
Citation: Sierra, J.P.; Gracia, V.;

Castell, X.; García-León, M.; Mösso,

C.; Lin-Ye, J. Potential of

Transplanted Seagrass Meadows on

Wave Attenuation in a Fetch-Limited

Environment. J. Mar. Sci. Eng. 2023,

11, 1186. https://doi.org/10.3390/

jmse11061186

Academic Editors: Longhuan Zhu,

Julia Hopkins and Rosaria E.

Musumeci

Received: 27 April 2023

Revised: 19 May 2023

Accepted: 3 June 2023

Published: 7 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Potential of Transplanted Seagrass Meadows on Wave
Attenuation in a Fetch-Limited Environment
Joan Pau Sierra 1,2,* , Vicente Gracia 1,2 , Xavier Castell 1, Manuel García-León 3, César Mösso 1,2 and Jue Lin-Ye 3

1 Laboratori d’Enginyeria Marítima, Universitat Politècnica de Catalunya BarcelonaTech,
08034 Barcelona, Spain; vicente.gracia@upc.edu (V.G.); xavier.castell.xc@gmail.com (X.C.);
cesar.mosso@upc.edu (C.M.)

2 Centre Internacional d’Investigació dels Recursos Costaners (CIIRC), 08034 Barcelona, Spain
3 Nologin Consulting SLU, NOW Systems, 50018 Zaragoza, Spain; manuel.garcia@nologin.es (M.G.-L.);

jue.lin@nologin.es (J.L.-Y.)
* Correspondence: joan.pau.sierra@upc.edu; Tel.: +34-934016468

Abstract: In this paper, the effectiveness of transplanted (either created or restored) seagrass meadows
as a coastal protection measure is assessed through a five-step methodology. The analysis is focused
on a stretch of the Catalan coast (NW Mediterranean) which is a fetch-limited environment. The
results show that even considering conservative values for the meadow parameters (plant diameter,
meadow density and canopy height), significant reductions of the annual average wave heights
reaching the beach may be obtained, reducing flooding and erosion risks. Therefore, the investment
in the conservation and restauration of seagrass meadows for protecting coastal areas from erosion
and flooding is a measure that must be considered, due to the multiple benefits that they provide
including ecosystem services. In addition, the proposed methodology may be a useful tool for coastal
managers to help them in the design of seagrass meadows for coastal protection.

Keywords: Posidonia oceanica; seagrass meadows; wave attenuation; coastal erosion; coastal protection;
Mediterranean Sea

1. Introduction

Coastal areas are hazard prone and their risk is expected to increase in the next
future as a consequence of sea level rise and other climate-related threats coinciding with
population growth [1–9]. Therefore, building resilient communities is a challenge for
populations living along the coast [10]. To address this challenge, communities usually
build barriers along the coast to protect their assets [11–14]. Nevertheless, engineered
solutions may cause negative impacts on sediment dynamics [15,16]. In addition, there
is a growing perception that conventional approaches to coastal protection (seawalls,
groins, bulkheads, etc.) are unsustainable [17]. Such measures may be very expensive
to construct and maintain and can generate undesired impacts including degradation of
habitats and shoreline erosion [14,18,19], affecting communities that depend on healthy
coastal ecosystems [20].

These concerns about traditional engineering works for coastal protection are increas-
ing the search for alternatives as, among others, nature-based solutions (NBS), which are
more environmentally friendly, more cost-effective to maintain in the long-term [21–24]
and can provide additional benefits as ecosystem services [25–28]. Such NBS include
seagrass beds [29,30], coral reefs [31–33], shellfish reefs [34–36], wetlands [37–39] and
mangroves [40–42] and have the potential to attenuate surges and waves associated with
storms, reducing coastal erosion and flooding [6,22].

