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Abstract: Newly built offshore wind farms (OWFs) create a collision risk between ships and installa-
tions. The paper proposes a real-time traffic monitoring method based on machine vision and deep
learning technology to improve the efficiency and accuracy of the traffic monitoring system in the
vicinity of offshore wind farms. Specifically, the method employs real automatic identification system
(AIS) data to train a machine vision model, which is then used to identify passing ships in OWF
waters. Furthermore, the system utilizes stereo vision techniques to track and locate the positions
of passing ships. The method was tested in offshore waters in China to validate its reliability. The
results prove that the system sensitively detects the dynamic information of the passing ships, such
as the distance between ships and OWFs, and ship speed and course. Overall, this study provides
a novel approach to enhancing the safety of OWFs, which is increasingly important as the number
of such installations continues to grow. By employing advanced machine vision and deep learning
techniques, the proposed monitoring system offers an effective means of improving the accuracy and
efficiency of ship monitoring in challenging offshore environments.

Keywords: traffic safety; offshore wind farms; YOLOv7; stereo vision; deep learning

1. Introduction

Motivated by the demands for clean energy in the context of ongoing climate change,
the number of offshore wind farms (OWFs) grows rapidly in lots of coastal countries [1].
The present development shows the advantages of offshore wind farms, for example,
delivering secure, affordable, and clean energy while fostering industrial development
and job creation. Based on the annual report from the Global Wind Energy Council,
2021 becomes the best year in the offshore wind industry, in which 21.1 GW of offshore
wind capacity was commissioned, bringing global offshore wind capacity reach to 56 GW,
three times more than in 2020. The GWEC Market Intelligence forecasts that 260 GW of
new offshore wind capacity could be added during 2022–2030 under the current positive
policies, allowing the total global offshore wind installations to rise from 23% growth in
2021 to at least 30% growth by 2031. In the year 2021, China constructed 80% of new
offshore installations worldwide becoming the world’s largest offshore market [2].

However, this trend of increasing numbers of offshore wind farms puts pressure on
local water traffic management. For example, the newly added obstacles increase the
difficulties for both the navigation of passing vessels [3] and of Search and Rescue. Once
an accident happens, it results in water pollution, significant damage to facilities and
other catastrophic casualties and economic losses. For the year 2021, the Global Offshore
Wind Health and Safety Organisation (G+) report pointed out that there were a total of

J. Mar. Sci. Eng. 2023, 11, 1259. https://doi.org/10.3390/jmse11071259 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11071259
https://doi.org/10.3390/jmse11071259
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0009-0005-8656-699X
https://orcid.org/0009-0008-4773-5115
https://orcid.org/0000-0001-5820-2789
https://orcid.org/0000-0002-2503-9329
https://doi.org/10.3390/jmse11071259
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11071259?type=check_update&version=1


J. Mar. Sci. Eng. 2023, 11, 1259 2 of 22

204 high-potential incidents and injuries recorded [4]. Recently, some collision accidents
were also reported for the UK, China, and the Netherlands, leading to shipping hull and
turbine damage, and electric power loss, especially for construction and fishing ships. For
instance, on 31 January 2021, the drifting bulk carrier Julietta D collided with a transformer
platform in the Hollandse Kust Zuid wind farm, which was under construction. On
2 July 2022, a dragging accident in southern waters led to 25 casualties and a vessel sank.
Therefore, monitoring vessels in the offshore wind farm waters and detecting potential
hazards becomes an urgent question for stakeholders of offshore wind farms.

