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Abstract: Oil spills have always been a threat to the marine ecological environment; thus, it is
important to identify and divide oil spill areas on the ocean surface into segments after an oil spill
accident occurs to protect the marine ecological environment. However, oil spill area segmentation
using ordinary optical images is greatly interfered with by the absorption of light by the deep sea and
the distribution of algal organisms on the ocean surface, and it is difficult to improve segmentation
accuracy. To address the above problems, a hyperspectral ocean oil spill image segmentation model
with multiscale feature fusion (MFFHOSS-Net) is proposed. Specifically, the oil spill segmentation
dataset was created using hyperspectral image data from NASA for the Gulf of Mexico oil spill,
small-size images after the waveband filtering of the hyperspectral images were generated and the
oil spill images were annotated. The model makes full use of having different layers with different
characteristics by fusing feature maps of different scales. In addition, an attention mechanism was
used to effectively fuse these features to improve the oil spill region segmentation accuracy. A case
study, ablation experiments and model evaluation were also carried out in this work. Compared with
other models, our proposed method achieved good results according to various evaluation metrics.

Keywords: oil spill segmentation; hyperspectral images; multiscale fusion; attention mechanism

1. Introduction
1.1. Current Status of Marine Oil Spill Research

Oil has always been a necessity that is inseparable from modern industrial production
and social life. With the increase in research and exploration of the ocean, the exploitation
of offshore oil fields has gradually become the main way to obtain oil energy. At the same
time, the increase in the number of offshore oil fields and ocean-going tanker voyages has
greatly increased the risk of oil spills at sea [1]. The effect of oil spills on the marine ecosystem
is extremely severe. For example, the blowout explosion of the Deepwater Horizon rig in the
Gulf of Mexico in 2010 spilled about 3.2 million barrels of oil and covered at least 2500 km2 of
seawater [2,3]. In order to avoid the continuous damage to the marine environment caused by
similar events, we need to accurately delineate the sea surface oil spill area and provide data
support for the emergency treatment of sea surface oil spill events as much as possible.

Aerospace remote sensing can survey Earth from different heights, ranges, velocities
and spectral bands to obtain a large amount of information. Therefore, remote sensing
technology has gained wide application in many aspects of the national economy and
military, such as weather prediction, resource inspection and environmental monitoring.
Due to the advantages of hyperspectral sensors with many spectral bands and large spatial
capacity, hyperspectral images have great potential in oil spill research compared with
other technical means [4,5]. Although the quality of hyperspectral imaging is affected by
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environmental factors such as weather and light, its unique spectral features can compen-
sate for the deficiencies caused by environmental factors in the an oil spill area to provide
high-value information that can distinguish between oil spill and water surface features,
thus identifying information related to the oil spill area and making oil film thickness
estimation possible [6–8].

With the full utilization of different depth features, deep learning plays an important role
in image segmentation, target detection, etc. [9,10]. Deep learning is widely used in the research
of hyperspectral images, to study their rich spectral and spatial information. At present, deep
learning mainly combines the spectral features, spatial features and spatial spectral features of
hyperspectral images in image research. For example, Chen [11] and Hu [12] proposed CNN
models using the spectral features of original images for the target detection of different task
types. However, hyperspectral images are susceptible to adjacent pixels and mixed pixels, and
using only spectral information is likely to cause classification errors; so, scholars have begun
to attempt classification using spatial information [13]. Guidici [14] extracted some spatial
features from hyperspectral data using CNN models for studying land cover classification,
and concluded via experiments that 1D CNNs are in some cases more advantageous than 3D
CNNs as they can be less computationally intensive. The experimental results have room for
improvement as only the information between a certain pixel point on the image is considered
and the unique spectral information of hyperspectral images was not utilized. Li [15] used
3D CNNs to classify images by combining spectral and spatial information for deep feature
extraction, and the effect was significantly improved. Although combining spectral and spatial
information can make full use of the information of hyperspectral images and improve the
classification accuracy of hyperspectral images to some extent, this significantly increases the
computation time compared with the first two approaches [10,16].

1.2. Related Work

Relevant research will be reviewed in this section, including on the Gulf of Mexico oil
spill, segmentation networks, residual networks and attention mechanisms.

