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Abstract: Efficient underwater visual environment perception is the key to realizing the autonomous
operation of underwater robots. Because of the complex and diverse underwater environment, the
underwater images not only have different degrees of color cast but also produce a lot of noise. Due
to the existence of noise in the underwater image and the blocking effect in the process of enhancing
the image, the enhanced underwater image is still rough. Therefore, an underwater color-cast image
enhancement method based on noise suppression and block effect elimination is proposed in this
paper. Firstly, an automatic white balance algorithm for brightness and color balance is designed to
correct the color deviation of underwater images and effectively restore the brightness and color of
underwater images. Secondly, aiming at the problem of a large amount of noise in underwater images,
a noise suppression algorithm for heat conduction matrix in the wavelet domain is proposed, which
suppresses image noise and improves the contrast and edge detail information of underwater images.
Thirdly, for the block effect existing in the process of enhancing the underwater color-cast image,
a block effect elimination algorithm based on compressed domain boundary average is proposed,
which eliminates the block effect in the enhancement process and balances the bright area and dark
area in the image. Lastly, multi-scale image fusion is performed on the images after color correction,
noise suppression, and block effect elimination, and finally, the underwater enhanced image with
rich features is obtained. The results show that the proposed method is superior to other algorithms
in color correction, contrast, and visibility. It also shows that the proposed method corrects the
underwater color-cast image to a certain extent and effectively suppresses the noise and block effect
of the underwater image, which provides theoretical support for underwater visual environment
perception technology.

Keywords: underwater color-cast image enhancement; noise; block effect; color correction; wavelet
domain; compression domain

1. Introduction

An underwater robot is an important piece of equipment for humans to develop ma-
rine mineral resources and explore the origin of marine organisms. Efficient environmental
perception is the key to realizing its autonomous operation [1,2]. Underwater environment
perception mainly includes underwater visual environment perception and underwater
acoustic environment perception. Compared with underwater acoustic environment per-
ception, underwater visual environment perception has incomparable advantages, and
especially when obtaining close-range environmental information, it can meet the high
requirements of underwater robots for real-time and fineness of perception [3,4]. Due
to the complex and diverse underwater environment, especially under the influence of
different illumination or medium attenuation characteristics, underwater images have
different degrees of color cast. The red component with a longer wavelength will decay and
disappear at a very shallow depth, and the green component with a shorter wavelength and
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the blue component with a shorter wavelength will gradually decay and disappear with
the increase in depth, so the underwater images often show green and blue [5,6]. At the
same time, especially in turbid waters or the presence of a large number of microorganisms,
underwater images will not only appear turquoise but also produce a lot of noise [7,8].
Because there is noise in the underwater image and a block effect will occur in the process
of enhancing the image, the enhanced underwater color-cast image is still rough, which
reduces the quality of the underwater image and affects the subsequent scholars’ scientific
research on underwater activities. Therefore, how to correct the color deviation, suppress
noise, and eliminate the blocking effect has become the focus of underwater image enhance-
ment. This research can not only obtain high-quality underwater images but also provide
theoretical support for underwater visual environment perception technology, which has
wide practical application value and important theoretical significance.

At present, many scholars have carried out research on underwater color-cast image
enhancement methods. Common physical model-based methods are widely used in image
restoration, mainly by estimating model parameters to remove image blur. For example,
Peng et al. [9] proposed a generalized dark channel prior (GDCP) method. The author
estimates the scene transmittance by the difference between the observed light intensity
and the ambient light and introduces adaptive color correction to remove the color cast.
Chiang et al. [10] considered the influence of artificial light sources on underwater images
and enhanced underwater images by defogging algorithms to improve image visibility
and color fidelity. Jayasree et al. [11] combined WCID wavelength compensation with an
image-defogging algorithm, which can eliminate the scattering and absorption effects of
underwater scenes on images and produce certain effects. Galdran et al. [12] proposed a red
channel image restoration method (ARC). The author improved the influence of artificial
light source on the algorithm by adding saturation prior method, but the algorithm was
not ideal for improving image contrast. The common physical model-based methods
include UDCP [13] and IBLA [14]. However, due to the complexity of natural light and
artificial light in the process of underwater real-time shooting, it is difficult to explain the
relationship between water absorption and color attenuation using physical model-based
methods. It is also difficult to estimate the parameters of the physical model. Therefore, the
recovery of underwater images by physical model methods often introduces more serious
color casts and reduces the overall contrast of the image. Therefore, people begin to use the
method based on pixel intensity redistribution to process images. The image enhancement
method based on the redistribution of pixel intensity is to change the pixel value in the
spatial domain or transform domain, so as to produce better visual effects [15]. This method
does not depend on any model and prior knowledge and has been widely used in the
field of underwater image enhancement. For example, Ghani et al. [16] improved the
contrast and color of underwater images by improving the recursive adaptive histogram.
The author modified the pixel distribution of the histogram of the image according to the
Rayleigh distribution, which improved the contrast of the underwater image and made the
image more natural. Ancuti et al. [17] proposed an underwater image enhancement method
based on color balance and fusion (FUSION). The authors’ method can effectively deal
with the color-cast image and improve the global contrast of the image. Huang et al. [18]
proposed the relative global histogram stretching (RGHS) method, which can effectively
improve the visual effect of blurred images, but the effect on color-cast images is not
obvious. Hou et al. [19] proposed an underwater color image enhancement method based
on hue preservation. The authors used wavelet domain filtering (WDF) and constrained
histogram stretching (CHS) algorithms to run on HSI and HSV color models, respectively,
which effectively eliminated the noise of the image and improved the contrast of the image.
Katırcıoğlu et al. [20] applied the heat conduction matrix to image enhancement, which
effectively maintained the brightness of the image, sharpened the edge of the image, and
enhanced the details of the color image. Mukherjee et al. [21] enhanced the color of the
image in the compressed domain, which has better computational efficiency than the
method based on the spatial domain. Bai et al. [22] proposed an enhancement method
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based on histogram global and local equalization and dual image multi-scale fusion, which
achieved good results, but there are some limitations to dealing with turbid water images. In
general, the methods based on image enhancement often ignore the physical characteristics
of underwater light propagation, such as the degradation degree of underwater images
and the depth information of the scene, so the color and texture information of underwater
images cannot be completely restored. With the rapid development of deep learning, the
Convolutional Neural Network (CNN) and the Generative Confrontation Network (GAN)
have been widely used in underwater image enhancement. Li et al. [23] proposed a weakly
supervised color conversion method to correct the color of underwater images. Yu et al. [24]
proposed the Underwater-GAN model. The authors designed the loss function as the sum
of the loss of the generative adversarial network and the perceived loss. In addition, an
underwater image dataset was constructed using simulations, and underwater images were
generated based on the underwater imaging model. The results show that this method has
better visual effects than the existing methods. Pan et al. [25] combined a Convolutional
Neural Network with a hybrid wavelet and directional filter bank (HWD) to enhance the
edge of the image and obtain an image with outstanding details. Anwar et al. [26] made a
comprehensive and in-depth review of underwater image enhancement methods based
on deep learning and pointed out the advantages and disadvantages of this method. In
general, the image enhancement method based on deep learning requires a large number of
image datasets in practical applications, which increases the time cost and the consumption of
computing resources, and the authenticity of the generated underwater image is hardly verified.