The current monitoring system for water traffic is the Vessel Traffic Services (VTS),
which uses the Automatic Identification System (AIS), radar and other detection sensors
to show the water traffic situation dynamically. The topics of technology development,
information collection, communication, and system design have been studied for the VTS.
However, the limitations of its use in offshore wind farm waters are noted due to trespasses
and the deliberate turning off of the AIS. Developing a reliable monitoring system can
aid the safety of navigation of passing vessels and offshore wind farms. To improve the
reliability of using VTS in offshore wind farm water, previous studies proposed several
novel methodologies to develop monitoring models. Li et al. reviewed 153 papers related
to ship detection and classification and suggested that the current ship detection methods
could be divided into two categories, feature design-based methods and Convolutional
Neural Network (CNN) based methods [5]. For instance, Zhao et al. developed a coupled
CNN model to detect small ships in waterways with a high density of shipping water
using a clustered Synthetic Aperture Radar image approach [6]; Zhang et al. proposed
a fast region-based convolutional neural network (RCNN) method to detect ships from
high-resolution remote sensing images [7]. Using feature design-based methods, Hu et al.
employed dilated rate selection and attention guided feature representation strategies for
ship detection, in which the dilated convolution selection strategy was applied to a multi-
branch extraction network, extracting context information of different receptive fields [8].
Yu et al. employed an advanced ship detection method using Synthetic Aperture Radar
images based on the YOLOv5 [9]. The results of this study showed a great improvement in
the feature expression ability and sensitivity for target detection after adding a coordinate
attention mechanism and a feature fusion network structure. Priakanth et al. proposed
a hybrid system by using wireless and IoT technology to avoid boundary invasions [10].
Ouelmokhtar et al. suggested using Unmanned Surface Vehicles (USV) to monitor waters,
in which an onboard RADAR is used to detect the targets [11]. Nyman discussed the
possibility of using satellites for monitoring, which allows for the visual surveillance of
a large area [12]. The relatively low cost of data acquisition makes the use of satellites
appealing, however, some prior theory or knowledge is needed to sort through the vast
collection of satellite data and images. Although these studies have their advantages, these
technologies may typically focus on large water areas, increasing the financial burden for
offshore wind farms. Therefore, low-cost, high efficiency and reliable systems are still
needed. The low cost of equipment makes video surveillance technologies a possible way
to monitor water traffic at a close distance. However, original video surveillance requires
human supervision to achieve continuous monitoring, consuming a large number of human
resources. In addition, the challenges faced by offshore wind farm operators and managers
in the environment and the high workload of their daily tasks may lead to error-prone and
tedious situations. Nowadays, automated surveillance systems observing the environment
utilizing cameras are widely used. These automatic systems can accomplish a multitude
of tasks, which include detection, interpretation, understanding, recording, and creating
alarms based on the analysis. They are widely used in different situations, for instance, in
road traffic, Pawar and Attar got detection and localization of road accidents from traffic
surveillance videos [13]. Vieira et al. and Thallinger et al. quantitatively evaluated the
safety of traffic by utilizing security cameras [1,14]. A video surveillance-based system
that can detect the pre-events, with an automatic alarm generated in the control room was
proposed for improving road safety [15].
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Motivated by the above-mentioned difficulties and advantages, this study aimed to
pioneer the use of machine vision technologies to aid traffic monitoring in offshore wind
farm waters. Specifically, a vision-based monitoring system was developed for OWFs to
improve the reliability and efficiency of ship traffic detection and tracking. The system
trains a “YOLOv7” machine visual model using automatic identification system (AIS) data.
The fine-trained model can identify the passing ship in OWF waters, not only providing
the identified target, but also the degree of confidence during the monitoring process. Then
a stereo vision algorithm is applied in the model to locate and track the positions of the
passing ships. So that the dynamic information (e.g., speed, course, and position) for each
target can be provided by the system. In addition, the proposed system was validated by
comparing the provided dynamic information with AIS data to ensure the reliability of
the results. The contributions of this work are highlighted as follows. The study pioneers
the uses of machine vision to aid traffic monitoring in offshore wind farm waters, covers
the gap for the current VTS system and provides a novel way for offshore water traffic
management. In addition, the model can provide more efficient and reliable dynamic data
for individual and overall traffic that can be expanded to providing early warning for
ship risk and accident prevention. The main contributions of this work are summarized
as follows:

(1) This paper evaluates the performance of using the YOLOv7 model in offshore wind
farm waters. It shows that the YOLOv7 model has a high accuracy rate for vessel
detection. The results prove that the YOLOv7 models have higher dynamicity for ship
detection compared to other ship detection methods.

(2) An optimization strategy for training a visual-based identification model is presented.
The study collects hybrid data sources (e.g., AIS data, images) to develop the model
training database and validate the model by comparing the positions between AIS data
and the detection results. consequently, this ensures the performance of continuous
target detection with significant accuracy.

(3) The proposed target identification system was further tested in an offshore case. By
using an embedded device, the inference time reached real-time performance (less
than 0.1 s) and the overall processing time for one frame was 0.76 s, proving the
possibility of implementation of the system in real-time ship traffic monitoring.

The remainder of this paper is organized as follows: Section 2 outlines a review of
related research. In Section 3, the framework of the system is introduced in detail. The
experimental data and the test results are reported in Section 4. The obtained results are
discussed in Section 5. Finally, conclusions are drawn in Section 6.

2. Literature Review

This section can be categorized into three groups based on the method used in the
studies: ship monitoring, machine vision in target detections, and machine vision in target
tracking, respectively.

2.1. Ship Monitoring Technology

Implemented to promote safe and efficient marine traffic, VTS are typically the most
widely used technology for ship supervision. It is a shoreside service within a country’s
territorial waters that, by detecting and tracking the ship, aims to monitor the traffic, assist
the traffic control and manage navigational matters, and provide support and required
information for passing ships. The VTS collects dynamic data via two sensors, the radar
and AIS; however, both have their limitations. For instance, the radar echo can be dis-
turbed in an environment with the external noise of RF interference and clutter, which
creates potentially dangerous situations and decrease VTS functionality. Regarding this
matter, Root proposed high-frequency radar ship detection by clutter elimination [16].
Dzvonkovskaya et al. pioneered a new detection algorithm in ship detection and tracking
but ignored the external influences position [17]. Another question concerns the limitations
of detecting small ships in coastal waters (e.g., offshore wind farm water). From this point
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of view, Margarit et al. proposed a ship operation monitoring system based on Synthetic
Aperture Radar image processing to achieve inferred ship monitoring and classification
information, which further improves the Synthetic Aperture Radar image from the new
sensor data [18]. Moreover, radar is unable to provide sufficient static information such as
ship type and size, which means other systems (e.g., AIS) are needed. The AIS is another
important piece of information for ship monitoring, which can compensate for the limita-
tions of radar. It achieves the automatic exchange of ship information and navigation status
between ships and shore. As a type of reliable data source, AIS data has been widely used in
lots of studies to analyze ship traffic, making it important for water traffic management. For
instance, Brekke et al. combined AIS data with satellite Synthetic Aperture Radar images
to detect ship dynamic information (e.g., speed, course) [19]. To improve the reliability
of radar, Stateczny collected sets of data from AIS and radar, and then applied a numeri-
cal model to compare the covariance between the two types of data [20]. Pan and Deng
proposed a real-time monitoring system for shore-based monitoring of ship traffic [21].
Although the AIS data are valuable for ship traffic management, several limitations remain.
For instance, the AIS can be closed manually. The AIS is not mandatory for some small
ships such as dinghies and fishing boats [22].