1.2.1. The Gulf of Mexico Oil Spill

The 2010 Gulf of Mexico oil spill was one of the worst crude oil spills in history [2], as
Figure 1 shows. Crude oil erupted from the Deepwater Horizon deep-sea rig, and the spill
lasted for three months, causing continuous damage to the marine environment. The study of
this is a good source of publicly available datasets via hyperspectral image acquisition in NASA
laboratories. NASA’s Airborne Visible/Infrared Imaging Spectrometer (AVIRI-S) measured
a total of more than 100,000 km2 of ocean during the spill to help scientists and the relevant
authorities to better understand the spill and how to address its effects [17,18]. The data in this
study are based on AVIRIS, recording 224 bands in the wavelength range of 400–2500 nm.

Figure 1. NASA images of the Gulf of Mexico oil spill. The picture on the left was taken on
28 July 2010, and the picture on the right was taken on 27 May 2010, in the Gulf of Mexico.
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1.2.2. Segmentation Networks

When it comes to deep learning methods, fully supervised learning methods are more
effective than semi-supervised learning methods [19]. Upon its introduction, Deeplabv3+ [20]
was considered to be one of the most effective semantic segmentation models, achieving
satisfactory segmentation results when applied to many public datasets, such as the PASCAL
VOC2012 dataset [21] and the City Scapes dataset [22]. The network of Deeplabv3+ is divided
into two main parts: the encoder and the decoder. The encoder fully exploits the multi-scale
contextual features of the images using the atrous spatial pyramid pooling (ASPP) module.
The decoder uses shallow feature maps to optimize the information that cannot be recovered
via upsampling, and finally obtains the semantic segmentation results.

1.2.3. Residual Network

As the deep learning model deepens, it leads to a larger number of non-linear layers,
causing the more non-linear fitting ability of the model and reducing the generalization
ability. Some layers in the residual network skip the connection of neurons in the next
layer and are connected in alternate layers, which can weaken the connection between
each layer and enhance the linear fitting ability [23]. The residual network is proposed to
simplify the training of deeper neural networks. The network does not suffer from gradient
disappearance nor gradient explosion during the node updating of node parameters, and
solves the network degradation problem. Although the residual network extracts rich
features, it does not evaluate these features and does not make full use of the features on
different scales to improve the efficiency of the model.

1.2.4. Attention Mechanisms

Attention mechanisms were first used in natural language processing, where the main
goal was to focus on important features and suppress unnecessary ones [24–26]. As research
progresses, attention mechanisms are now increasingly used in a wide range of fields, such
as image classification, target detection, medical image analysis, etc. Attention mechanisms
are mainly classified into spatial attention mechanisms, channel attention mechanisms and
hybrid attention mechanisms.

Channel attention refers to changing the weights on each channel to enhance the
learning of a specific channel, thus improving the performance of the model [27]. The input
feature map is passed through two parallel maximum pooling layers and average pooling
layers to compress the spatial dimension of the feature map, and the number of channels
is compressed and re-expanded using the Share MLP module to recover it to the number
of channels of the original map. The maximum pooling layer and the average pooling
layer are operational layers used to reduce the spatial dimension of the feature map. The
maximum pooling layer retains the most significant features, while the average pooling
layer smoothes the features. The two results after activation via the ReLU function are
added row by row, and finally activated via a sigmoid function to obtain the output of the
channel attention mechanism, which is then multiplied using the original map to recover it
to the original feature map size.

Unlike the channel attention mechanism, the spatial attention mechanism focuses on
the “where”, which is complementary to the channel attention mechanism [28]. The feature
map of the spatial attention mechanism is generated by concatenating the results of the
maximum pooling layer and the average pooling layer, and then concatenating the results
through a standard convolutional layer.

