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Abstract: The establishment of ship trajectory prediction is critical in analyzing trajectory data. It
serves as a critical reference point for identifying abnormal behavior and potential collision risks
for ships. Accurate and real-time ship trajectory prediction is essential during navigation. Since the
timing of automatic identification system (AIS) data is irregular, traditional methods usually use time
calibration to simulate the data of uniform sequencing before analysis. Inevitably, this increases the
chances of error and time delays. To address this issue, we propose a time-aware LSTM (T-LSTM)
single-ship trajectory model combined with the generative adversarial network (GAN) to predict
multiple ship trajectories. These analysis methods are capable of directly analyzing AIS data and have
demonstrated better performance in both single-ship and multi-ship trajectories. Our experimental
results show that the proposed method achieves high accuracy and can meet the practical navigation
requirements of ships.

Keywords: ship trajectory prediction; AIS; T-LSTM; time-aware; GAN

1. Introduction

As maritime activities become increasingly complex, the management of maritime
traffic and the protection of maritime infrastructure face serious challenges. The complex
navigational environment poses potential obstacles and challenges to the stable devel-
opment of the maritime shipping industry [1–5]. Ship trajectory prediction can provide
reliable data support to ensure the safety and efficiency of maritime traffic management
and the protection of offshore infrastructure. By utilizing advanced prediction models,
maritime authorities can identify potential risks and take precautionary measures to avoid
accidents. In response to the problem of ship trajectory prediction, many scholars have
conducted relevant research. For example, John Smith [6] proposed a method for vessel
trajectory prediction using recurrent encoder–decoder networks and uncertainty estimation.
This method handles the temporal characteristics of vessel trajectory data by effectively
capturing long-term dependencies and dynamic patterns in the trajectory data using re-
current encoder–decoder networks. It also introduces uncertainty estimations, providing
confidence estimates for the prediction results, which is particularly important in complex
and uncertain environments. Yang et al. [7] proposed an ECA-BIGRU ship-track-prediction
algorithm. The algorithm is based on the BiGRU model and uses the ECA attention mecha-
nism to optimize the algorithm, which realizes the ship-track prediction. The experiment
uses Beidou data to predict the trajectory of 112 ships running continuously for 20 days,
and obtains a higher real-time and more accurate trajectory prediction effect than BiGRU
and LSTM algorithms. Liu et al. [8] proposed a spatiotemporal multi-graph convolu-
tional network method for ship trajectory prediction based on the mobile edge computing
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paradigm. This method integrates the data on the nearest time of the ship and proposes an
attention mechanism to improve feature-extraction efficiency, thereby realizing the fusion
data trajectory prediction. Yang et al. [9] proposed a Bi-LSTM for ais-based intelligent
vessel trajectory prediction. In this method, AIS data are cleaned using a moving average
model and standardized to form uniformly distributed time series data. The algorithm
adds a layer of bidirectional LSTM on the basis of the Bi-LSTM network structure, and
then realizes the ship trajectory prediction using the cleaned AIS data. Murray B. et al. [10]
proposed an automatic ship-trajectory-prediction method based on the clustering of single-
point neighborhood search and multi-trajectory extraction. The data-driven method used
historical AIS data within a time range of 5–30 min to predict ship trajectories and estimated
ship trajectory paths through multi-trajectory extraction methods. Capobianco S. et al. [11]
proposed an encoder–decoder-based recurrent neural network method for ship-trajectory
prediction, which analyzes historical AIS data and learns maritime ship trajectory patterns
and trajectory distributions. An attention-based aggregation layer is used to connect the en-
coder and decoder networks, which more effectively captures spatiotemporal dependencies
in the data, resulting in improved prediction accuracy. Kanazawa M. et al. [12] proposed a
ship trajectory prediction method based on a multi-output hybrid predictor (MHP). The
method utilizes onboard sensor data and combines black box error compensation with an
LSTM neural network to form a multi-output hybrid prediction method, which can predict
ship positions 30 s after. Despite achieving good prediction results, precise predictions
remain a challenging task for these methods. First, these methods either use regular ship
trajectory data or require data processing and have a limited ability to handle irregular
data types. Interpolation and standard model are used to predict ship irregularity data,
which may not accurately reflect the real-time trajectories of ships and impact the analysis
results. Additionally, pre-processing depending on the size of the dataset can take a sig-
nificant amount of time, further delaying the analysis. Then, the trajectory trajectory of
multiple targets needs to be considered in the case of multiple ships, which will increase
the difficulty and complexity of the prediction. The current research is mainly focused on
the trajectory of a single ship, and there are few studies on the analysis and prediction of
the simultaneous trajectory of multiple ships. This article uses deep learning methods to
analyze and study the trajectory of a single ship and multiple ships. For the single ship, a
T-LSTM method is proposed by introducing time awareness to process data with different
time intervals, which can realize the direct analysis and prediction of the raw AIS data.
The T-LSTM unit can effectively process the time difference between the continuous AIS
data points through the time-aware module that integrates the time, thereby capturing the
time of the ship’s trajectory. This enables the T-LSTM model to learn the dependence of
various data information, such as latitude, speed, direction, and time interval, and adjust
its predictions to changes in time and space. For multiple ships, the combination of a
double-layered LTSM with adversarial neural networks, using multiple T-LSTM as input
for data processing, has achieved simultaneous prediction of multiple ship trajectories. The
GAN’s generator uses a layer of multi-dimensional T-LSTM to process the original AIS
data, which corresponds to a layer of multi-dimensional LSTM to predict ship trajectories.
The discriminator learned the relative position relationship of the real-time trajectories of
multiple ships by fighting training, making the prediction of multiple ship trajectories more
accurate.