In coastal waters, the offshore wind farm is a relatively new type of installation
that influences the existing ship traffic, not only occupying the navigable waters but also
creating blind areas by blocking radio signals, reducing the ability to detect and track small
targets. Relevant studies using traditional data sources (e.g., AIS, radar), including Yu et al.,
used AIS to analyze the characteristics of the ship traffic in the vicinity of offshore wind
farms [23] and then developed models to assess the risk for individual ships [24] or for the
ship traffic flows [25]. However, as a highly accurate and reliable model for ship detection
is still the basis for ship monitoring in offshore waters, traditional ship detection methods
(e.g., AIS, radar) were updated to overcome the potential uncertainties, such as small target
detection, visual monitoring, and unpredicted invasions.

Consequently, some vision-based technologies have been applied for ship detection,
ship tracking, and ship monitoring. For instance, to overcome the difficulty of remote ship
control and monitoring in high traffic waters, Liu et al. designed a portable integrated
ship monitoring and commanding system [26]. To test the data availability, Shao et al.
used image data captured from surveillance cameras to achieve target detection [27]. To
improve the function of the target automatic monitoring and tracking, Chen et al. proposed
a mean-shift ship monitoring and tracking system [28], which shows the possibility of
using machine visual technologies for water traffic monitoring.

2.2. Applications of Machine Vision in Target Detections

Machine vision technology enables a machine with a visual perception system, with
the help of hardware (e.g., camera, infrared thermal imager, night vision device) and a
software program. It can recognize and manipulate the activities and perform image-based
process control and surveillance for traffic monitoring, manufacture inspection, autopilot,
and other scene perception usages [29,30]. A widely used application of machine vision is
the Tesla driverless system, which was equipped with the hardware needed for Autopilot
and the software program to realize Full Self-Driving.

Central to machine vision is the target recognition and detection algorithms. Figure 1
shows the development of recognition and detection algorithms that are used for object
detection. The early studies of machine vision came up with Scale Invariant Feature
Transform, which involved five steps to match the similarity of two images and to detect
targets [31]. Then SIFT was upgraded to the Viola-Jones detection algorithm [32], histogram
of oriented gradients (HOG) [33], Data Management Platform (DMP), and so on.
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However, the above-mentioned algorithms extract target features manually, and can
only perform well when they are guaranteed to extract sufficiently accurate features, so
that they are inapplicable where a large number of targets exist. They are replaced by
applying deep learning approaches to detect targets. Deep learning-based detection al-
gorithms have the advantage of being able to extract features from complex images. The
deep learning-based methods can be grouped into two categories based on the way they
extract target features: the anchor-based methods (i.e., Convolutional Neural Network
(CNN) methods and You Only Look Once (YOLO) methods) and the anchor-free meth-
ods (e.g., adaptively spatial feature fusion methods [34], Corner Net methods [35]). The
Anchor-based algorithms are further classified into single-stage detection and two-stage
detection. Due to stability and accuracy, anchor-based methods have become more popular
in recent years. Typical methods include YOLOv1-v5 [16,36–40], single shot multibox
detector [41], and Region CNN etc. For instance, Girshick et al. [42] proposed a novel
method of R-CNN for target detection. The method uses image segmentation combining
regions and CNNs to improve accuracy; however, it requires a large database to train
the detection model, which reduces the detection speed. To improve detection speed,
Meng et al. developed an improved Mask R-CNN, which ignores the RolAlign layer in the
R-CNN [43]. Zhao et al. suggested enhancing the relationship among non-local features and
refining the information on different feature maps to improve the detection performance
of R-CNN [44]. Redmon and Farhadi proposed a joint training method to improve the
traditional YOLOv1 model [45]. The upgraded YOLOv3 model uses binary cross-entropy
loss and scale prediction to improve the accuracy of the model while ensuring the detec-
tion speed of detection [16]. The YOLOv3 model was adopted in vision detection studies
including Gong et al. [46]. Patel et al. proposed a novel deep learning approach, which
combines the capabilities of Graph Neural Networks (GNN) and the You Look Only Once
(YOLOv7) deep learning framework; the results show an increased detection accuracy [47],
Li et al. [48] and etc., which prove its fast speed in the convergence and detection process.
The applications of vision detection have been done in various domains, as well as water
traffic management. To design a deep learning-based detector for ship detection, Li et al.
applied the Faster-CNN algorithm to train the ship target detection model, which achieves
higher accuracy [49]. To address the shortcomings of the region proposal computation, Ren
et al. introduced a region proposal network (RPN) by sharing the convolutional features of
Fast R-CNN and RPN to further merge the two into one network [50].