The hybrid attention mechanism is a simple and effective attention module for feed-
forward convolutional neural networks [29]. With a given intermediate feature map, the
module infers the attention map along two different dimensions, channel and space, and
then multiplies the attention map using the input feature map for adaptive feature refine-
ment. The hybrid attention mechanism not only tells us what to focus on, but also improves
the representation of the attention points.
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1.3. Research and Contribution of This Paper

It is critical to set up datasets for the study of hyperspectral images of oil spills. After
reviewing the related studies, we selected hyperspectral images of representative oil spill
events to produce the required datasets. Different deep learning models were used to test
the dataset and verify the scientific validity of the dataset. We added attention mechanisms
and fused the feature layers of different depths to improve the accuracy of the oil spill area
segmentation of the model. The expected contributions of this paper are as follows:

(1) Collating and producing hyperspectral image datasets of iconic oil spill events to label
oil spill regions and provide a basis for subsequent deep learning models for oil spill
region segmentation;

(2) Modifying the residual structure to fuse the feature layers of different scales to make
full use of the features of different layers;

(3) Unlike ResNet50-SE, an attention mechanism is added to the process of fusing differ-
ent feature layers to suppress unimportant features in different layers.

2. Materials and Methods

In this section, we first describe the pre-processing of hyperspectral data from the
Gulf of Mexico oil spill and the production of labels. Then, we provide the proposed
segmentation model, describing the main innovations of the method.

2.1. Data Pre-Processing

In order to ensure the generalization ability of the model, we mainly selected hyper-
spectral images from 11 May 2010, and 9 July 2010, for processing. Generally, hyperspectral
raw data need to be radiometrically calibrated and atmospherically corrected to elimi-
nate systematic and atmospheric errors [30]. NASA radiometrically calibrated the data
to reduce geometric and radiometric errors in the photography process. Therefore, this
study required the atmospheric calibration of the data acquired from the official website to
obtain the surface emissivity values. This step required the use of the Fast Line of Sight
Atmospheric Analysis of Hypercubes (FLAASH) module in ENVI software for atmospheric
calibration, where the atmospheric model was set to tropical and the aerosol model was set
to offshore.

Li et al. [31] showed that in hyperspectral image classification, using a higher number
of bands within a certain range can improve classification accuracy. However, this also
increases the amount of data computation. Some researchers [32–34] have used parameters
such as the hydrocarbon index (HI), fluorescence index (FI) and rotational absorption index
(RAI) for the band selection of hyperspectral images for the detection of oil films of different
thicknesses, as Table 1 shows.

Table 1. Spectral index calculation equation.

Equation Parameter Description

HI = (λB − λA)
RC−RA
λC−λA

+ RA − RB

RA = 1705 nm
RR = 1729 nm
RC = 1741 nm

FI = RB−RR
RB+RR

RB = 490 nm
RR = 665 nm

RAI = RB−RIR
RB+RIR

√
∑ b2

i
RB = 490 nm
RIR = 885 nm

Other studies [5,35] have shown that the spectral characteristics of oil films with
different thicknesses or area ratios are different and have suggested that the effect is more
obvious in the spectral bands of 507–670 nm, 756–771 nm and 1627–1746 nm. Therefore,
the bands in the range of 450–800 nm and 1600–1800 nm were chosen for imaging in this
study to generate the original images suitable for this study.
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2.2. Dataset Production

The pre-processed images were manually labeled using LabelMe software, a deep
learning dataset labeling tool. We obtained data with oil spill labels, where the pixel value
“0” means “non-oil-spill” and the pixel value “1” means oil spill. During the production of
the dataset, we marked the areas where oil spills existed with the software. Areas where oil
spills did not exist, such as ordinary ocean surfaces, ships, etc., were used as background.
The difference between the oil spill area and the non-oil spill area in the dataset was that
the oil spill area contains only oil film, while the non-oil spill area contains ordinary ocean
surface, ships, etc. To prevent the model from overfitting, the data were enhanced via
horizontal flipping, vertical flipping and arbitrary small angle rotation, and 2781 images
were obtained. Samples of the data set are shown in Figure 2. The samples were then
randomly divided into three parts, i.e., training set, validation set and test set, with the
ratio of 5:3:2. Half of the data were used to train the model; 30% of the data were used to
validate the model parameter tuning and model selection and 20% of the data were used to
evaluate the performance and generalization ability of the model. This ratio allowed for
more accurate evaluation of the model parameters, selection of the model that works best,
reduction of overfitting with limited data and improvement of the generalization ability of
the model. The test set had a relatively small proportion, but was able to complete the final
evaluation of the model. Generally speaking, the number of samples used in this study
was sufficient to ensure that the improved model had good generalization ability.