The main contributions of this paper are as follows:

1. A novel time-aware T-LSTM neural network architecture is proposed, which solves
the problem that traditional network methods cannot directly analyze the original
data. This method integrates time interval information to make the ship’s trajectory
prediction analysis more accurate.

2. A GAN neural network model with the T-LSTM model is proposed, which can
effectively achieve multiple ship trajectory predictions. The model adopts the method
of individual predictions to fully consider the relative position relationship of the
more ship trajectories at the same time, making the prediction results more accurate.
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2. Materials and Methods
2.1. LSTM Algorithm

Long short-term memory (LSTM) is a type of recurrent neural network (RNN) model
with gate mechanisms that can effectively solve the problem of gradient
vanishing/exploding [13–15]. The traditional RNN model achieves information trans-
mission and processing by recursively updating the hidden state. However, the back-
propagation of the model has problems, which can easily result in vanishing or exploding
gradients, making the model difficult to train. The LSTM model introduces the concepts
of input gate, forget gate, and output gate to address this issue. The core component of
the LSTM model is the LSTM unit, whose structure is shown in Figure 1. The input gate
and forget gate control the input and forgetting of the information, while the output gate
controls the output of information [16–19]. These gates include parameters such as weights
and biases, which are learned through the backpropagation process to solve these problems.
LSTM models have been widely used in natural language processing, speech recognition,
and image recognition, and have become one of the most prominent models in the field of
deep learning [20,21].
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Figure 1. The structure of the LTSM Unit.

2.2. Single-Ship Trajectory Prediction Algorithm

In the Automatic Identification System, each ship device sends AIS messages at regular
time intervals, which contain basic information, navigation status, and ship position,
forming a time series of ship trajectory data [22–24]. The time records of ship trajectory
data are unevenly distributed, with time intervals ranging from several tens of minutes to
a few minutes. The irregularity between adjacent data points can directly affect the speed
and position prediction of ship trajectories.