The above research can effectively enhance the underwater color-cast image to a certain
extent, but there are also various deficiencies. In this paper, we focus on the influence
of noise and block effects on underwater color-cast images. Therefore, an underwater
color-cast image enhancement method based on noise suppression and blocking effect
elimination is proposed, which is mainly composed of a brightness and color equalization
module, noise suppression module, blocking effect elimination module, and multi-scale
image fusion module. Firstly, an automatic white balance algorithm with brightness
and color balance is designed to correct the color distortion of underwater images and
effectively restore the brightness and color of underwater images. Secondly, aiming at the
problem that there is a lot of noise in underwater images, a noise suppression algorithm
of heat conduction matrix in the wavelet domain is proposed, which eliminates the noise
of images and improves the contrast and edge details of underwater images. Thirdly,
for the blocking effect in the process of enhancing the underwater color-cast image, an
algorithm for eliminating the blocking effect in the compressed domain boundary average
is proposed, which eliminates the blocking effect in the enhancement process and balances
the bright and dark areas in the image. Lastly, the image after color correction, noise
suppression, and block effect elimination is used as the input to the multi-scale image
fusion module. Moreover, extract the dark channel weight, saturation weight, luminance
weight, exposedness weight, saliency weight, and chromatic weight corresponding to the
input image, respectively, then calculate the Laplacian value corresponding to the input
image and the Gaussian value corresponding to the weight mapping, and finally carry out
multi-scale image fusion to obtain the enhanced underwater image. The main contributions
of this paper are summarized as follows:
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(1) An underwater color-cast image enhancement method based on noise suppression
and blocking effect elimination is proposed, which can effectively correct the color
distortion of underwater images, suppress noise and eliminate blocking effects, and
provide theoretical support for underwater visual environment perception technology.

(2) An automatic white balance algorithm of brightness and color balance is designed to
correct the color distortion of underwater images and effectively restore the brightness
and color of underwater images.

(3) A noise suppression algorithm of heat conduction matrix in the wavelet domain is
proposed, which can suppress the noise of the image and improve the contrast and
edge details of the underwater image.

(4) A block effect elimination algorithm in a compressed domain is proposed, which can
eliminate the block effect in the process of image enhancement and balance the bright
and dark areas in the image.

The structure of this paper is as follows: In Section 2, the main ideas and theoretical
basis of the proposed method are described in detail. In Section 3, the research results
are analyzed and discussed in terms of qualitative and quantitative comparisons and
application tests. In Section 4, this paper’s work is summarized.

2. Models and Methods

In order to suppress the noise of the underwater color-cast image and eliminate the
blocking effect in the process of image enhancement, an underwater color-cast image
enhancement method based on noise suppression and block effect elimination is proposed
in this paper. In this paper, it is mainly composed of four modules: brightness and
color equalization, noise suppression, block effect elimination, and multi-scale image
fusion. In the brightness and color equalization module, an automatic white balance
algorithm for brightness and color balance is designed to correct the color distortion of
underwater images. In the noise suppression module, a noise suppression algorithm
based on the wavelet domain heat conduction matrix is proposed, and it suppresses
the noise of the image and improves the contrast and edge details of the underwater
image. In the block effect elimination module, a block effect elimination algorithm with a
compressed domain boundary average is proposed, which eliminates the block effect in
the enhancement process and balances the bright and dark regions in the image. In the
multi-scale image fusion module, the image after color correction, noise suppression, and
block effect elimination is used as the input of the multi-scale image fusion module, and
it extracts dark channel weight, saturation weight, luminance weight, exposure weight,
saliency weight, and chromatic weight corresponding to the input image, respectively.
Then, calculate the Laplace value of the corresponding input image and the Gaussian value
of the corresponding weight mapping, and finally perform multi-scale image fusion to
obtain the enhanced underwater image. Figure 1 is the flowchart of the method proposed
in this paper, and each part will be introduced in detail below.
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2.1. Brightness and Color Equalization Module

In the complex and diverse underwater environment, due to the influence of different
lighting and media attenuation characteristics, the image appears to have different degrees
of color cast. In the method of this paper, firstly, the gray world white balance algorithm [16]
is used to compensate for the image color distortion caused by the selective absorption
of light by water bodies with different depths. The calculation formula of red channel
compensation for underwater images is as follows:

∆Ir(x) = γ(Ig − Ir)(1− Ir(x))Ig(x), (1)

where ∆Ir(x) is the compensation value of the image in the red channel; Ir and Ig are
the channel values of the red channel and the green channel, respectively; Ir and Ig are
the average values of the red channel and the green channel, respectively; and γ is the
compensation coefficient of the red channel. Experiments show that when γ = 1, it can
adapt to different lighting environments and image-acquisition devices. In a color-rich
image, the average gray value of its RGB three-channel components is assumed to be equal.
At this time, the average gray value is divided by the average value of each channel to
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obtain the weight of each channel. Finally, each channel is multiplied by the weight to
adjust the gray value of each channel. The calculation formula is as follows:

WR =
K
Ir

, WG =
K
Ig

, WB =
K
Ib

, (2)


R′ = WR ∗ Ir
G′ = WG ∗ Ig
B′ = WB ∗ Ib

, (3)

where K is the average gray value; WR, WG, and WB are the weights of RGB channels, re-
spectively; and R′, G′, and B′ are the adjusted gray values of the RGB channels, respectively.
As shown in Figure 2b, the underwater image processed by the gray world white balance
algorithm can restore the color of the underwater image to a certain extent. However, in
the case of serious color deviation, the obtained weight values are large, which will also
lead to red artifacts and dark colors in the processed underwater images. Therefore, an
automatic white balance algorithm for brightness and color balance is proposed. Firstly,
the White Patch Retinex [27] is used to calculate the ambient light, then the dark channel
prior algorithm is used to estimate the light transmittance, and then the white area in the
image is calculated by the estimated light transmission model. Finally, the reference white
point is used to adjust the underwater image and correct the color distortion of the image
to maintain the color constancy of the underwater image. White Patch Retinex improves
the color of the underwater images; that is, it can still retain the original color of the object
when the external light source changes. The calculation formula is as follows:

Ic(x, y) = G(x, y)Rc(x, y)Lc, (4)

where Ic(x, y) is the final image, G(x, y) is the geometric size factor of image imaging,
Rc(x, y) is the reflection coefficient of the object to light, and Lc is the intensity of ambient
light. When G(x, y) = Rc(x, y) = 1, Ic(x, y) = Lc can be obtained. Therefore, the corre-
sponding brightest pixel in the image is ambient light. Normally, the ambient light Ac is
constant and its calculation formula is as follows:

Ac = Lc = max{Lc(x, y)}, (5)

According to the dark channel prior knowledge, we can obtain

Ddark(x, y) = min
(x,y)∈Ω(x,y)

[
min
(r,g,b)

( f (x, y))
]
≈ 0, (6)

where Ω(x, y) is a neighborhood corresponding to the (x, y) pixels. For a small neighbor-
hood, the light transmittance t1(x, y) can be expressed as

t1(x, y) = 1−
min
(r,g,b)

(gc(x, y))

Ac
, (7)

where gc(x, y) represents the minimum value of the r, g, b channels in the g(x, y) neighbor-
hood. The white area in the image is calculated by using the illumination transmission
model. However, if there is a strong light source in the environment or a high saturation
area in the image, the white area obtained by the illumination transmission model will have a
false detection problem. Therefore, a threshold is set to eliminate the high saturation region:

Tv(x, y) =
{

255,
0,

t1(x, y) < tavg; gc(x, y) < KT
otherwise

, (8)
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where Tv(x, y) is the binary image after the threshold transformation of the corresponding
white area, and KT is a transformation threshold set in this paper. w and h are the width
and height of the image, respectively, and tavg is the average transmittance, as shown in
Figure 2c.

tavg =
1

w× h

w−1

∑
x=0

h−1

∑
y=0

t1(x, y). (9)

After obtaining the white area, the mean value of the white area is used to calculate
the correction gain of the three channels. We adjust the image by referring to the white
dots, and the results are shown in Figure 2d. It can be seen that the image processed by the
automatic white balance algorithm with brightness and color balance can correct the color
distortion of the image, balance the brightness and color of the image, and maintain the
color constancy of the underwater image.
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2.2. Noise Suppression Module

In turbid or a large number of microbial waters, underwater images will not only
appear blue–green bias but also produce a lot of noise. In order to suppress the noise
of underwater images, a noise suppression algorithm for the heat conduction matrix in
the wavelet domain is proposed. Firstly, the image after white balance preprocessing is
converted from RGB color space to HSI color space, where the I component is shown in
Figure 3a. Then, the I component is operated by a heat conduction matrix (HCM) [20] to
increase the contrast and detail texture of the image and protect the edge information of
the image. Heat conduction can be regarded as the process of heat transfer from high heat
to low heat regions in solid or static fluid materials. Therefore, the color information of
the pixels in the image can be compared with the temperature information in the system,
and the pixels in the image can be regarded as a system. The level of color represents
temperature, and the color transition between pixels is regarded as heat transfer. Based
on this motivation, HCM is regarded as the heat conduction characteristic matrix on
the I-channel image, which is used to check the difference between adjacent pixels. By
performing 3 × 3 mask I component translations, we find that the calculation formula of
HCM is

HCMc =
kma·Area

Lm
(Pmax − Pmin), (10)

where HCMc is the heat conduction value of the central pixel Pc of the mask, the Area
value is the average surface area of the thermal path in the mask, and the Lm value is the
path length from the highest gray value to the lowest gray value in the mask. The thermal
conductivity kma represents the characteristics of the material. The thermal conductivity
can be expressed as

kma = Pc −
1
8

8

∑
i=1

Pi
32

, (11)
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where Pc is the central pixel of the mask and Pi is the adjacent pixel. By comparing the
central pixel value with the adjacent pixel value, it is concluded that HCM is positive,
negative, or zero. Here, the pixels of the image are adjusted by the mask ratio Mask. The
Mask is calculated as follows:

Mask = Pc −
1
9

9

∑
i=1

Pi, (12)

As shown in Figure 3b, the pixel structure of the image is adjusted by the above
operation, which improves the contrast and detail texture of the underwater image and also
retains the edge information of the image. For the noise in the image, this paper performs
multi-scale soft threshold denoising on the I component in the wavelet domain to suppress
the noise of the underwater image. High-pass and low-pass filters are used in this paper to
enable wavelet decomposition. In each level, the following threshold formula is applied to
the wavelet coefficients:

W ′Ti,j =


W ′Ti,j − Ti,j W ′Ti,j > Ti,j

W ′Ti,j + Ti,j W ′Ti,j < −Ti,j

0
∣∣W ′Ti,j

∣∣ < Ti,j

, (13)

W ′Ti,j = λ·WTi,j, (14)

where i is the wavelet scale coefficient, j = 1, 2, 3(HH, HL, LH), Ti,j is the threshold, and λ is
the enhancement coefficient. Then, calculate the inverse wavelet transform and reconstruct
the wavelet coefficients, and finally return to the spatial domain through the inverse Fourier
transform, and take the exponent to obtain the denoised image. The result is shown in
Figure 3c. The image finally converted into RGB space is shown in Figure 3d. It can be seen
that the whole image is smoother, the noise of the image is suppressed, and the contrast
and edge details of the underwater image are improved.
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2.3. Blocking Effect Elimination Module

In the process of image enhancement, the improvement of image contrast is often
involved because it is directly related to the clarity of details. The common method is to
increase the visibility of the texture details and other features of the image by amplifying
the local intensity in the image. However, these methods are completed in the spatial
domain, thus increasing the consumption of computing resources. In order to reduce
the computational complexity and data storage requirements, more and more images are
represented in compressed format. Therefore, this paper enhances underwater images in
the compressed domain to reduce the complexity of various transformations in the spatial
domain. However, the main problem of processing underwater images in the compressed
domain is that the independent processing of blocks leads to block effects. This effect is
more obvious in the region where the brightness value changes significantly, especially near
the edge where the brightness value changes sharply. In order to eliminate the block effect
generated in the process of image enhancement, a block effect elimination algorithm based
on compressed domain boundary averaging is proposed. Firstly, the underwater image
after white balance preprocessing is converted from RGB color space to YCbCr color space,
where the Y component is shown in Figure 4a, and then the discrete cosine transform opera-
tion is performed on the Y component [21]. Using the idea of image block and classification,
assuming that the two-dimensional image is {x(m, n), 0 ≤ m ≤ N − 1, 0 ≤ n ≤ N − 1}, the
discrete cosine transform coefficient of an image is obtained as