Figure 2. Part of the completed dataset. (a) Indicates original image, (b) indicates label map.

2.3. Model

In this section, we first describe the general framework diagram of the oil spill seg-
mentation model with multi-scale feature fusion. Then, we describe an approach and the
main innovations.

2.3.1. General Overview

Figure 3 shows the general framework of the oil spill segmentation model with scale
feature fusion. Firstly, we used ResNet-50 as the backbone network for feature extraction,
which consists of one convolutional block and four residual blocks. L0 denotes the first
convolutional layer, and L1, L2, L3 and L4 denote the four residual blocks with different
colors. After stitching the four different scales of feature layers, a 1× 1 convolution block
was added to enhance the nonlinear characteristics to obtain feature X0. Feature X0 was
refined using the Squeeze and Excitation (SE) module [36] from each different layer to obtain
feature X. X was passed through the pyramid pooling (ASPP) module and convolved
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by 3 expansions of 3× 3 size with expansions of 6, 12 and 18, respectively, to obtain a
perceptual field as large as possible without losing too much resolution. Finally, X, as
the shallow features containing more object boundaries and textures, was stitched with
the advanced features processed using the pyramid pooling (ASPP) module and then
upsampled for the final oil spill area segmentation.

Figure 3. The proposed oil spill segmentation model with multi-scale feature fusion. Different
features are extracted from the four layers (distinguished by different colors) of ResNet-50, and
the structure of the ASPP module is shown in the lower left corner, which is used for the further
processing of the features after the SE attention mechanism.

2.3.2. Multi-Scale Feature Fusion

The features X0 of the different layers extracted from ResNet-50 needed to be refined
using the SE module. The specific squeezing and excitation process can be represented by
the following equation [36]:

X = (ϕ( f c2 (γ( f c1 (v, W1)), W2)))·X0 (1)

where γ and ϕ denote the ReLU function and sigmoid function, respectively, and f c1 and
f c2 denote the fully connected layers. The channel-by-channel feature vector v ∈ R1×1×C

was generated using the input feature X0 after global averaging pooling through the SE
block. Global average pooling was used to reduce the dimensionality of features and
capture the global information of the entire feature graph. In the attention mechanism, it
enabled weighted aggregation of features to better capture the critical and distinguishing
features. The method used the parameter W1 ∈ R C

r ×C for feature dimensionality reduction
and the parameter W2 ∈ RC× C

r for feature dimensionality reduction. According to [36], the
reduction ratio r of W1 and W2 was set to 16 in this study.

2.3.3. Loss Function

Most semantic segmentation models use a mean squared loss function for optimization
by comparing the mean squared difference between the real image and the predicted result.
However, models optimized directly via pixel loss are prone to over-smoothed outputs. To
reduce the effect of pixel loss while incorporating practical requirements, we optimized our
network using a binary cross-entropy loss [37,38], with the loss function defined as follows:

Loss = − 1
N

N

∑
i=1

(yi log(p(yi)) + (1− yi) log(1− p(yi))) (2)
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where yi is the label (“1” for category 1 and “0” for category 2), the expressions p(yi) and
1− p(yi) are the predicted probabilities of category 1 and category 2 for the ith sample and
N is the total number of samples.

2.4. Evaluation of Performance Indicators
Segmented Evaluation Metrics

To evaluate and compare the performance of the oil spill detection model on the
dataset, a uniform evaluation criterion was used. The performance of the models was
evaluated using evaluation metrics such as overall accuracy (OA) [39], producer accuracy
(PA) [40,41], mean pixel accuracy (MPA) [40], mean intersection over union (MIoU) [40]
and kappa coefficient [39].

OA indicates the proportion of correctly classified pixels to the total number of pixels
and is defined as follows:

OA = (TP + TN)/(TP + TN + FP + FP) (3)

where TP means correctly classified positive samples, FN means incorrectly classified
positive samples, FP means incorrectly classified negative samples and TN means correctly
classified negative samples.

PA was calculated by dividing the number of correctly classified pixels by the ratio of
the total number in pixels of the images in categories i and j. PA indicates the number of
correctly classified pixels.