The standard LSTM unit consists of a forget gate, input gate, output gate, and memory
cells. It assumes that the time between sequence elements is uniformly distributed and
cannot handle irregular time series. For ship trajectory tasks, the time interval between two
consecutive AIS messages is an important factor affecting the prediction results. Therefore,
we propose a time-aware LSTM (T-LSTM) neural network structure, and its network
architecture is shown in Figure 2.
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2.3. T-LSTM Unit

The T-LSTM unit decomposes the process of a time step into a long-term memory and
a short-term memory. Short-term memory encodes the past status in a short period of time
to capture short-term changes in ship navigation. Long-term memory encodes the status
of a long period of time to capture the overall trend of changes in the ship’s navigation.
The core task of T-LSTM is to introduce a time-aware module to process time-interval
variable data. The time difference weight generated by the module will be integrated into
the input gate structure, directly affecting the short-term memory of T-LSTM. The update
of long-term memory depends on the short-term memory of each time step, and the weight
of time can indirectly affect long-term memory. The detailed mathematical expression of
the T-LSTM unit is as follows:

ft = σ(W f xt + U f ht−1 + b f )(forget gate)

it = σ(Wixt + Uiht−1 + bi)(input gate)

ot = σ(Woxt + Uoht−1 + bo)(output gate)

C̃t = tan h(Wcxt + Ucht−1 + bc)(time memory)

h̃t =C̃t + it (hidden features)

xt trepresents the input to the current hidden layer, ht−1 represents the previous time
step Information,

{
W f , U f , b f

}
,{Wi, Ui, bi}, {Wo, Uo, bo} and {Wc, Uc, bc} are the network

parameters for the forget gate, input gate, output gate, and candidate memory. If there is a
large time gap between time step t and t−1, this indicates that the ship has not recorded
new information for a long period of time. The short-term memory of the output at the
current time step should not be overly dependent on the current status, but needs to be
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adjusted proportionally to the time span between time steps t and t−1. The formula is
as follows:

hS
t = tanh(Wd h̃t + bd)(current status information)

ĥS
t = hS

t × Dt′(weighted current state)

ht
t−1 = h̃t − hS

t (the previous time step information)

h∗t = ht
t−1 + ĥS

t (long− term memory)

{Wd, bd} is the network parameter. The input candidate value of the current time
step depends on the short-term memory of the previous time step and the information
input of the current time step. When adjusting the received information of input candidate
values, the information retained in the short-term memory of the previous time step should
not be affected. The current state information hS

t from the input candidate is extracted
and the information ht

t−1 from the previous time step is separated. The current status
information is weighted and fused with the time difference weight to obtain the weighted
state information ĥS

t . Short-term memory h∗t is obtained by reintegrating separated ht
t−1

and ĥS
t . The hidden status output at the current time step and the update of the long-term

memory is formulated as follows:

Ct = tanh(h∗t + ot · Ct−1)(long− term memory)

ht = ot · tanh(
_
C t)(current hidden status)

Ct−1 is the memory cell from the previous time step. The time difference weight helps
to maintain the validity of short-term memory; therefore, T-LSTM can more accurately
reflect the importance and changing trend of historical information.

2.4. The Time-Aware Module

In ship trajectory data, the time interval between adjacent time steps can be highly
irregular. For example, the time interval between several times receiving AIS data from
the base station may be several seconds, several minutes, or even tens of minutes. When
the time interval between adjacent time steps is too large, the output of the current time
step should not be overly dependent on the current status, and the signal strength of the
current time step input should be reduced. The time-aware module can effectively capture
the information on hidden features in the data of irregular time series, and the structure is
shown in Figure 3.
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The main components of the attention layer structure are used to extract features from
the input time step sequence, mapping them to a status that can correctly reflect the degree
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of influence of the time step on the T-LSTM unit. Firstly, a linear normalization is applied
to the input time interval sequence ∆T′ = ∆t′1, ∆t′2, . . . , ∆t′n:

_
∆t =

∆t−min(∆T)
max(∆T)−min(∆T)

(linear normalization)

Then, a decay function is constructed to balance the impact of excessively long or short
time intervals on the T-LSTM unit output. Specifically, when the time interval is long, the
long-term and short-term memory information from the previous time step is attenuated,
and when the time interval is short, the long-term and short-term memory information
from the previous time step is preserved. The formula for the decay function is as follows:

g(x) =
1

log(e + ∆t)
(decay function)

∆t′= g(∆t
)
(Balance Interval)

g(x) is an attenuation function that reduces the impact of short-term memory as
time increases; e represents the natural number; ∆t is the time interval between two ship
trajectory points. Finally, multiple convolutional layers perform deep feature extraction on
the balanced time interval sequence to obtain time difference weights that can accurately
reflect the strength of the input signal.