C(k, l) =
2
N

a(k)
N−1

∑
m=0

N−1

∑
n=0

{
x(m, n)× cos

[
(2m + 1)kπ

2N

]
cos
[
(2n + 1)lπ

2N

]}
, 0 ≤ k, l ≤ N − 1, (15)

where (k, l) is the position of the discrete cosine transform coefficients and (m, n) is the
position of the pixel in the original image. Because of the high computational complexity of
the discrete cosine transformations, it is usually necessary to block the image to improve the
efficiency of the transformation. For the selection of sub-block size, the larger the sub-block,
the greater the computational complexity of the algorithm. After compromise, N is usually
8.

a(k) =
{ √

1/2, k = 0
1, k 6= 0

. (16)

As shown in Figure 4b, the contrast of the image is enhanced after the discrete cosine
transform operation. However, the characteristics of inter-band frequency change and
inter-block coefficient change are not fully considered while enhancing the details of the
dark area of the image, which often leads to blockiness in the image. Therefore, a block
effect elimination algorithm based on boundary average in compressed domain is proposed.
Let the sub-image size be 8 × 8, and Lba and Rba are horizontally adjacent sub-images
filtered by local homomorphism. The blocking effect of horizontally adjacent sub-images is
removed by averaging the adjacent boundary pixels of Lba and Rba, and its expression is
as follows: 

Lba(m, n) =

n0
∑

i=0
L(m,n−1)+

n0−1
∑

i=0
R(m,i)

N 0 ≤ m ≤ 7, n = 7

Rba(m, n) =

n0−1
∑

i=0
L(m,7−i)+

n0
∑

i=0
R(m,n+i)

N 0 ≤ m ≤ 7, n = 0

, (17)

where the template size is 1× N, N = 2n0 + 1, and n0 is an integer (1 ≤ m ≤ 7). At the
same time, let Uba and Dba be adjacent sub-images with local homomorphic filtering in a
vertical direction. Similarly, the block effect of the vertical adjacent sub-images is removed
by filtering the adjacent boundary pixels of Uba and Dba. The expression is as follows:
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Uba(m, n) =

m0
∑

i=0
U(m−i,n)+

m0−1
∑

i=0
D(i,n)

M m = 7, 0 ≤ n ≤ 7

Dba(m, n) =

m0−1
∑

i=0
U(7−i,n)+

m0
∑

i=0
D(m+i,n)

M m = 0, 0 ≤ n ≤ 7

, (18)

where the template size is M × 1, M = 2m0 + 1, and m0 is an integer (1 ≤ m0 ≤ 7).
The result of eliminating the blocking effect by using the boundary average algorithm in
compressed domain is shown in Figure 4c, and the image finally converted to RGB space
is shown in Figure 4d. It can be seen that the blocking effect produced in the process of
enhancing the image is eliminated, the bright and dark areas in the image are balanced,
and the image quality is improved.
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2.4. Multi-Scale Image Fusion Module

In order to obtain clear underwater images with color correction, noise suppression,
and block effect elimination at the same time, this paper adopts a multi-scale image fusion
method. This method can fuse multiple image information, complement different feature
information in multiple images, and remove redundant unfavorable feature information,
so as to increase the amount of image information and improve the robustness of the image
enhancement method. Based on this, we first use the image after color correction, noise
suppression, and block effect elimination as the input of the multi-scale image fusion mod-
ule, then extract the dark channel weight, saturation weight, luminance weight, exposure
weight, saliency weight, and chromatic weight corresponding to the input image [28], then
calculate the Laplacian value corresponding to the input image and the Gaussian value of
the corresponding weight mapping, and finally, carry out multi-scale fusion to obtain the
enhanced underwater clear image.
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The design of the weight measure needs to focus on the final effect of the output
image, and the enhanced underwater image is closely related to the color appearance, so
it is difficult to guarantee that the artifacts will not be introduced by simple pixel mixing.
Therefore, a variety of weight maps are used in this paper during the fusion so that pixels
with high weight values can be displayed more in the final image. The saliency weight aims
to emphasize the salient object in the underwater scene and increase the contrast between
the salient region and the shadow region, thereby improving the global contrast of the
output image. The saliency weight map is shown in Figure 5e. However, the saliency map
tends to have regions with high brightness values, which has certain limitations. Therefore,
saturation weight and chromatic weight are introduced. By using high saturation region,
the fusion algorithm in this paper can be more suitable for chromaticity information. At
the same time, the ratio of input image to input image in color is adjusted by chromaticity
weight, so as to control the image saturation gain. The expression of saturation weight is
as follows:

Wk
sat =

√
1
3

[
(Rk − Lk)

2 + (Gk − Lk)
2 + (Bk − Lk)

2
]
, (19)

where Wk
sat is the saturation weight; Rk, Gk, and Bk are the R, G, and B three-channel images

of the input image; Lk is the brightness; and k is the kth input image. The saturation weight
diagram is shown in Figure 5b. The expression of chromatic weight is as follows:

Wk
C = Lk[1 + cos(αHk + φ)Sk], (20)

where Wk
C is the color weight graph, Hk is the hue of the input image, and Sk is the

saturation of the input image. Chromaticity weights are shown in Figure 5f.
Brightness weight refers to the distribution of larger pixel values for areas with higher

brightness, while smaller pixel values are used for other areas, so as to minimize the
color and contrast and realize the balance between them. The brightness weight diagram
is shown in Figure 5c. However, its weight is not enough to enhance the contrast of
underwater images. In order to solve this problem, the exposure weight is introduced to
protect the mid-tones that may change under certain circumstances. Exposure weight is
used to evaluate the degree of illumination of the target in the image. By weighting the
pixels with high or low brightness, the brightness information of the image is improved,
and the local contrast of the image remains unchanged. The calculation formula can be
expressed as

Wk
E = exp

(
− [Ik(x, y)− 0.5]2

2σ2

)
, (21)

where Wk
E is the exposure weight and Ik(x, y) is the value of the input image Ik in the pixel

position (x, y). Set the standard deviation σ to 0.25. The exposure weight is shown in
Figure 5d. In order to reflect the influence of selective absorption of light on the image to
a certain extent, the dark channel weight is introduced, which can be more natural when
dealing with over-illuminated areas. The dark channel weight can be expressed as

Wk
Dc = min

y∈Ω(x)
( min

c∈{r,g,b},τ∈{1,2,3}
(Jc

τ(y))), (22)

where Wk
Dc is the dark channel weight, Jc represents the color channel of the input image,

