37922 0.33172 0.33165

2.6000 0.22895 0.22896 0.21619 0.21624 0.33896 0.33904

2.8000 0.07998 0.08000 0.28880 0.28878 0.43552 0.43559

2.9000 0.17829 0.17831 0.27739 0.27742 0.42242 0.42255

In Table A2 the results from the two methodologies are presented for G = 0.1,
l = 10b, and ξ = 60. The results are also normalized using the same term πρgb2(H/2).

Table A2. Mean drift wave forces on the middle body of each examined configuration for
G = 0.1, l = 10b, and ξ = 60.

Configuration A1 Configuration A2 Configuration A3

kb Momentum Direct Momentum Direct Momentum Direct

0.3000 0.02543 0.02543 0.18246 0.18013 0.06510 0.06234

0.3500 −0.02926 −0.03083 0.26217 0.26106 0.15476 0.15230

0.6000 0.26813 0.26532 0.52058 0.51959 0.40212 0.39968

0.6500 0.22988 0.22694 0.74681 0.74525 0.42629 0.42404

0.7000 0.30156 0.29892 0.29352 0.29144 0.38609 0.38557

0.9000 0.53753 0.53622 0.53007 0.52938 0.68185 0.68096

1.0000 0.47967 0.47826 0.52401 0.52378 0.35726 0.35675

1.0500 0.29183 0.29045 0.31208 0.31177 0.16775 0.16690

1.1500 0.10643 0.10551 0.19587 0.19497 0.10760 0.10644
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Table A2. Cont.

Configuration A1 Configuration A2 Configuration A3

kb Momentum Direct Momentum Direct Momentum Direct

1.3000 0.22763 0.22722 0.20019 0.19983 0.26069 0.26039

1.3500 0.22076 0.22028 0.25455 0.25416 0.29843 0.29809

1.4000 0.32255 0.32202 0.28780 0.28732 0.25106 0.25070

1.6000 0.14206 0.14168 0.33381 0.33333 0.12717 0.12774

1.8000 0.36802 0.36772 0.30232 0.30208 0.37045 0.37028

2.0000 0.27350 0.27334 0.36217 0.36198 0.27920 0.27905

2.2000 0.36376 0.36368 0.23402 0.23393 0.18220 0.18212

2.4000 0.23905 0.23903 0.15788 0.15781 0.16582 0.16579

2.6000 0.19934 0.19928 0.32219 0.32225 0.16944 0.16949

2.8000 0.25606 0.25606 0.29740 0.29748 0.21777 0.21781

2.9000 0.25634 0.25639 0.29041 0.29045 0.21115 0.21122

References
1. Maniar, H.D.; Newman, N.J. Wave diffraction by a long array of cylinders. J. Fluid Mech. 1997, 339, 309–330. [CrossRef]
2. Evans, D.; Porter, R. Near-trapping of waves by circular arrays of vertical cylinders. Appl. Ocean Res. 1997, 19, 83–99. [CrossRef]
3. Sollitt, C.K.; Cross, R.H. Wave transmission through permeable breakwaters. In Proceedings of the 13th International Conference

on Coastal Engineering, Vancouver, BC, Canada, 10–14 July 1972; pp. 1827–1846.
4. Guo, Y.; Mohapatra, S.; Soares, C.G. Experimental study on the performance of an array of vertical flexible porous membrane

type breakwater under regular waves. Ocean Eng. 2022, 264, 112328. [CrossRef]
5. Rojanakamthorn, S.; Isobe, M.; Watanabe, A. A Mathematical Model of Wave Transformation over a Submerged Breakwater.

Coast. Eng. Jpn. 1989, 32, 209–234. [CrossRef]
6. Losada, I.; Silva, R.; Losada, M. Interaction of non-breaking directional random waves with submerged breakwaters. Coast. Eng.

1996, 28, 249–266. [CrossRef]
7. Suh, K.D.; Park, W.S. Wave reflection from perforated-wall caisson breakwaters. Coast. Eng. 1995, 26, 177–193. [CrossRef]
8. Zhu, S.; Chwang, A.T. Analytical Study of Porous Wave Absorber. J. Eng. Mech. 2001, 127, 326–332. [CrossRef]
9. Liu, Y.; Li, H. Analysis of wave performance through pile-rock breakwaters. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ.

2014, 228, 284–292. [CrossRef]
10. Liu, Y.; Li, H.-J. Wave reflection and transmission by porous breakwaters: A new analytical solution. Coast. Eng. 2013, 78, 46–52.

[CrossRef]
11. Koley, S.; Sahoo, T. Wave interaction with a submerged semicircular porous breakwater placed on a porous seabed. Eng. Anal.