2.5. The Multiple Ship Trajectory Prediction Algorithm

Multi-ship trajectory analysis refers to the analysis and prediction of the trajectory
trajectories, speeds, headings, and other information of multiple ships. This paper proposes
a new method that integrates the generative adversarial network (GAN) and time-aware
LSTM model for this purpose, as shown in Figure 4. GAN consists of a generator network
and a discriminator network: the generator network generates simulated data, while the
discriminator network determines whether the input data are real or generated [24,25]. The
generator network is continuously optimized to confuse the discriminator network, while
the discriminator network is simultaneously optimized to accurately identify generated
data and real data.
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When predicting multiple ship trajectories simultaneously, the beats of the time series
presented by the AIS message data of multiple ships are inconsistent, resulting in the loss of
practical significance of the predicted data points. The commonly used method proposed
by researchers is to interpolate or shift the trajectory points with different timestamps to
align all the trajectory points in time. It is only necessary to align the last time step of the
time series for all ships in the time dimension, which minimizes errors and ensures the
authenticity of the data.
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First, assume, in a ship track label sequence
X = x1, x2, . . . , xi, . . . , xn
Y = y1, y2, . . . , yi, . . . , yn

, X represents

the longitude coordinate sequence and Y represents the latitude coordinate sequence. In
the latest message, the information on all ships is received by the base station the ship
whose message sending time T is located in the median of all ships is selected as the
benchmark. The time difference between the base station’s latest reception of the other
ship’s message-sending time and the reference ship’s time is ∆t = |T − tn|.

Let Ri = [xi − xi−1, yi − yi−1 ]; Ri is the displacement vector, and |Ri| is the algebraic
value of the displacement vector. To reflect the size and direction of the displacement vector,
the sine and cosine values Ri and X of the angle between the displacement vector cos Ri, i
and sin Ri, i represent the direction of the displacement Ri; vi is the velocity of the ship at
the i-th time step. The turning rate and angle of the route are the average of the last two
time steps. The iterative formula of latitude and longitude coordinates of track points after
regularization is as follows:

xi = xi−1 + |Ri| cos〈Ri, i〉 2∆t
(ti−ti−1)

yi = yi−1 + |Ri| sin〈Ri, i〉 2∆tT
(ti−ti−1)

vi = vi−1 +
∆t(vi−vi−1)
(ti−ti−1)

dvi = dvi−1 +
∆t(dvi−dvi−1)

(ti−ti−1)

di = di−1 +
∆t(di−di−1)
(ti−ti−1)

(1)

This paper uses two-layer multi-dimensional T-LSTM and LSTM networks to generate
ship trajectory information instead of generating simulated data. First, the input data are in-
put into the multidimensional T-LSTM to encode the trajectory features of the ship, and the
output of each time step is combined in a sequential feature sequence H = {h1, h2, . . . , hn}.
Then, the temporal feature H is input into a multi-dimensional LSTM, and LSTM will
decode to generate the trajectory sequence of the ship. Through the interaction between
T-LSTM and LSTM, the input data are abstracted and feature-extracted. At the same time,
the error of single-layer LSTM is reduced through the weighted average operation, and
the robustness and generalization of the model are improved. Ideally, the data generated
by the generation network should be accurate and regular, and the discriminant network
uses one-dimensional convolution to extract and distinguish the trajectory information
features generated by the generation network. When the traditional GAN trains the net-
work, all loss calculations are performed at the output of the discriminator. The output
of the discriminator is usually a true/false judgment of the input data. Generally, the
binary cross-entropy function is used to calculate the overall loss. The definition of the loss
function is as follows:

min
G

max
D

Ex∼pdata[log D(x)] + Ez∼px [log(1− D(G(z)))] (2)