Ω(x) represents the vicinity of the center of x, min
y∈Ω(x)

represents the minimum filter, and

min
c∈{r,g,b}

represents the minimum value of the three color channels of R, G, and B. The effect

after processing is shown in Figure 5a.
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Finally, the Gaussian pyramid Gl is used to decompose the normalized weight Wk,
and the input image is decomposed into the Laplacian pyramid Ll by using the multi-scale
image fusion algorithm. Then, the Laplacian input and the Gaussian normalized weight of
each pyramid level are fused, and finally, the fused image is obtained by means of summing.
The expression is

Rl =
K

∑
k=1

Gl
{

Wk
}

Ll(Ik), (23)

where Rl represents the fused image, l represents the pyramid level, and k represents the
number of input images.
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Figure 5. The process of multi-scale image fusion module. (a) The dark channel weight map; (b) the
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The processing results of multi-scale image fusion are shown in Figure 6. It can be
seen that Figure 6c corrects the color cast of underwater images and effectively suppresses
the noise and block effects of underwater images. It can be seen from the RGB histogram
that the histogram distribution range of the image processed by the proposed method is
wider and more uniform. It shows that the method of this paper can provide a theoretical
basis for the research system of underwater image clarity.
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3. Experimental Results and Discussion

In order to verify the effectiveness of the proposed method, qualitative comparison,
quantitative comparison, and application tests are carried out. In the qualitative and quan-
titative comparison, in order to more fully demonstrate the effectiveness and robustness
of the proposed algorithm, six existing classical underwater image enhancement tech-
niques in different directions are compared, including UDCP [13], IBLA [14], WCID [11],
and ARC [12] algorithms based on physical models, FUSION [17] algorithms based on
non-physical models, and HWD [25] algorithms based on deep learning. Then, the ad-
vantages and disadvantages of each algorithm and the effect of processing underwater
images are analyzed from qualitative and quantitative perspectives. Finally, Canny edge
detection and feature matching (SIFT) are used to test the application, which shows that
the proposed method has a certain kind of scalability. All the images in this paper are
from the UIEBD [29] dataset. These datasets provide real underwater scenes, including real
underwater color-biased images and underwater images with noise and block effects. In
order to ensure that the comparison between the different algorithms is fair, the experiment
in this paper is carried out in the environment of Matlab R2018 b. The hardware parameters
of the computer are Windows 10 PC Inter (R) Core (TM) i7-9700 CPU 3.00 GHz.

3.1. Qualitative Comparison

In order to verify the effectiveness of the method proposed in this paper, an underwater
color-cast image with noise and block effects is selected for the experiment. At the same
time, it is compared with the existing classic underwater image enhancement technology,
and its color correction, contrast, and visibility are analyzed. Due to space limitations, only
some of the experimental results are shown. The qualitative comparison results of different
algorithms in a turquoise environment are shown in Figure 7. Figure 7a is the original
underwater image, including underwater images with green and blue color casts. Figure 7b
is the processing result of the UDCP algorithm. It can be seen that the underwater dark
channel prior algorithm is not effective for processing underwater color-cast images, and
more serious color casts are introduced. Among them, green color casts are introduced in
Image 1 and Image 2, and blue color casts are introduced in Image 3 and Image 7, which
may be an error in estimating transmittance. Figure 7c is the processing result of the IBLA
algorithm. It can be seen that the method corrects the color deviation of blue and green
to a certain extent, but the effect is not obvious. It does not show excellent results for
underwater images, such as Image 1, Image 6, and Image 7, with serious color deviation.
Figure 7d shows the processing result of the HWD algorithm, which can effectively correct
the underwater color-cast image and show excellent effects, but it also reduces the contrast
and has poor visibility. Figure 7e is the processing result of the WCID algorithm. It can
be seen that there are obvious artifacts in the process of processing color-cast images, and
at the same time, color casts are introduced, including red color casts in Image 1, blue
color casts in Image 6, and blue color casts in Image 7. Figure 7f shows the processing
result of the FUSION algorithm. It can be seen that this method restores the color of the
underwater image, but all the images are gray and the image contrast is low. Figure 7g
shows the processing result of the ARC algorithm, which can correct the green color shift,
but the effect on the blue color shift correction is not obvious, and the contrast is not high.
Figure 7h is the processing result of the method proposed in this paper. It can be seen that
the method in this paper can effectively correct the blue–green bias, can restore the color
of underwater images, and has high contrast and good visibility. It can be seen from the
texture and edge details of the enhanced image that the method in this paper can suppress
the noise of the underwater image and eliminate the block effect of the underwater image.
Compared with the other six algorithms, the method proposed in this paper can effectively
improve the quality of underwater degraded images, improve the visual effect, adapt to
the underwater color-cast environment, and provide theoretical support for underwater
visual environment perception technology.
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algorithm; (d) the processing result of HWD algorithm; (e) the processing result of WCID algorithm;
(f) the processing result of FUSION algorithm; (g) the processing result of ARC algorithm; (h) the
processing result of this method.

The qualitative comparison results of different algorithms in natural shallow water
and turbid environment are shown in Figure 8. Figure 8a is the original underwater image,
which includes the light attenuation image and the turbid blurred image of natural shallow
water. These images are not only blurry but also contain a lot of noise, which makes the
whole image look very rough. Figure 8b is the processing result of the UDCP algorithm.
It can be seen that the blue color bias is introduced in Image 3, the green color bias is
introduced in Image 5 and Image 7, and the red color bias is introduced in Image 6, and
the overall contrast of all images is low. Figure 8c shows the processing results of the IBLA
algorithm. This method can improve the color of natural shallow water and turbid blurred
underwater images, but the effect is not obvious and the contrast is low. Figure 8d is the
processing result of the HWD algorithm. It can be seen that this method can effectively clear
the turbidity of the image, but the contrast is low. Figure 8e is the processing result of the
WCID algorithm. Similarly, the image processed by the algorithm also introduces artifacts.
Figure 8f is the processing result of the FUSION algorithm. This method shows good
results in dealing with natural shallow water and turbid blurred underwater images, but
the contrast is low. Figure 8g is the processing result of the ARC algorithm. The processing
effect of this method is not particularly obvious, and it is easy to introduce a little red color
bias. Figure 8h shows the processing results of the method proposed in this paper. It can
be seen that this method can improve the contrast and visibility of natural shallow water
images. It can also effectively eliminate blur and improve the clarity of underwater images
for turbid and blurred underwater images. It shows that the proposed method can correct
the color distortion of the underwater image, effectively restore the brightness and color of
the underwater image, improve the contrast and edge detail information of the underwater
image, and balance the bright and dark areas in the image.
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Figure 8. Qualitative comparison results of different algorithms in natural shallow water and turbid
environment. (a) The original image; (b) the processing result of UDCP algorithm; (c) the processing
result of IBLA algorithm; (d) the processing result of HWD algorithm; (e) the processing result of
WCID algorithm; (f) the processing result of FUSION algorithm; (g) the processing result of ARC
algorithm; (h) the processing result of this method.