2.3. Applications of Machine Vision in Target Position and Tracking

Machine vision methods used for target tracking can be categorized as monocular
vision and binocular vision based on the tracking mechanism [51,52]. The monocular
vision was first proposed by Davison [53], who used overall decomposition sampling to
solve the challenge of real-time feature initialization. The basis of the monocular vision
systems is the simultaneous localization and mapping (SLAM) method, which calculates
the distance of the target within the camera’s field of view. Although monocular visual
localization is simple to operate and does not require feature point matching, it is less
accurate and only suitable for specific environments. Therefore, it is not suitable for use in
complex environments such as maritime target localization and tracking. To solve these
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problems, binocular vision positioning has been proposed and is widely used in many
fields. However, binocular vision pre-localization only works on a flat surface and cannot
accurately localize objects, so scholars have extended binocular vision to stereoscopic
vision [54,55].

Binocular stereo vision technology can simulate the human eye to perceive the sur-
rounding environment in three dimensions, making it widely used in various fields [56–59].
To reduce errors in the localization part of binocular stereo vision systems due to interfer-
ence from complex environments, Zou et al. proposed a binocular stereo vision system
based on a virtual manipulator and the localization principle [60]. They designed a binoc-
ular stereo vision measurement system to achieve an accurate estimation of target object
positions. Zuo et al. used binoculars to capture point and line features and selected or-
thogonality as the minimum parameter for feature extraction, which solved the problem
of unreliability of binocular stereo vision in detecting objects [61]. Therefore, compared to
monocular vision techniques, binocular stereo vision is a more effective technique for target
tracking. It is more accurate, simpler to operate, and suitable for dynamic environments,
making binocular vision systems more appropriate for ship supervision in offshore wind
farms than monocular vision systems. Video tracking allows for continuous monitoring of
the ship, which is very helpful.

Based on the above studies, it can be noted that traditional approaches of using AIS
and radar data for ship identification, tracking and localization have their drawbacks.
For example, radar has difficulty in detecting small targets and fails to provide some
important information (i.e., ship type). The AIS provides dynamic and static information
for individual ships but it can be turned off manually, which cause difficulties in ship
tracking and invasion detection. Hence, this study suggests a novel way for ship detection
and tracking by using a visual-based target detection model which not only overcomes the
difficulties of current ship detection and tracking approaches but also provides new ideas
to enhance dynamic ship monitoring in coastal waters.

3. Methods

This section proposes a novel framework for ship detection and tracking in the waters
near OWFs. The framework uses the vanilla YOLOv7 algorithm as a critical component to
detect ships in dynamic situations while applying binocular stereo vision to track the ships.
The framework structure is shown in Figure 2.

The framework consists of seven steps. (1) to collect real-time ship video from the
waters in the vicinity of the OWFs; (2) to process the collected ship video and picture
information; (3) to set the relevant parameters; (4) to construct the training database from
the collected video and AIS data; (5) to train the ship detection model using the YOLOv7
approach; (6) to map the ship position from videos into the physical world with the aid of
binocular stereo vision and (7) to validate and output the results. The details of those steps
are introduced as follows.

Step 1: Cameras placed at wind turbines are used to provide real-time videos of ship
traffic in the vicinity of offshore waters. Then, images containing ships are collected to
develop the training databases. In the database, images that may have ships that can be
overlapped with another image are deleted.

Step 2: This step defines the parameters used in the monitoring system. For the
detection model (i.e., YOLOv7), the three parameters learning rate, momentum, and
decay are used. The learning rate is a hyperparameter used by the optimizer to control
the step size of the parameter update. It can influence the adjustment of the parameter
value. Momentum is a regulating hyperparameter in the optimizer, which is used to
control the direction and speed of parameter updates. By setting a suitable momentum
hyperparameter, the parameter updates can be made more stable and avoid problems
such as excessive oscillation or too slow descent during training. Decay or decay rate is a
regulating hyperparameter in the optimizer that is used to make the learning rate gradually
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decrease. It allows for a more detailed search of the parameter space, making it easier for
the model to reach a minimum and produce more accurate predictions.

In addition, the camera includes internal and external parameters. The internal
parameters are focal, pixel, and resolution. They are mainly used as the basis to transform
the ship’s position from pixel coordinates to camera coordinates. The external parameters
cover camera positions, and high, horizontal, and vertical angles, which convert the ship’s
position from camera coordinates to world coordinates. By calibrating the left and right
cameras, those internal and external camera parameters are crucial for ship positioning.

Step 3: Establish the initial training samples for YOLO model training, which is used to
obtain the object in the port videos (i.e., generate a bounding box for each ship in the video).
Before training, the ship pictures need to be processed through annotation using an image
annotation tool. Each ship in the picture is selected in this study, and the corresponding
AIS data are input to develop the database. The database includes the position coordinates
of the corners of the ship’s box, as well as the width and height of the ship in the picture. In
the training process, standard techniques such as multi-scale training, data augmentation,
and batch normalization are used to train the ship detector.
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Figure 3 shows the training process of the YOLOv7 model, which consists of the
backbone network, a convolutional feature fusion network, and the decoding processing.
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Figure 3. The steps to train the YOLOv7 model.