Bound. Elem. 2017, 80, 18–37. [CrossRef]
12. Chyon, M.S.A.; Rahman, A.; Rahman, M.A. Comparative study on hydrodynamic performance of porous and non-porous

submerged breakwater. Procedia Eng. 2017, 194, 203–210. [CrossRef]
13. Kaligatla, R.B.; Tabssum, S.; Sahoo, T. Surface gravity wave interaction with a partial porous breakwater in a two-layer ocean

having bottom undulations. Waves Random Complex Media 2021, 1–32. [CrossRef]
14. Chwang, F.A.T.; Wu, J. Wave Scattering by Submerged Porous Disk. J. Eng. Mech. 1994, 120, 2575–2587. [CrossRef]
15. Liu, Y.; Li, H.-J.; Li, Y.-C.; He, S.-Y. A new approximate analytic solution for water wave scattering by a submerged horizontal

porous disk. Appl. Ocean Res. 2011, 33, 286–296. [CrossRef]
16. Evans, D.V.; Peter, M.A. Asymptotic reflection of linear water waves by submerged horizontal porous plates. J. Eng. Math. 2011,

69, 135–154. [CrossRef]
17. Meylan, M.H.; Greaves, D.; Iglesias, G. Water-wave interaction with submerged porous elastic disks. Phys. Fluids 2020, 32, 047106.

[CrossRef]
18. Guo, Y.; Mohapatra, S.; Soares, C.G. Wave energy dissipation of a submerged horizontal flexible porous membrane under oblique

wave interaction. Appl. Ocean Res. 2020, 94, 101948. [CrossRef]
19. Guo, Y.; Mohapatra, S.; Soares, C.G. Composite breakwater of a submerged horizontal flexible porous membrane with a lower

rubble mound. Appl. Ocean Res. 2020, 104, 102371. [CrossRef]
20. Mohapatra, S.C.; Guedes Soares, C. Hydroelastic behavior of a submerged horizontal flexible porous structure in three-dimensions.

J. Fluids Struct. 2021, 104, 103319. [CrossRef]
21. Mohapatra, S.; Soares, C.G. Surface gravity wave interaction with a horizontal flexible floating plate and submerged flexible

porous plate. Ocean Eng. 2021, 237, 109621. [CrossRef]

https://doi.org/10.1017/S0022112097005296
https://doi.org/10.1016/S0141-1187(97)00015-1
https://doi.org/10.1016/j.oceaneng.2022.112328
https://doi.org/10.1080/05785634.1989.11924515
https://doi.org/10.1016/0378-3839(96)00020-8
https://doi.org/10.1016/0378-3839(95)00027-5
https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(326)
https://doi.org/10.1177/1475090212462951
https://doi.org/10.1016/j.coastaleng.2013.04.003
https://doi.org/10.1016/j.enganabound.2017.02.019
https://doi.org/10.1016/j.proeng.2017.08.136
https://doi.org/10.1080/17455030.2021.1976878
https://doi.org/10.1061/(ASCE)0733-9399(1994)120:12(2575)
https://doi.org/10.1016/j.apor.2011.07.006
https://doi.org/10.1007/s10665-009-9355-2
https://doi.org/10.1063/5.0006119
https://doi.org/10.1016/j.apor.2019.101948
https://doi.org/10.1016/j.apor.2020.102371
https://doi.org/10.1016/j.jfluidstructs.2021.103319
https://doi.org/10.1016/j.oceaneng.2021.109621


J. Mar. Sci. Eng. 2023, 11, 1269 22 of 23

22. de Freitas, I.M.; Farina, L.; Miller, J.J. The heaving motion of a porous disc submerged in deep water. Ocean Eng. 2021, 219, 108290.
[CrossRef]

23. Zhao, F.; Zhang, T.; Wan, R.; Huang, L.; Wang, X.; Bao, W. Hydrodynamic loads acting on a circular porous plate horizontally
submerged in waves. Ocean Eng. 2017, 136, 168–177. [CrossRef]

24. Wang, K.-H.; Ren, X. Wave interaction with a concentric porous cylinder system. Ocean Eng. 1994, 21, 343–360. [CrossRef]
25. Cong, P.; Liu, Y. Local Enhancements of the Mean Drift Wave Force on a Vertical Column Shielded by an Exterior Thin Porous

Shell. J. Mar. Sci. Eng. 2020, 8, 349. [CrossRef]
26. Vijayalakshmi, K.; Sundaravadivelu, R.; Murali, K.; Neelamani, S. Hydrodynamics of a Concentric Twin Perforated Circular

Cylinder System. J. Waterw. Port Coast. Ocean Eng. 2008, 134, 166–177. [CrossRef]
27. Teng, B.; Zhao, M.; Li, Y.C. Wave diffraction from a cylinder with porous upper wall and an inner column. ACTA Oceanol. Sin.