Figure 9 shows the comparison of the detail enhancement capabilities of different
algorithms in different color and turbid water environments. The original image, the
processing results of the UDCP algorithm, the processing results of the IBLA algorithm, the
processing results of the HWD algorithm, the processing results of the WCID algorithm, the
processing results of the FUSION algorithm, the processing results of the ARC algorithm,
and the processing results of this method are listed from top to bottom. It can be seen from
the local enlarged region that the underwater image obtained using this method has better
contrast and clearer texture, which is obviously superior to other algorithms in terms of its
quality. For the turbid and blurred underwater environment, the noise is more complex,
and it will also lead to more obvious block effects. The method in this paper also has better
performance in processing image details and can effectively eliminate its noise and block
effects. It can be seen from Figure 9 that the method in this paper has a higher contrast and
better visibility, and the image’s texture is clearer. Therefore, it also shows that the method
proposed in this paper can be well adapted to the underwater environment with severe
color deviation and turbidity.
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Figure 9. Comparison of detail enhancement ability of different algorithms in different color cast
and turbid water environments. (a,c,e) Three underwater images in different scenes, respectively;
(b) the enlarged figure in the red box of (a); (d) the enlarged figure in the red box of (c); (f) the enlarged
figure in the red box of (e).

3.2. Quantitative Comparison

Through qualitative comparison, it can be seen that the proposed method has a
good enhancement effect in different underwater environments. In order to avoid the
deviation of qualitative comparison, the quality of underwater image restoration using this
method will be objectively evaluated on the basis of the image’s information, clarity, and
comprehensive effects. Information entropy (IE) [30], spatial frequency (SF) [31], average
gradient (AVG) [32], underwater color image quality evaluation index (UCIQE) [33], local
contrast quality index (PCQI), and underwater image color metrics (UIQM) are used to
evaluate the image. The information entropy (IE) reflects the average information level
of the image. In general, the larger the value, the richer the image’s information and the
higher the image’s fidelity. For an image, assuming that pi represents the proportion of the
pixel gray value i, the unary gray entropy is defined as

IE = −
255

∑
i=0

pi log2 pi, (24)

where pi is the probability of a certain gray level distribution in the image obtained from
the gray level histogram.
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Spatial frequency (SF) is used to evaluate the effect of underwater image color restora-
tion, which describes the spatial change in the image’s value. The larger the value, the
richer the color of the restored image and the better the effect of the fused edge. This can be
defined as

SF =
1

M× N

M

∑
i=1

N

∑
j=2

[Ii,j − Ii,j−1]
2 +

1
M× N

M

∑
j=1

N

∑
i=2

[Ii,j − Ii−1,j]
2, (25)

where M and N represent the width and height of the image, and I(i, j) represents the pixel
value at point (i, j) in the image.

The average gradient (AG) reflects the change rate of image details and indicates the
clarity of the image. The average gradient can be described as

AG =
1

(M− 1)(N − 1)

M−1

∑
i=1

N−1

∑
j=1

√
(I(i, j)− I(i + 1, j))2 + (I(i, j)− I(i, j + 1))2

2
, (26)

The underwater color image quality evaluation index (UCIQE) is a linear combination
of the chromaticity, saturation, and contrast of the image, which is mainly used to quantify
the image degradation caused by non-uniform illumination, color deviation, blurring, and
low underwater image contrast. The calculation method of the index is

UCIQE = a1 × σc + a2 × conl + a3 × µs, (27)

where σc represents the standard deviation of chromaticity, which has a good correlation
with human perception, conl represents the contrast of brightness, and µs represents the
average saturation. While a1, a2, and a3 are constants, which, respectively, correspond to
the weights of the linear combination of the three components. Generally, the three weight
coefficients are set to 0.4680, 0.2745, and 0.2576, respectively.

The local contrast quality index (PCQI) is a general index used to evaluate the image
contrast, and the larger the value, the more appropriate the contrast of the corresponding
image.

The underwater image color metric (UIQM) is used to evaluate the effect of underwater
image color restoration. The larger the value, the richer the color of the restored image. It
can be defined as

UIQM = c1 ×UICM + c2 ×UISM + c3 ×UIConM, (28)

where UICM represents the measurement of image color, UISM represents the measurement
of image clarity, and UIConM represents the measurement of image contrast. Generally,
the values of c1, c2, and c3 are 0.0282, 0.2953, and 3.5753, respectively.

Due to space limitations, this paper only shows some experimental results. Seven
representative color-cast images and seven images in natural shallow water and turbid
environment were randomly selected from the UIEBD dataset. By calculating the informa-
tion entropy (IE), spatial frequency (SF), average gradient (AVG), underwater color image
quality evaluation index (UCIQE), local contrast quality index (PCQI), and underwater
image color measurement index (UIQM) of each image, the six indexes are evaluated, and
then the comparative analysis is carried out to evaluate the advantages and disadvantages
of each algorithm. Table 1 is the quantitative comparison result of underwater color-cast
images, and the value of coarsening in the table is the optimal value of the corresponding
algorithm. As shown in Table 1, the method in this paper is superior to the other six
classical algorithms known as information entropy (IE), spatial frequency (SF), average
gradient (AG), and comprehensive effect measure (UCIQE). It shows that the enhanced
underwater image is rich in information, high in clarity, closer to the natural scene, and
has a better visual effect. The method in this paper is also superior to other algorithms
such as the local contrast quality index (PCQI) and underwater image color metric (UIQM),
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indicating that the image enhanced by this method has rich color and high contrast. It also
shows that the method in this paper can correct the color distortion of underwater images
and effectively restore the brightness and color of underwater images.

Table 1. Quantitative comparison results of underwater color-cast images.