During the training process of GAN, many difficulties are posed, such as training
instability, mode collapse, gradient disappearance, gradient explosion, and other problems.
When training GAN, the pre-training strategy is used to pre-train the generator and the
discriminator separately, and then joint training is performed. This strategy helps to
improve the stability and convergence speed of the model and solves common problems in
GAN training.

3. Experimental Data Sets and Result Analysis
3.1. Experimental Data Sets

This article uses the AIS data sets of ships in the Bohai Sea area, which contain
5000-time series information, each with 40 multidimensional trajectory data of different
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time steps. In the single ship-trajectory task, we save the first 30-point trajectory data
of each time series without processing and use the sliding window difference method
to interpolate the last 10 data points to obtain 10 data with a fixed time interval of three
minutes as real data. In the multi-ship trajectory task, GAN performs a trajectory analysis
on ten-time series at the same time. We keep the first 29 trajectory data without processing,
and the 30th trajectory data are calibrated according to the method proposed in Section 2.5.
The sliding window difference method is used to interpolate the data with a time interval
of three minutes for the last 10 data as the real data of the current sample. During the
experimental test, we used 70% of each set of data as a training set, 20% as a test set, and
10% as a validation set.

3.2. Experimental Results and Analysis

In this research, we thoroughly evaluated a variety of deep learning models to solve
the problem of single-ship-trajectory prediction, including LTSM, RNN, PhasedLSTM,
Temporal Conv Net (TCN), Gated Recurrent Unit (GRU), and T-LSTM. We use the same
data set to train 50 batches and the loss effect is shown in Figure 5. We found that the
loss functions of LTSM, RNN, and PhasedLSTM methods do not converge; TCN, GRU,
and T-LSTM can converge. This means that LTSM, RNN, and PhasedLSTM cannot deal
with irregular data, but TCN, GRU, and the T-LTSM method can handle irregular data.
Compared with other new methods, the convergence speed of T-LSTM is fast, the losses
of the average square error are the lowest, and the performance of the network model is
the best.
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The evaluation criteria of the model are mean square error (MSE) [26] and dynamic
time warping (DTW) [27]. MSE is used to measure the average value of predicting trajectory
information and the true value of the sample; DTW is used to measure the similarity
between the predicted trajectory and the real trajectory [28]. We used DTW to compare the
similarity of time series. The experiment analyzes the predictive effect of the model from
the longitude, latitude, speed, direction, and turning rate dimension, and the results are
shown in Table 1.
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Table 1. MSE and DTW metrics test performance of the model.

Model
Prediction

Type
Accuracy of Interpolated Data Accuracy of Real Data

MSE DTW MSE DTW

GRU

Longitude 7.3949 × 10−5 6.6706 × 10−2 2.9907 × 10−3 4.4360 × 10−1

Latitude 6.8277 × 10−5 6.6543 × 10−2 2.1538 × 10−3 3.9206 × 10−1

Speed 3.8078 × 10−3 5.2447 × 10−1 1.5231 × 10−2 1.0489
Direction 1.0853 × 10−2 9.0222 × 10−1 2.1273 × 10−2 1.2631

Turning rate 3.0300 × 10−3 4.7435 × 10−1 1.2120 × 10−2 9.4870 × 10−1

TCN

Longitude 4.9784 × 10−4 4.0581 × 10−1 6.5677 × 10−3 6.7385 × 10−1

Latitude 2.4988 × 10−4 9.8242 × 10−2 4.9758 × 10−3 5.6605 × 10−1

Speed 9.7480 × 10−3 8.3915 × 10−1 4.9349 × 10−2 1.8881
Direction 1.5629 × 10−2 2.0827 6.2516 × 10−2 2.1653