2001, 23, 6.
28. Ning, D.-Z.; Zhao, X.-L.; Teng, B.; Johanning, L. Wave diffraction from a truncated cylinder with an upper porous sidewall and an

inner column. Ocean Eng. 2017, 130, 471–481. [CrossRef]
29. Mackay, E.; Liang, H.; Johanning, L. A BEM model for wave forces on structures with thin porous elements. J. Fluids Struct. 2021,

102, 103246. [CrossRef]
30. Dokken, J.; Grue, J.; Karstensen, L.P. Wave analysis of porous geometry with linear resistance law. J. Mar. Sci. Appl. 2017, 16,

480–489. [CrossRef]
31. Dokken, J.; Grue, J.; Karstensen, P. Wave forces on porous geometries with linear and quadratic pressure-velocity relations. In

Proceedings of the 32nd International Workshop on Water Waves and Floating Bodies, Dalian, China, 23–26 April 2017.
32. Bao, W.; Kinoshita, T.; Zhao, F. Wave forces on a semi-submerged porous circular cylinder. Proc. Inst. Mech. Eng. Part M J. Eng.

Marit. Environ. 2009, 223, 349–360. [CrossRef]
33. Zhao, F.; Bao, W.; Kinoshita, T.; Itakura, H. Theoretical and Experimental Study on a Porous Cylinder Floating in Waves. J.

Offshore Mech. Arct. Eng. 2011, 133, 011301. [CrossRef]
34. Sankar, A.; Bora, S.N. Hydrodynamic forces due to water wave interaction with a bottom-mounted surface-piercing compound

porous cylinder. Ocean Eng. 2019, 171, 59–70. [CrossRef]
35. Sankar, A.; Bora, S.N. Hydrodynamic forces and moments due to interaction of linear water waves with truncated partial-porous

cylinders in finite depth. J. Fluids Struct. 2020, 94, 102898. [CrossRef]
36. Sankar, A.; Bora, S.N. Hydrodynamic coefficients for a floating semi-porous compound cylinder in finite ocean depth. Mar. Syst.

Ocean Technol. 2020, 15, 270–285. [CrossRef]
37. Park, M.-S.; Koo, W. Mathematical Modeling of Partial-Porous Circular Cylinders with Water Waves. Math. Probl. Eng. 2015, 2015,

903748. [CrossRef]
38. Park, M.S.; Koo, W.; Choi, Y. Hydrodynamic interaction with an array of porous circular cylinders. Int. J. Nav. Archit. Ocean Eng.

2010, 2, 146–154. [CrossRef]
39. Zhao, F.-F.; Kinoshita, T.; Bao, W.-G.; Huang, L.-Y.; Liang, Z.-L.; Wan, R. Interaction between waves and an array of floating

porous circular cylinders. China Ocean Eng. 2012, 26, 397–412. [CrossRef]
40. Sankarbabu, K.; Sannasiraj, S.; Sundar, V. Interaction of regular waves with a group of dual porous circular cylinders. Appl. Ocean

Res. 2007, 29, 180–190. [CrossRef]
41. Mavrakos, S. The vertical drift force and pitch moment on axisymmetric bodies in regular waves. Appl. Ocean Res. 1988, 10,

207–218. [CrossRef]
42. Konispoliatis, D.; Mavrakos, S. Mean Drift Forces on Vertical Cylindrical Bodies Placed in Front of a Breakwater. Fluids 2020, 5,

148. [CrossRef]
43. Sclavounos, P.D. The vertical wave drift force on floating bodies. In Proceedings of the 2nd International Workshop on Water

Waves and Floating Bodies, Bristol, UK, 16–19 March 1987.
44. Molin, B. On second-order motion and vertical drift forces for three-dimensional bodies in regular waves. In Proceedings of the

International Workshop on Ship and Platform Motion, Berkeley, CA, USA, 26–28 October 1983.
45. Papanikolaou, A.; Zaraphonitis, G. On the improved method for the evaluation of second-order motions and loads on 3D floating

bodies in waves. J. Schiffstechnik 1987, 34, 170–211.
46. Shao, Y.L. Numerical analysis of second-order mean wave forces by a stabilized higher order boundary element method. In

Proceedings of the 37th International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain, 17–22 July 2018.
47. Kokkinowrachos, K.; Mavrakos, S.; Asorakos, S. Behavior of vertical bodies of revolution in waves. Ocean Eng. 1986, 13, 505–538.