PA =
∑K

i=0 Pii

∑K
i=0 ∑K

j=0 Pij
(4)

Kappa coefficients were calculated from the confusion matrix containing the number
of true, false positive, false negative and true negative samples. Kappa was used to evaluate
the correspondence of the model prediction with the target label. The interval of kappa
was [−1,1]. When this value was close to 1, better image segmentation occurred.

Kappa = (p0 − pe)/(1− pe) (5)

where p0 = Tp/n, p0 is the number divided by the number of true positive cases and pe is
defined as follows:

pe =
∑K

i=0 Mi Ni

n2 (6)

where K denotes the number of categories, Mi denotes the number of pixels in category i,
Ni is the total number of pixels in category i and n̂2 is the square of the number of all if the
pixels in the image.

The MPA formula is defined as follows:

MPA =
1

k + 1

k

∑
i=0

Pii

∑k
j=0 Pij

(7)

MPA is a slightly improved PA that calculates the correct pixel ratio per class and then
averages it over the total number of classes.

The MIoU formula is defined as follows:

MIoU =
1

k + 1

k

∑
i=0

Pii

∑k
j=0 Pij + ∑k

j=0 Pij − Pii
(8)

This ratio can be reformulated as the ratio of the number of true positives (intersection)
to the sum of true positives, false negatives and false positives (union). The IoU is calculated
on a per-class basis and then averaged.
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3. Results

In this section, we first describe the experimental details and demonstrate the effec-
tiveness of MFFHOSS-Net via ablation experiments, including a comparison of different
levels of feature layers and the role of the attention mechanism module. Then, we show the
experimental results via a series of graphs. Finally, we compare MFFHOSS-Net with other
mainstream segmentation models and summarize the advantages and disadvantages of the
model. In addition, we added support vector machine (SVM) experiments. The differences
between traditional machine learning and deep learning were compared.

3.1. Experimental Details

We implemented MFFHOSS-Net using PyTorch and an NVIDIA RTX3090 GPU. The
backbone network was initialized using the ImageNet [42] pre-trained weights, the op-
timizer was selected as Adam and the batch size was set to 8. The initial learning rate
was 1 × 10−5.

3.2. Ablation Experiments

To evaluate the predictive power of the feature maps from different layers, we extracted
individual feature maps from layers 1 to 4 of ResNet-50 to train our model. The intermediate
feature map is shown in Figure 4.

Figure 4. Effect of different levels of feature layers: the first three columns are low-level features and
the last two columns are high-level feature layers containing semantic information.

To further verify the effectiveness of the method, we tested the oil spill dataset pro-
duced using the above steps, using feature layers of different depths for oil spill area
segmentation, and the results are shown in Table 2. The accuracy of segmentation by
shallow features alone is generally lower than that of segmentation using deep features.
The main reason is that in simple scenes, shallow features are better perceived than in deep
features. In contrast, the dataset we produced contains more similar pixel points in the
images according to the specific waveform selected; so, the perceptive power of the deep
features is stronger.
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Table 2. Influence of characteristic layers at different depths on oil spill partitioning.

Layer MIoU MPA Kappa

Layer 1 0.7328 0.8335 0.7616
Layer 2 0.7654 0.8831 0.7916
Layer 3 0.8177 0.9043 0.8167
Layer 4 0.8288 0.9055 0.8272

Shallow layers are better than deep layers for perception on simple scenes because
shallow layers are observed for sensitive low-level information, such as direction. In
contrast to complex scenes, deeper layers can achieve better results, yet deeper features are
not necessarily used for final predictions either. Sea surface oil spill images are sometimes
simple and sometimes complex, and neither single shallow features nor deep features alone
can achieve the best results, which is why we need to fuse features from different levels for
combined prediction to improve the segmentation accuracy of the model.

To further evaluate the performance of different attention modules on MFFHOSS-
Net, we compared the results of the channel attention mechanism and spatial attention
mechanism on segmentation under the same experimental setup. Table 3 shows the
effectiveness of the different attention models, where the SE mechanism performs well for
most of the metrics.

Table 3. Influence of characteristic layers at different depths on oil spill partitioning.