Turning rate 5.1207 × 10−3 6.1666 × 10−1 3.2997 × 10−2 1.5654

T-LSTM

Longitude 4.4865 × 10−5 4.5356 × 10−2 1.0752 × 10−3 2.6032 × 10−1

Latitude 2.7528 × 10−5 4.1943 × 10−2 8.0634 × 10−4 2.2668 × 10−1

Speed 2.5133 × 10−3 4.3800 × 10−2 5.8560 × 10−3 6.5559 × 10−1

Direction 2.1927 × 10−3 4.2586 × 10−1 7.7335 × 10−3 7.6591 × 10−1

Turning rate 3.7653 × 10−3 5.7519 × 10−1 6.8178 × 10−3 6.8409 × 10−1

After comparing the predictive results of the calibration and actual data, it was found
that the prediction errors of the three models were within an acceptable range. The T-LSTM
model stood out, with lower equity errors in predicting various ship-trajectory data, higher
prediction accuracy, and the ability to accurately capture the characteristics of irregular
data. Moreover, it was found that the T-LSTM predictive trajectory had the lowest DTW
distance compared to the real trajectory, indicating a similar shape and changing trend.
The model could accurately capture the significant changes in the real trajectory while
maintaining a higher level of accuracy when predicting the trajectory. Although the GRU
and TCN models also performed well, the DTW distance between their predictive and real
trajectories was considerably higher, leading to greater deviation at multiple steps. The
T-LSTM model’s predictive ability regarding the trend of the ship’s track trajectory was
considerably more accurate, and its overall predictive effect on ship trajectory outperformed
that of GRU and TCN.

The critical parts of the proposed method add a new time interval variable ∆t and
introduce the time-aware module. To evaluate the effectiveness of the T-LSTM component,
we conducted a series of ablation studies, and the results are shown in Table 2. These ex-
periments showed that increasing the time interval variables and time perception modules
enabled our model to process irregular data and improve prediction accuracy.

Table 2. Ablation study of T-LSTM.

Model Prediction Type
Accuracy of Real Data

MSE DTW

LSTM
Longitude 2.3878 1.0826
Latitude 7.6323 × 10−1 7.4884 × 10−1

Speed 1.9964 × 10 1.1949

LSTM+∆t
Longitude 4.8247 × 10−4 1.4969 × 10−1

Latitude 6.9723 × 10−3 1.3445 × 10−1

Speed 3.5281 × 10−3 1.3783 × 10−1

T-LSTM
Longitude 4.4865 × 10−5 4.5356 × 10−2

Latitude 2.7528 × 10−5 4.1943 × 10−2

Speed 2.5133 × 10−3 4.3800 × 10−2
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To illustrate the generalization ability of various hidden-layer dimensions, the number
of T-LSTM’s hidden layers was set as 10, 15, 20 and 25. The testing effect is shown in
Figure 6. Since changing the total number of input time steps would affect the number of
parameters, calculation time, and the memory consumption of the model, the number of
parameters of the linear layer in the T-LSTM input gate, forget gate and output gate were
appropriately increased when dealing with short time steps to evaluate its performance.
The Adam optimizer was selected as the training optimizer and the training cycle was 120.
The learning rate was initially set at 0.01, which was reduced to half of the original rate
every 40 times.
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Generally speaking, increasing the hidden layer of LSTM can enhance the memory
capacity of the model and better learn the laws and relationships in the sequence data.
However, it may also cause a certain degree of overfitting. It can be seen from Figure 6
that as the number of hidden layers decreases, the convergence speed becomes faster. This
indicates that the model is more stable when the number of hidden layers is small. When
the hidden layer is set to 10, the learning ability of T-LSTM is limited, but it shows higher
accuracy. This shows that fewer hidden layers allow for the model to pay more attention to
the global model and the overall trends in the data, rather than overpaying attention to
local details and noises. Therefore, the T-LSTM was set as having 10 hidden layers.