[CrossRef]
48. Williams, A.; Li, W. Water wave interaction with an array of bottom-mounted surface-piercing porous cylinders. Ocean Eng. 2000,

27, 841–866. [CrossRef]
49. Mavrakos, S.; Koumoutsakos, P. Hydrodynamic interaction among vertical axisymmetric bodies restrained in waves. Appl. Ocean

Res. 1987, 9, 128–140. [CrossRef]
50. Twersky, V. Multiple Scattering of Radiation by an Arbitrary Configuration of Parallel Cylinders. J. Acoust. Soc. Am. 1952, 24,

42–46. [CrossRef]
51. Watson, G.N. A Treatise on the Theory of Bessel Functions, 2nd ed.; Cambridge University Press: Cambridge, UK, 1966.

https://doi.org/10.1016/j.oceaneng.2020.108290
https://doi.org/10.1016/j.oceaneng.2017.03.026
https://doi.org/10.1016/0029-8018(94)90009-4
https://doi.org/10.3390/jmse8050349
https://doi.org/10.1061/(ASCE)0733-950X(2008)134:3(166)
https://doi.org/10.1016/j.oceaneng.2016.11.043
https://doi.org/10.1016/j.jfluidstructs.2021.103246
https://doi.org/10.1007/s11804-017-1438-2
https://doi.org/10.1243/14750902JEME145
https://doi.org/10.1115/1.4001435
https://doi.org/10.1016/j.oceaneng.2018.10.019
https://doi.org/10.1016/j.jfluidstructs.2020.102898
https://doi.org/10.1007/s40868-020-00086-0
https://doi.org/10.1155/2015/903748
https://doi.org/10.2478/IJNAOE-2013-0031
https://doi.org/10.1007/s13344-012-0030-4
https://doi.org/10.1016/j.apor.2008.01.004
https://doi.org/10.1016/S0141-1187(88)80005-1
https://doi.org/10.3390/fluids5030148
https://doi.org/10.1016/0029-8018(86)90037-5
https://doi.org/10.1016/S0029-8018(99)00004-9
https://doi.org/10.1016/0141-1187(87)90017-4
https://doi.org/10.1121/1.1906845


J. Mar. Sci. Eng. 2023, 11, 1269 23 of 23

52. Pinkster, J.A.; Oortmerssen, G.V. Computation of the first and second order wave forces on oscillating bodies in regular waves. In
Proceedings of the 2nd International Conference on Numerical Ship Hydrodynamics, Berkeley, CA, USA, 19–21 September 1977.

53. Offshore Wind Platform. Available online: https://www.offshorewind.biz/2012/02/17/hexicon-to-install-offshore-wind-
platform-malta/ (accessed on 24 April 2023).

54. AquaDomi Floating Hotels. Available online: https://www.cfmoller.com/p/AquaDomi-floating-hotels-i2339.html (accessed on
24 April 2023).

55. Mavrakos, S.; McIver, P. Comparison of methods for computing hydrodynamic characteristics of arrays of wave power devices.
Appl. Ocean Res. 1997, 19, 283–291. [CrossRef]

56. Mavrakos, A.; Konispoliatis, D.; Ntouras, D.; Papadakis, G.; Mavrakos, S. Hydrodynamic coefficients in heave of a moonpool-type
floater using theoretical, numerical and CFD methodologies. Ocean Eng. 2023, 279, 114519. [CrossRef]

57. Chatjigeorgiou, I.K.; Chatziioannou, K.; Mazarakos, T. Near Trapped Modes in Long Array of Truncated Circular Cylinders. J.
Waterw. Port Coast. Ocean Eng. 2019, 145, 04018035. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.offshorewind.biz/2012/02/17/hexicon-to-install-offshore-wind-platform-malta/
https://www.offshorewind.biz/2012/02/17/hexicon-to-install-offshore-wind-platform-malta/
https://www.cfmoller.com/p/AquaDomi-floating-hotels-i2339.html
https://doi.org/10.1016/S0141-1187(97)00029-1
https://doi.org/10.1016/j.oceaneng.2023.114519
https://doi.org/10.1061/(ASCE)WW.1943-5460.0000495

	Introduction 
	Hydrodynamic Formulation 
	Evaluation of the Mean Drift Wave Forces 
	Direct Pressure Integration Method 
	Momentum Method 

	Numerical Results 
	Result Validation 
	Test Cases 
	Effect of the Distance between the Bodies 
	Effect of the Porous Coefficient 
	Effect of the Wave Heading Angle 
	Effect of the Porous Side Surface on the Central Solid Body 


	Conclusions 
	Appendix A
	Appendix B
	References