Image Evaluation Original
Image UDCP IBLA HWD WCID FUSION ARC Ours

Image 1

IE 6.1730 7.0756 6.8205 7.6736 6.7709 7.6110 7.3386 7.8367
SF 7.1611 18.9345 13.1641 21.4327 20.9087 18.4898 14.1668 24.5150

AVG 4.0169 9.6824 7.0680 12.7567 11.3337 10.3918 7.8155 14.0663
UCIQE 0.3412 0.5254 0.3920 0.5775 0.5638 0.5444 0.4955 0.6092
PCQI 0.1155 0.9269 0.3492 1.4669 1.4055 1.0272 0.5606 1.7884
UIQM −1.0844 2.8537 0.1935 4.2822 4.1925 5.4152 3.1842 5.7959

Image 2

IE 6.9273 6.3046 7.5011 7.6830 6.8700 7.6020 7.4544 7.8081
SF 7.1706 6.6462 12.4892 13.1213 11.8997 13.6910 11.5925 14.7812

AVG 3.6784 3.2128 6.1060 7.0207 5.5016 6.6600 5.6504 7.5488
UCIQE 0.4788 0.4697 0.5723 0.5931 0.5775 0.5753 0.5897 0.6377
PCQI 0.1634 0.1655 0.4702 0.7884 0.5563 0.7870 0.5425 0.7300
UIQM 0.3890 1.3871 2.0448 4.5529 3.1865 4.6508 3.6126 4.6494

Image 3

IE 7.2758 6.4948 7.6227 7.7248 6.8425 7.6880 7.4372 7.8066
SF 9.0983 10.8452 13.7887 13.1459 14.2047 14.9623 9.5933 15.9068

AVG 4.5316 4.9056 6.9629 7.1850 7.0474 7.3011 4.9649 8.2921
UCIQE 0.5103 0.5679 0.5522 0.5870 0.5880 0.5604 0.5606 0.6115
PCQI 0.2366 0.5175 0.4865 0.7115 0.6332 0.7309 0.3410 0.6950
UIQM 1.2895 3.6031 2.6220 4.5301 2.1466 4.3712 2.4874 4.5686

Image 4

IE 6.4022 6.1045 6.7861 7.6169 6.2930 7.1979 6.9821 7.4177
SF 9.6588 14.9818 11.7586 17.2785 17.0975 14.0079 11.3911 21.2587

AVG 3.9917 5.6029 5.0714 7.9500 7.6011 5.9433 4.7747 9.9995
UCIQE 0.4595 0.5386 0.5128 0.6153 0.5462 0.5472 0.5441 0.6460
PCQI 0.2097 0.7527 0.3151 1.0090 0.8265 0.6262 0.3532 1.1339
UIQM −1.1012 0.9939 −0.3045 3.4181 3.0988 3.1856 0.3089 3.8822

Image 5

IE 7.1977 7.1668 7.5379 7.6535 7.2188 7.6854 7.5304 7.9026
SF 17.2602 22.6997 20.4228 21.7335 28.5593 25.5970 18.5187 30.1024

AVG 7.8303 10.2353 9.6517 10.7348 12.8359 11.0387 8.8036 13.9104
UCIQE 0.5227 0.6200 0.5667 0.6159 0.6182 0.5597 0.5981 0.6559
PCQI 0.7617 1.8689 1.1657 1.8462 2.4584 2.0905 1.1066 2.4011
UIQM 0.5072 2.9257 2.0424 3.7696 2.7125 4.7360 2.0239 4.7363

Image 6

IE 6.8182 7.1318 7.2758 7.7073 6.2652 7.6673 7.4053 7.7350
SF 4.7954 6.4699 6.7351 10.4445 6.4032 8.8425 7.2828 9.6852

AVG 2.4374 3.2586 3.5034 6.0534 3.2567 4.4011 3.7650 5.3092
UCIQE 0.4190 0.5262 0.4740 0.5920 0.4980 0.5398 0.5691 0.6237
PCQI 0.0705 0.1543 0.1461 0.2908 0.1610 0.3510 0.2378 0.5252
UIQM −1.1549 1.9136 0.3493 3.7068 2.1806 3.0121 1.7157 3.7351

Image 7

IE 6.7866 6.4223 7.2479 7.6995 6.4903 7.6013 7.3318 7.7558
SF 6.2295 8.9492 8.5717 13.1801 9.1468 11.3936 8.2485 13.9449

AVG 3.6579 4.7825 5.0653 7.6213 5.1488 6.5304 4.8770 7.8985
UCIQE 0.4660 0.5955 0.5329 0.6248 0.5259 0.6222 0.6004 0.6729
PCQI 0.1271 0.4079 0.2501 0.7353 0.3234 0.6748 0.2851 0.8334
UIQM 0.0866 1.7185 1.1415 3.8796 3.1447 3.6038 1.9316 3.8761

Average

IE 6.7973 6.6715 7.2560 7.6798 6.6787 7.5790 7.3543 7.7518
SF 8.7677 12.7895 12.4186 15.7624 15.4600 15.2834 11.5420 18.5992

AVG 4.3063 5.9543 6.2041 8.4746 7.5322 7.4666 5.8073 9.5750
UCIQE 0.4568 0.5490 0.5147 0.6008 0.5597 0.5641 0.5654 0.6367
PCQI 0.2406 0.6848 0.4547 0.9783 0.9092 0.8982 0.4895 1.1581
UIQM −0.1526 2.1994 1.1556 4.0199 2.9517 4.1392 2.1806 4.4634
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Table 2 is the quantitative comparison results of natural shallow water and turbid
environments. These images of natural shallow water and turbid environments are not
only blurry but also contain a lot of noise. It can be seen from Table 2 that the results of
this method on the four evaluation indicators are significantly better than other algorithms.
It can be seen from the two indicators of information entropy and average gradient that
this method can suppress the noise of the image and improve the contrast and edge detail
information of the underwater image. From the two indicators of spatial frequency and
underwater color image quality evaluation, it can be seen that the method in this paper
eliminates the block effect of the image and balances the bright and dark regions in the
image. Specifically, the images after color correction, noise suppression, and block effect
elimination can be effectively adapted to various underwater image distortion scenes after
multi-scale image fusion.

Table 2. Quantitative comparison results of natural shallow water and turbid environment.