In this research, representative sea area data were selected to test the T-LSTM model
under various trajectory conditions, such as straight sailing, zigzagging sailing, turning,
and turning around; the test effect is shown in Figure 7. The experimental results show
that the T-LSTM model has an excellent performance in the four tasks, particularly in the
straight task, where its prediction accuracy is remarkably high. The prediction accuracy
of the T-LSTM model can maintain a certain level of accuracy, even in the case of the
ship’s fast turning, which can effectively capture the ship’s trajectory characteristics. These
results show that the T-LSTM model has good application prospects and can provide an
effective solution for ship-trajectory prediction, making a significant contribution to the
development of related fields.
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In order to test the effect of the model, multiple test sets were used for testing, and
the error results are shown in Table 3. Overall, T-LSTM performed well in predicting the
latitude and longitude position of ships, with an average deviation of 0.00021 and 0.00014.
In terms of speed and turning rate prediction, the error value was compared with the value
of the experimental data, and the actual proportion of the error was also small. Due to the
irregularities in time intervals, there was a certain error in the prediction of T-LSTM for the
direction angle, but this remained at a lower level. The prediction errors of the trajectory
characteristics of ship trajectory, latitude, turning speed, and speed of forecasting, latitude,
turning speed, and speed were within the acceptable range. The accuracy of the prediction
results could meet the needs of the actual application.

Table 3. Error of T-LSTM prediction results and actual data.

Feature Test Maximum Error Mean Error

Speed SOG/(knots/hour) 0.12951 0.08113
Turning speed ROG/(knots/hour) 0.01247 0.00531

Heading COG/(◦) 0.95632 0.56583
Longitude/(◦) 0.00035 0.00021
Latitude/(◦) 0.00026 0.00014
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In addition to the previous sea area dataset, data from another sea area were also
selected to test the T-LSTM model. The predicted data and the original data in the dataset
were analyzed and compared. The results, presented in Figure 8, show that the T-LSTM
model’s predicted trajectory is consistent with the track of the actual irregular data, indi-
cating its ability to accurately predict ship trajectories in various sea areas. This further
demonstrates the strong performance of the T-LSTM model and its potential practical
applications in ship-trajectory prediction.
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In the research on multi-ship trajectories, the generative adversarial network (GAN)
was adopted, which used multi-dimensional T-LSTM and LSTM as generators to generate
multi-time step trajectory sequences in line with reality. In contrast, a convolutional neural
network (CNN) was adopted as a discriminator to judge whether the generated trajectory
was natural and regular. Before training the GAN, the generator and discriminator were
pre-trained, followed by joint training. In the experiment, it was found that generator losses
began to rise, and discriminator losses began to fall at around batch 500. Around the 600th
batch, the two reached an approximate balance and eventually converged to a fair value,
with the loss effect shown in Figure 9. This indicates that the discriminator can no longer
accurately identify the difference between generated sequences and natural sequences,
while the generator can accurately generate actual trajectory sequences.
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During the model testing phase, areas No. 1–4 from the Bohai Sea were divided into
test sites and various ships of different sizes, including small, medium, and large ships,
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were selected as experimental objects. To predict the simultaneous trajectory of multiple
ships, the GAN model was employed, and its accuracy and reliability were evaluated using
the DTW and MSE indicators. The results of the experiments are presented in Table 4. It was
discovered that the predictive accuracy of the GAN model for different types of ships was
different. The predictiveness of large ships was higher, and the prediction accuracy of small
ships was relatively low due to the more intricate trajectory characteristics of small ships.
Additionally, the GAN model exhibited dissimilar prediction accuracies in various seas due
to the diverse trajectory characteristics in different seas, leading to fluctuations in the GAN
model’s predictive accuracy. Our analysis revealed that the GAN model demonstrated
high accuracy and reliability across different types of ships and sea environments.

Table 4. MSE and DTW metrics test GAN’s performance of the GAN in different sea areas.