The YOLOv7 model consists of a backbone, neck, and a head. The input image is
scaled to a size of 640 × 640 with a constant aspect ratio, and the blank part of the image is
filled with gray. As shown in Figure 3, the input image is grided as 640 × 640 to detect the
target. The backbone is a convolutional neural network responsible for extracting features
from a given input image; the neck mainly generates a feature pyramid and passes various
scales of features to the head, which generates prediction boxes and ship categories as
outputs for each object. In addition, sensitivity and accuracy can be affected by the size
of the grids. As shown in Figure 4, a scale of 20 × 20 is used for big target detection, a
medium scale of 40 × 40 is used to detect the middle target, and a small scale of 80 × 80 for
the small target.
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Step 4: This study uses a 3D reconstruction technique called binocular stereo vision
to achieve ship positioning. Stereo vision is a technique that involves detecting objects
using two or more cameras. By simultaneously calibrating the left and right cameras, the
internal and external parameters of both cameras can be determined. To obtain the position
of the ship, the target coordinates are mapped from the video to the physical world using
imaging principles, the whole structure is shown in Figure 5.
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In the proposed system, the left pixel coordinate
(

ule f t, vle f t

)
is obtained from the

input image captured by the left camera into YOLOv7. Meanwhile, the right pixel coordi-
nate

(
uright, rright

)
is obtained after matching the image captured by the right camera and

left camera.
The pixel point is denoted by m = [u, v]T. The world point is denoted by M = [X, Y, Z]T.

We use x̃ to denote the augmented vector by adding 1 as the last element: m̃ = [u, v, 1]T ,
M̃ = [X, Y, Z, 1]T . The relationship between the world point M and its pixel projection m is
given by:

sm̃ = A[R T] M̃, with A =

α γ u0
0 β v0
0 0 1

 (1)

where s is an arbitrary scale factor, the extrinsic parameters (R, T) is the rotation and
translation, which related the world coordinate system to the camera coordinate system,
and A is the camera intrinsic matrix, with (u0, v0) the coordinates of the principal point,
α and β the scale factors in u and v axes, and γ the parameter describing the skew of the
two axes.

In order to obtain the relative positions between any two coordinate systems, the
rotation R and translation T need to be acquired by calibrating the left and right cameras,
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simultaneously. This calibration process involves capturing images of a checkerboard
pattern at different orientations, as shown in Figure 6. The images are then processed
using the “Stereo Camera Calibrator” tool in MATLAB to obtain the camera parameters,
including the rotation and translation matrices.
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As a result, the world coordinate [X, Y, Z]T of the ship is obtained. The latitude–

longitude coordinate of the ship is denoted by P =
[

Platitude, Plongitude

]T
can be formulated

as follows:

P = Pcamera +

[
X
Y

]
(2)

where Pcamera =
[

Pcamera
latitude, Pcamera

longitude

]T
is the latitude–longitude coordinate of the camera.

4. Case Study
4.1. Database and Processing

In this experiment, our team collected a total of 1000 images of marine ships to form
the MYSHIP database1. It had a resolution of either 1920 × 1080 or 2840 × 2160. Because
the training of a convolutional neural network requires a considerable number of samples,
we also added the SEASHIP database to our database. The SEASHIP database consists of a
total of 7000 images with a resolution of 1920 × 1080. As shown in Figure 7, the database is
divided into six categories of ships: ore carriers, bulk cargo carriers, general cargo ships,
container ships, fishing boats, and passenger ships.
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We divide the database into three parts: the training set, the validation set, and the
test set in the proportion 6:2:2. The division of the database is shown in Table 1.
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Table 1. The number of images in each database.

Database
Number of Samples Number of Ships

MYSHIP SEASHIP MYSHIP SEASHIP

Training set 600 4200 1334 4934
Validation set 200 1400 444 1610

Test set 200 1400 446 1669
Total 1000 7000 2224 8213

4.2. Parameter Setting

In this experiment, the parameters of the camera used to capture ship video and image
data are shown in Table 2.

Table 2. The hardware parameters of the camera.

Parameter Name Parameter Unit

Focal length 12.5–775 mm
Pixel 3 mp

Resolution 2048*1536 ppi
Wide dynamic range 120 db

The internal and external parameters of the two cameras are shown in Table 3.

Table 3. The calibration parameters.

Setting
Intrinsic Matrix Rotation Translation Distortion

Pixel m m m

Left
camera

534.31 0.00 342.64
0.00 534.31 234.42
0.00 0.00 1.00

 1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00

 1.00
1.00
1.00

 −0.29
0.11
0.00

,
[

0.00
0.00

]
Right

camera

537.39 0.00 326.62
0.00 537.01 250.58
0.00 0.00 1.00

  1.00 0.00 0.01
−0.00 1.00 250.58
−0.01 0.01 1.00

 −99.72
1.27
0.05

 −0.29
0.10
0.00

,
[

0.00
0.00

]

The experiments were carried out on a computer platform configured with 64G
memory, an Intel Core i9-12900kF CPU and a NVIDIA GeForce RTX 3090 Ti GPU for
training and testing. The system of the experiment platform was Windows 10. Referring
to previous studies [62–64], the training parameters of the model were set as follows: the
initial learning rate was 0.001, the attenuation coefficient was 0.0005, and the stochastic
gradient descent rate was 0.9.