Image Evaluation Original
Image UDCP IBLA HWD WCID FUSION ARC Ours

Image 1

IE 6.9413 7.1788 7.6517 7.7043 6.8687 7.4658 7.5773 7.7702
SF 16.5507 22.4061 23.7404 25.8526 24.9547 27.6475 21.7263 28.3122

AVG 9.1179 12.2500 13.8986 15.1799 12.9638 14.7825 12.6657 16.0165
UCIQE 0.4790 0.6017 0.5917 0.5843 0.5468 0.5831 0.5670 0.6063
PCQI 0.8191 2.6184 1.7355 2.3345 2.3160 2.7781 1.6140 2.9782
UIQM 4.1100 4.4031 5.1453 4.8751 4.6889 4.9529 5.1750 5.0115

Image 2

IE 6.1807 6.5237 6.9405 7.5977 6.5810 7.0964 7.0210 7.4781
SF 7.5997 15.2537 11.1595 17.3059 12.3343 16.9424 11.4035 17.6959

AVG 3.8277 7.2732 6.3265 10.4345 6.1023 8.6055 6.3742 10.4866
UCIQE 0.4398 0.5985 0.5324 0.6282 0.5275 0.6169 0.5727 0.6361
PCQI 0.1475 0.9104 0.3155 0.7985 0.6047 1.0453 0.4666 1.2467
UIQM 1.9781 3.3552 3.5295 4.0038 2.8710 3.9887 4.1131 4.3789

Image 3

IE 7.7281 5.9921 7.6008 7.6462 7.4401 7.6910 7.6617 7.9219
SF 11.0799 10.2487 11.9238 10.9366 13.3751 13.9125 12.8272 15.9482

AVG 4.6015 4.2366 5.0169 5.0204 5.5886 5.5834 5.4538 6.6066
UCIQE 0.6001 0.5273 0.6162 0.5525 0.6483 0.5950 0.5924 0.6054
PCQI 0.6613 0.7800 0.9957 0.5861 0.9639 0.8825 0.8101 1.0562
UIQM 1.5430 1.6192 2.5134 3.0406 3.2798 2.4863 2.5992 3.4429

Image 4

IE 6.6410 6.3765 7.1880 7.7222 6.5033 7.7030 6.9132 7.7449
SF 3.9538 14.5004 5.2084 7.4497 6.0109 10.0183 4.2353 7.8849

AVG 1.6643 4.6287 2.3592 4.2025 2.2232 4.5312 1.8866 4.0729
UCIQE 0.4177 0.5688 0.4890 0.5942 0.4848 0.5710 0.4824 0.6073
PCQI 0.0322 0.1537 0.0632 0.2154 0.0962 0.2328 0.0443 0.6421
UIQM −0.2032 1.8418 0.5754 3.0802 3.0837 2.6809 0.9180 3.1075

Image 5

IE 6.9984 5.8732 7.5364 7.6858 6.5305 7.4274 7.2002 7.7910
SF 3.2520 3.4841 5.0970 5.6284 4.0174 5.2747 3.8886 6.0968

AVG 1.8816 1.6021 3.0876 3.7066 2.2733 3.1048 2.2563 3.6260
UCIQE 0.4676 0.5069 0.5459 0.5352 0.5055 0.5546 0.4937 0.5814
PCQI 0.0388 0.0772 0.1336 0.1537 0.0739 0.1390 0.0527 0.1945
UIQM 2.3480 3.2217 4.0281 4.1381 2.7323 3.8985 3.0845 4.0683

Image 6

IE 5.8945 6.6629 7.0873 7.7094 6.2580 7.5810 7.0100 7.7791
SF 2.2938 5.2742 3.6473 7.2574 2.3987 5.8954 3.5809 6.5521

AVG 1.3702 2.8764 2.3579 4.6705 1.3028 3.6526 2.2283 4.0897
UCIQE 0.3683 0.5397 0.5267 0.5993 0.4110 0.6040 0.5334 0.6343
PCQI 0.0139 0.1065 0.0475 0.1366 0.0288 0.1375 0.0733 0.2337
UIQM 2.0476 4.4508 3.4762 4.3846 3.6359 3.9020 3.6001 5.2295

Image 7

IE 6.1759 6.7924 7.2614 7.7005 6.1213 7.5970 7.2277 7.8172
SF 4.4066 10.9227 9.2212 12.5761 6.5210 13.2963 9.6893 13.4009

AVG 2.3878 5.4169 4.8795 7.8970 3.2288 6.9882 5.3026 7.6241
UCIQE 0.3562 0.5335 0.4754 0.5726 0.3900 0.5814 0.5314 0.5987
PCQI 0.0447 0.3674 0.1889 0.4812 0.1399 0.5596 0.3156 0.6488
UIQM 1.0481 2.2040 2.5637 4.5171 2.2803 4.7816 4.3655 4.8693

Average

IE 6.6514 6.4857 7.3237 7.6809 6.6147 7.5088 7.2302 7.7575
SF 7.0195 11.7271 9.9997 12.4295 9.9446 13.2839 9.6216 13.6987

AVG 3.5501 5.4691 5.4180 7.3016 4.8118 6.7497 5.1668 7.5032
UCIQE 0.4470 0.5538 0.5396 0.5809 0.5020 0.5866 0.5390 0.6099
PCQI 0.2511 0.7162 0.4971 0.6723 0.6033 0.8250 0.4824 1.0000
UIQM 1.8388 3.0137 3.1188 4.0056 3.2246 3.8130 3.4079 4.3011
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3.3. Application Test

In order to further prove the scalability of the method in this paper, application tests
such as edge detection and feature point matching are carried out. Canny edge detection
and scale-invariant feature transform (SIFT) [34] are used to test the edge detection and
feature point matching of underwater images before and after restoration. The test results
are shown in Figures 10 and 11. The higher the number of edges and the higher the
number of matching feature points, the clearer the image’s texture features and the wider
its scalability. The restored image in Figure 10 has more edges than the original image, and
the number of feature-matching points of the restored underwater image in Figure 11 is
significantly more than that of the original underwater image. This also shows that the image
processed by the method proposed in this paper has more texture details, and the clarity of
the image is significantly improved. From the above analysis, it can also be concluded that the
method in this paper can not only correct the color deviation of the image but also eliminate its
noise and block effect, which has wide practical application value.
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4. Conclusions

An underwater color-cast image enhancement method based on noise suppression
and block effect elimination is proposed, and it can effectively correct the underwater
color-cast image, suppress noise, eliminate block effects, and provide theoretical support to
underwater visual environment perception technology. The main conclusion of this method
is that an automatic white balance algorithm with brightness and color balance is designed
to correct the color distortion of underwater images and effectively restore the brightness
and color of underwater images. A noise suppression algorithm for a heat conduction ma-
trix in the wavelet domain is proposed to eliminate image noise and improve the contrast
and edge detail information of underwater images. A block effect elimination algorithm
based on a compressed domain boundary average is proposed, and it eliminates the block
effects during the enhancement process and balances the image’s bright and dark regions.
The results of qualitative and quantitative evaluation and application test show that the
proposed method has obvious advantages. They also show that it can effectively correct
the underwater color-cast image, suppress its noise and block effects, and significantly
increase its contrast and information. The results show that the proposed method has
important practical value in the field of underwater visual environment perception. How-
ever, the method based on image enhancement often ignores the physical characteristics of
underwater light propagation. Therefore, in future work, we will focus on the influence of
underwater physical parameters on underwater image enhancement. This research can
provide a theoretical basis for the construction of an underwater imaging model.
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