Ship Type Sea Area 1 Sea Area 2 Sea Area 3 Sea Area 4
MSE DTW MSE DTW MSE DTW MSE DTW

Large 1.16 × 10−3 2.83 × 10−1 2.61 × 10−3 4.35 × 10−1 2.08 × 10−3 3.83 × 10−1 3.23 × 10−3 4.87 × 10−1

Medium 1.89 × 10−3 3.65 × 10−1 2.88 × 10−3 4.06 × 10−1 2.06 × 10−3 3.86 × 10−1 3.94 × 10−3 5.36 × 10−1

Small 3.29 × 10−3 4.75 × 10−1 5.92 × 10−3 6.42 × 10−1 4.21 × 10−3 5.33 × 10−1 8.79 × 10−3 7.85 × 10−1

Furthermore, to thoroughly evaluate the versatility and reliability of the GAN model,
data obtained from another sea region were used to test the model’s predictions. The si-
multaneous prediction results of multiple ships by the GAN model are shown in Figure 10.
The green star point represents the input data at the last moment after space–time calibra-
tion, while the increasing number of prediction points indicates the time offset based on
the green star in minutes. Our experimental results demonstrated that the GAN model
could accurately predict the relative position information of multiple ships in a multi-ship
prediction task. The predicted results were reliable and versatile, suggesting that the GAN
model could be successfully utilized in various practical applications.
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In this article, ship trajectories were tested using the original AIS data. Whether a
single-ship trajectory or multi-ship trajectory at the same time, this model could capture
the latitude, speed, direction, and steering information of the ship’s trajectory by point. The
data predicted by the model were compared with the corrected data and the original data,
respectively. Combined with the trajectory of the ship’s trajectory, it is concluded that this
model has high predictive accuracy. This article used different data for the robust test of
the T-LSTM and GAN, and the method also achieved a good experimental effect.

4. Discussion and Conclusions

According to the characteristics of AIS data, this paper proposes a method for the real-
time prediction of ship trajectory. For the trajectory of a single ship, a time-aware T-LTSM
neural network method was designed. Compared with the traditional LTSM, this method
adds a new variable, time interval input, and introduces a time-aware module. T-LSTM
uses the time perception module to process the time step-long data, which determines
the effects of the time interval on the T-LTSM unit of each layer, and then realizes the
direct use of irregular data. T-LSTM uses the time-aware module to process the time
step-long data, which determines the effects of the time interval on the T-LTSM unit of
each layer, and then realizes the direct use of irregular data. By comparing the error of
the predictive values and real navigation data, the T-LSTM model is shown to be able to
resolve the defects that traditional LSTM and RNN cannot handle irregular data, and their
prediction accuracy is higher than that of GRU and TCN. For the trajectory of multiple
ships, this paper proposes a prediction method based on the GAN. The generator part
uses the double-layer structure of T-LSTM and LTSM to predict the ship data and obtain
the relative position relationship of the ship by the confrontation of learning network
parameters. It can be seen from the trajectory diagram of the experimental prediction that
the GAN model can predict multiple shipments at the same time and the prediction effect
is good. By demonstrating the effectiveness of the ship-trajectory models designed in this
paper, this study contributes to the advancement of a technology that can improve the
efficiency and accuracy of maritime transportation, promoting the effects of maritime traffic
management and infrastructure protection.

In future research, we will select the practical applications of multi-source fusion
data such as radar, AIS and Beidou in the detection of abnormal ship behavior. The
algorithm will directly predict the trajectory of a ship according to the original fusion
data input, and overcome the limitations of current single-source ship data technology.
At present, abnormal-behavior detection based on multi-source fusion data has not been
included in the literature, so the proposed algorithm is expected to further improve the
prediction accuracy of ship trajectory. In addition, to further improve the performance
of the algorithm, expanding the impact of AIS data sets would be considered to reduce
interpolation. The prediction accuracy of the T-LSTM can continue to be improved. Next,
optimization algorithms will be used to further optimize the parameters of the T-LSTM
model to improve the predictive accuracy of the ship’s trajectory values.
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