4.3. Construction of the Training Database

In this paper, we used the image annotation tool labellmg to manually annotate the
boxes of each ship in the images (https://github.com/heartexlabs/labelImg (accessed on
18 June 2023)). Labellmg is the most widely used image annotation tool for creating custom
databases. Once the images are annotated, a dataset is generated that contains the category
of the ship, the position of the corners of the ship’s box, as well as the width and height of
the ship.

To prevent overfitting and improve target detection accuracy, data augmentation
strategies are applied to the images in the database, which increased sample diversity and
improved the robustness of the model. In the experiment, several augmentation techniques
such as horizontal flipping, vertical flipping, random rotation, Mosaic, and cutout were
applied to enrich the training samples.

https://github.com/heartexlabs/labelImg
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4.4. Detection

The proposed model was then tested with four scenarios to assess its performance.
The details for the video of each scenario is shown in Table 4.

Table 4. The details for the videos.

No. Frame Rate (fps) Resolution Duration(s) Category Ship Status

video#1 10 720 × 1280 150 Container ship Underway
video#2 10 2160 × 3840 60 Bulk cargo carrier Moored
video#3 10 2160 × 3840 480 Passenger ship Moored

video#4 10 2160 × 3840 60 Passenger ship
Fishing boat

Underway
Anchored

Video 1 shows an underway container ship navigating a traffic route. The frame rate
of the video is 10 per second (fps), the duration is 150 s, and the resolution is 720 × 1280.

Video 2 tests the performance of the model to detect a static target, therefore a moored
bulk cargo ship was selected. The frame rate of the video is 10 per second (fps), the duration
is 60 s, and the resolution is 2160 × 3840.

Video 3 is a berth with several moored ships. It tests whether the model could detect
the passenger ship within a complex water environment. The frame rate of video is 10 per
second (fps), the duration is 480 s, and the resolution is 2160 × 3840.

Video 4 shows a scenario of two ships. One is a passenger ship passing a bridge and
another is an anchored fishing boat. It can be considered as a typical condition to test
whether the model can detect ships when obstacles exist. The frame rate of the video is
10 per second (fps), the duration is 60 s, and the resolution is 2160 × 3840.

The video clips are shown in Figure 8.
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It can be seen from Figure 8, that with use of the proposed model, the targets in the
different scenarios can be detected; the associated ship type and confidence rates are given
in Table 5.
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Table 5. The confidence of detect results for videos.

No. Minimum
Confidence

Maximum
Confidence Average Confidence

Video 1 0.95 1.00 0.97
Video 2 0.99 1.00 0.99
Video 3 0.50 0.94 0.76
Video 4 0.53 0.84 0.72

In Table 5, the minimum confidence, maximum confidence, and average confidence
for the target in Video 1 and Video 2 are (0.95, 1.00, 0.97) and (0.99, 1.00, 0.99), respectively,
showing high accuracy and reliability of the model to detect ships underway and moored.
Based on this, it can be concluded that the proposed system provides satisfactory detection
performance and is capable of successfully detecting target objects in a typical offshore
wind farm. However, in Video 3 and Video 4, although the target can be detected by the
proposed model, the minimum confidence decreased to 0.50 and 0.53, and the average
confidence decreased to 0.76 and 0.72. The main reason for this reduced confidence is
the impacts from the complex environment conditions and surroundings, which can be
overcome by (1) providing more training data to enhance the model detection probability,
(2) using additional segmentation methods before detecting the ship, however, the time-
consumption will become another problem.

4.5. Position and Tracking Results

Figures 9 and 10 show typical object position and tracking results (i.e., Video 1 and
Video 2). The results shown in Figure 9 detect an underway container ship, with a confi-
dence degree of 0.99. After synchronizing images from two cameras and matching them
with binocular stereo vision model, the ship’s position was obtained as 118.745 E and
24.4749 N. In addition, the ship’s dynamic information of speed and course was calculated
as well, where the speed was 11.61 knots and the course was 290.01 degrees.
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In Figure 10, an anchored bulk ship was detected; the model assigns the confidence
degree of 0.99 and gives the position of the ship as longitude of 118.1074 E and latitude of
24.5521 N. As it is an anchored ship, the speed and the course for this ship is 0.

5. Validation
5.1. Detection Validation

To validate the proposed model, the two databases MYSHIP and SEASHIP were used.
The detection capabilities were evaluated by the following indices: accuracy rate (P), recall
rate (R), false alarm rate (F), miss alarm rate (M), and average precision (AP), which were
defined as follows:

� Precision (P): proportion of samples that are correctly detected in all test results.
� Recall rate (R): proportion of actual positive samples that are correctly detected.
� False alarm rate (F): proportion of negative samples that are incorrectly detected as

positive samples.
� Miss alarm rate (M): proportion of actual positive samples that are incorrectly detected

as negative samples.
� Average precision (AP): the integral value of the Precision Rate-Recall rate curve (P-R

curve).
� Average precision50 (AP50): the average accuracy of the test when the IOU threshold

is 0.5.
� Average precision50:95 (AP50:95): the average accuracy of the test when the IOU threshold

is 0.5–0.95.