Model MIoU MPA Kappa

CA 0.8324 0.9075 0.8362
SA 0.8402 0.9131 0.8416
SE 0.8359 0.9157 0.8567

3.3. Oil Spill Segmentation Model Evaluation

To verify the effectiveness of the proposed method, we conducted experimental com-
parisons with other mainstream segmentation networks. To ensure that the experiments
were as fair as possible, we uniformly used ResNet-50 as the backbone network and kept
the other settings the same. A total of six different deep learning models were tested
in this paper, namely, ResNet-50, UNet [43], Fast-SCNN [44], DANet [45], PSPNET [46],
SegNet [47] and SVM [48]. The test results are shown in Figure 5 and Table 4. Overall,
MFFHOSS-Net obtained the best performance in most of the metrics. The robustness of the
model was further verified. As shown in the figure, MFFHOSS-Net can accurately segment
the oil spill area and effectively locate the oil spill area in some complex images of an
oil spill.

Table 4. Comparison of oil spill segmentation results.

Model MIoU MPA Kappa

MFFHOSS-Net 0.8722 0.9525 0.8636
UNet 0.8658 0.9558 0.8491

Fast-SCNN 0.8238 0.9391 0.7639
PSPNet 0.8159 0.9316 0.8393
DANet 0.8571 0.9417 0.8312
SegNet 0.8682 0.9493 0.8384

ResNet-50 0.8556 0.9311 0.8392
SVM 0.7609 0.8268 0.5732
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Figure 5. Experimental results graphs.

The experimental results are shown in Figure 6 and Table 4. Among these models,
MFFHOSS-Net performs the best in MIoU and kappa metrics with 0.8772 and 0.636. The
value of MPA ranks second among all models with 0.9525. Figure 6 visualizes the segmen-
tation effect of different models. All models perform well in the segmentation of the oil
spill concentration region. However, in the edge region, MFFHOSS-Net handles the details
slightly better than the other models.

Figure 6. Segmentation result map, where (a) represents the original map, (b) represents the corre-
sponding labeled map and the circles mark the regions with defects in the segmentation; (c) represents
MFFHOSS-Net; (d) represents UNet; (e) represents Fast-SCNN; (f) represents PSPNet; (g) represents
DANet; (h) represents SegNet; (i) stands for ResNet-50 and (j) represents SVM. The green circles
indicate where the effect difference is more obvious.

Compared to deep learning, the performance of SVM is not good enough. In all metrics,
it lags behind deep learning. We think the reasons may be as follows: SVM has limited
ability to model the nonlinear relationship of data and cannot capture the relationship
between data as deep learning does; and SVM may produce wrong judgments for noisy
or locally changing pixel points. In contrast, deep learning delivers better performance in
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hyperspectral image segmentation due to its utilization of contextual information, and its
stronger robustness and generalization ability.

4. Discussion

In this paper, an oil spill segmentation dataset to segment an oil spill region and a
non-oil-spill region is proposed, in that this dataset can save on the data labeling time
required in related studies. Secondly, the effect of features of different layers on oil spill
segmentation was analyzed, and we introduced a comparison of different attention mecha-
nisms by combining feature layers of different depths to form MFFHOSS-Net. A model
of oil spill segmentation with multi-scale feature fusion was set up in this study. An
experimental study showed that MFFHOSS-Net effectively utilizes the feature layers of
different depths and further improves the accuracy of oil spill segmentation by reinforcing
the features that need to be attended to and weakening those that are not obvious via the
attention mechanism. Our study focuses on fusing the features of hyperspectral images at
different scales to take full advantage of the hyperspectral images. Although we performed
a relatively simple segmentation task this time, the improved model performed well overall.
Therefore, we believe that multi-scale feature fusion can provide new ideas for the applica-
tion of hyperspectral images in deep learning, especially in the problem of segmentation
and recognition of multiple targets. Additionally, many marine oil spill datasets are not
publicly available. The range of research topics we can choose is much smaller, which
is one of the limitations of the study. In spite of this, we chose hyperspectral data from
different months in the Gulf of Mexico for training to improve the generalization ability of
the model. We need to collect more data to study the effect of time on oil spill area segmen-
tation. In future work, we will further investigate the new attention mechanism and design
more effective models for the target detection and segmentation of other marine remote
sensing images.
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