The relationship between these indices are mathematically described as function 3:

P = TP
TP+FP

R = TP
TP+FN

F = FP
TP+FP = 1 − P

M = FN
TP+FN = 1 − R

AP =
∫ 1

0 P(R)dR

(3)

where TP is the counts of the true positive that correctly predicts positive samples, TN is
the counts of the true negative that correctly predicts negative samples, FP is the counts of
the false positive that incorrectly predicts negative samples and FN is the counts of false
negative that incorrectly predicts positive samples.

5.2. Validating the Proposed Models

By using the validation index, the performance of the model is shown in Table 6.
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Table 6. The performance of the YOLOv7 model on the database.

Database P R F M AP50 AP50:95

MYSHIP 74.38% 78.20% 21.80% 25.62% 97.10% 72.61%
SEASHIP 62.49% 70.97% 29.03% 37.52% 96.40% 61.61%

In general, the system has high recognition accuracy and precision for ships. The
rates of detection accuracy were relatively high (74.38% for the MYSHIP and 62.46% for
SEASHIP datasets). However, by comparing the evaluation results, Table 6 shows the
YOLOv7 model demonstrated better performance on the latter database (i.e., SEASHIP
database). This is due to the MYSHIP database including more distant and overlapping
ships, making identification more challenging.

Then, to validate the accuracy of the model’s predictions, the ship’s real-time AIS
data in the four cases (Video 1–4) was collected. The detected results from the proposed
model were compared with information provided in the AIS data, which is considered
more accurate and reliable. Table 7 displays the comparison of different detection systems
for ships.

Table 7. The results comparing different detections systems for ships.

Video #1 Video #2 Video #3 Video #4

System result Container ship General cargo ship Passenger ship × 5
General cargo ship × 2

Fishing boat
Passenger ship

AIS data Container ship General cargo ship Passenger ship × 2 Passenger ship

Table 7 shows the proposed system can detect ship types with high accuracy, while
showing advantages of ship detection that are not provided by AIS data. For instance, in
Video 3, only two passenger ships have AIS data but in reality, there were five passenger
ships and two general cargo ships but some of them had turned off their AIS or were
missing signals. Similarly, Video 4 shows a fishing boat that did not provide its AIS data,
but it was detected by the video system.

The accuracy of the positioning results was compared as well. As the AIS transmits
ship position with different rates (e.g., 2–10 s when ships are underway and 180 s when
ships are moored or anchored), this study linked all the AIS positions with time sequences
to obtain the ship trajectories. In this study, the update frequency of the proposed model
was set as 2 s each time and all positions were linked following the time sequences to obtain
the trajectories. Then, the deviation between the AIS based trajectories and the model
detected trajectories in Video 1 were calculated and the results are given in Figure 11 and
the deviations are given in Table 8.

Table 8. The comparison between the AIS data and the system output result.

Sample#1 Sample#2 Sample#3 Sample#4

System output Longitude 118.0796 E 118.1074 E 118.1081 E 118.1117 E
Latitude 24.4806 N 24.5521 N 24.5466 N 24.5579 N

AIS data (◦) Longitude 118.07962 E 118.10737 E 118.10814 E 118.11169 E
Latitude 24.48064 N 24.55212 N 24.54661 N 24.55791 N

Deviation (◦) Longitude 0.00002 −0.00003 0.00004 −0.00001
Latitude 0.00004 0.00002 0.00001 0.00001
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It can be seen in Figure 11 that due to the low update rate, only three AIS records
were received for the ship in Video 1. Therefore, three AIS positions were linked and the
deviations on the longitude and latitude were calculated (see Table 8). Notably, although
the deviation between the two trajectories existed, they were all less than ±0.0001 degree
(11 m approximately), which is broadly acceptable.

6. Discussion
6.1. Comparing the Current System Used for Ship Detection and Tracking

Based on the case study results, the advantages of use of visual based technologies for
ship detection are as follows:

(1) The proposed approach provides a way for ship monitoring with satisfactory accuracy
and reliability. The developed system can obtain necessary information about ship
traffic (e.g., speed, position, course), so that it becomes a novel supplement for VTS
and OWF managers. In addition, in contrast to AIS and radar, this system uses
cameras to collect ship videos, and the CCTVs are already fixed in most of the OWFs
worldwide. Therefore, the cost of developing this system in practice can be very low.

(2) As already mentioned, the proposed system has a high frequency of updating the
ship information (i.e., 10 fps) and high accuracy in individual ship tracking (the
tracking errors less than 15 m/0.0001 degrees). Thus, the developed system reasonably
provides ship dynamic data and ensures collision risk assessment for ships in the
vicinity of OWFs.

(3) The proposed framework hybridizes several visual technologies. The study not only
proves the possibility of using these technologies to aid ship monitoring in offshore
wind farm waters but also can be considered as evidence to apply the machine visual
model for ship detection and tracking in other similar waters, such as narrow channels,
bridges, on a river, etc.

Moreover, the advantages and disadvantages of current ship detection approaches
were compared, and the results are listed in Table 9.

Table 9 presents several highlights between the current ship detection approaches. The
radar tracking system can accurately measure and track moving or stationary targets, but it
has a blind spot, and the echoes are susceptible to environmental factors, which can lead to
target loss. The AIS-based ship reporting system can compensate for these shortcomings
of radar, but AIS cannot identify targets that are not equipped with AIS or have the AIS
turned off, so that leads to missed tracking. Both the CNN-based and the YOLO-based
model show high accuracy for target detection. However, The YOLO algorithm is time
consuming due to its faster detection speed and frequency.
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Table 9. The comparison between the existing system and our system.

Method Name Advantage Disadvantage

AIS based ship
reporting system

1. Capable of automatically obtaining target position,
status, speed, and other information
2. High accuracy of ship dynamic data
3. Strong performance against rain, snow, and
wave interference
4. Eliminate the blocking area of some radars

1. Operates only at VHF
2. Cannot identify targets without AIS devices installed
3. The data are not continuous and poor timeliness

Radar tracking system

1. Capable of automatic tracking and
automatic warning
2. Accurate measurement and display of distance,
bearing, speed and size of the target

1. Blind spots exist
2. The echo is easily affected by weather, sea state and
terrain obstruction, etc.
3. In the multi-target dense area is prone to false
tracking and target loss phenomenon

YOLO model

1. Has a high recognition speed, and can efficiently
identify multiple targets
2. Superiority in real-time target detection
3. Suitable for detecting objects of various shapes
and sizes

1. Global information has a good performance, but
poor performance on a small range of information
2. Compared to some recognition algorithms, the
accuracy rate is slightly worse

RCNN model
1. Powerful adaptability for recognition and
classification of complex data
2. Feature classification works well

1. Large number of operations, large sample size and
time are required to train the model
2. Lack of annotation resources for specific target
samples, high quality for the database

6.2. YOLO Series

In this study, the YOLOv7 model was trained with AIS data and incorporated binocular
vision to improve the accuracy of system detection. The proposed system can complete
ship detection and target tracking, which significantly increases the model’s accuracy
and applicability. However, the YOLO series are developing rapidly. To evaluate the
performance of detecting targets in maritime domain by using the YOLO series, this study
selected the YOLOv5 model as the benchmark. In the comparison, both methods use the
same database and hardware platforms. The results of the comparison experiment is shown
in Table 10. The original YOLOv5 model achieved 73.80% of detection precision, while
the YOLOv7 model achieved 77.48%, which is 3.68% higher than the YOLOv5 model. The
recall rates for the YOLOv5 and YOLOv7 models were not very different (73.41% and
73.19%). The false alarm rate of the YOLOv5 model was 3.68%, which was higher than for
the YOLOv7 model. For the index of miss alarm rate, the YOLOv5 and YOLOv7 models
had similar performance, with 26.6% and 26.81%, respectively. Then the study set the IOU
threshold at 0.5 to test the index of average accuracy. The YOLOv5 model obtained an
average accuracy of 95.76%, while the YOLOv7 model reached 97.03%. Similarly, setting
the IOU threshold in the interval of 0.5–0.95, the results showed the average accuracy for
the YOLOv5 model dropped to 70.37% and for the YOLOv7 model it was 71.51%, which is
1.14% higher than the YOLOv5 model. Consequently, based on these comparisons, it can
be concluded that the proposed method can be effective for ship detection and real-time
traffic monitoring.

Table 10. The results of the comparison experiment between the YOLOv5 and YOLOv7 models.

Methods P R F M AP50 AP50:95

YOLOv5 73.80% 73.41% 26.20% 26.60% 95.76% 70.37%
YOLOv7 77.48% 73.19% 22.52% 26.81% 97.03% 71.51%

However, the system proposed above also needs to be improved. First, there are still
some ships that may not be well detected in the proposed system (current accuracy is
77.48%) due to their position and orientation. When the ship drives independently and
laterally, it is easily detected by the system. Moreover, when the ship is longitudinal, and
multiple ships overlap, the system may regard these ships as obstacles and ignore them.
For example, the ship in Video 3 has the lowest confidence. This is because, among the
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vessels detected by the system, those with a low confidence level are characterized by
facing the camera end on. This orientation makes the ship’s characteristics less obvious, so
it is easily ignored by the system. Second, the database needs to be expanded to include
more training data. Third, the potential effects of critical weather conditions (e.g., snow,
heavy fog, and rain) were not tested in this study. Therefore, further studies can be carried
out providing more labelled samples, and we will collect more data to enrich the system
database and train better classifiers in following research. Meanwhile, the system will be
tested under critical environments in practice soon.

7. Conclusions

This paper proposed a ship detection and positioning system based on the YOLOv7
algorithm and stereo vision technologies and introduces the framework and detailed
methods used in this system. In addition, this study suggests a novel concept of using AIS
data as the training resource for model training, which improves the accuracy of using the
YOLOv7 model and stereo vision algorithms in ship detection and tracking. Applying the
proposed model in a real ship case study validates the possibility of using the YOLOv7
algorithm to track and identify ships when the stereo vision algorithm is applied to locate
ship positions.

The benefit of the proposed system is that it can detect vessels automatically and
achieve real-time tracking and positioning. The system not only eases the workload of
OWF operators during CCTV monitoring but also provides a possible way for ship traffic
management in the water in the vicinity of OWFs. Moreover, the novel system shares the
idea of using machine vision technology for ship collision prevention. In addition, the
proposed method applies not only to offshore wind farm waters but can be applied in the
future to any place of interest. Based on the analysis of the proposed system, further study
can investigate applying the proposed system in ships to achieve situation forecasting.
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