Among the aforementioned NBS, seagrasses stand out due to their presence on the
coast of all continents except Antarctica and are among the most productive ecosystems
on Earth [43], providing a number of ecosystem services such as nutrient fixation, carbon
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sequestration, sediment stabilization, habitat for many species, water quality improvement
and reduction of coastal erosion [44–47]. In particular, seagrass meadows can dissipate wave
energy [48–51], reduce current velocity and favor sediment stabilization [52–54], leading to
local sediment trapping and stabilization and contributing to coastal protection [55–60].
Recent laboratory experiments [61] have shown that besides lessening the amount of wave
energy that reaches a beach, seagrass meadows also reduce cross-shore sediment transport
and shoreline retreat. These effects are a consequence of the wave attenuation generated by
the presence of the meadow.

Despite their importance, seagrass is often not considered in coastal management
decisions [62–64]. In addition, seagrass ecosystems are experiencing a global crisis due to
anthropogenic activities such as coastal development (generating their removal in ports,
marinas and beach nourishments), land erosion (increasing sedimentation), destructive
fishing methods (such as trawling), water quality reduction and eutrophication (due to
run-off of nutrients and other pollutants from land), mechanical damage (due to dredging
and boat anchoring) and climate change [47,65]. These activities lead to the worldwide
degradation of seagrass habitats [66] including the Mediterranean [67]. The total seagrass
surface is estimated to have declined by 7–19% between the mid-1980s and the mid-
1990s including the generation of dead seagrass patches with both spatial and temporal
heterogeneity [68] or its disappearance in some locations [47]. Loss of seagrass meadows
entails ecological and socio-economic impacts such as reduction of fisheries, a decline of
biodiversity, loss of carbon sinks and enhancement of coastal erosion [69,70].

Since habitat creation, conservation or restoration does not exclude alternative actions
later, NBS can be considered no- or low-regret coastal adaptation options regardless of
the future climate [25]. Conservation, restoration and, in some cases, habitat creation
are generally cheaper than coastal protection infrastructure and, in general, are very cost
effective [22]. In addition, the improvement of transplanting methodologies used for
seagrass restoration has increased the probability of successful seagrass restoration [71–73].

Another point in favor of using NBS is that many coastal ecosystems can adapt to
climate change, potentially being more effective in the long term than coastal structures [17].
Nevertheless, the capacity of NBS to protect coastal areas is highly context-dependent and
the performance of ecosystems may be very different depending on the conditions [74]
and sometimes they may not provide the required defense [57]. Among the limitations
of seagrass meadows to provide coastal protection, it is worth mentioning their limited
effectiveness under high wave energy [75], since percent cover, patch size and number
of patches decline with increasing wave energy [76]. This is because seagrass can be
uprooted when sediment erodes around the rhizoids and roots [54,77], massive defoliation
can occur as the leaves of the seagrass break as a consequence of the strong drag forces of
the waves [54] or seagrass communities can be suffocated or buried due to the movement of
large quantities of sediment [78,79]. In addition, some studies point out that seagrass value
for coastal protection strongly depends on conditions such as water depth and seasonal
shoot density [80,81]. On the contrary, in coastal zones with mid and low wave energy
such as fetch limited areas, wave effects on plants and sediments should be less intense
and, therefore, most of the time, this protection function could be fulfilled [48,82].

For this reason, decision-makers need tools that can help them to identify where
these ecosystems may be an effective alternative to select the best option in a timely
manner [83]. Hence, the main objective and motivation of this work is the assessment of
the suitability and effectiveness of transplanted (restored, rehabilitated or created) marine
seagrass meadows as a measure for coastal protection, using a Digital Twin strategy similar
to that of Pillai et al. [84]. Up to now, studies about the effectiveness of seagrass meadows on
coastal protection have been focused on assessing their wave attenuation under individual
(specific) wave conditions [49,50,84–87], i.e., at the event time scale. In this work, the focus
is on assessing the protective role of the seagrass in the mid-term (an average wave climate
year), not under singular wave conditions as conducted in previous works. This means
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considering all the wave conditions recorded in the area (including storm waves) but
weighted according to their frequency of occurrence.

Another innovation of the work is the development of a framework to help coastal
managers to assess if the use of seagrass meadows is a feasible coastal protection option and,
in this case, to select the best location and configuration of the meadow. The methodological
framework developed for this aim is applied to a case study of the Catalan coast (NW
Mediterranean). This includes the selection of the plant and the site location (considering
areas where this plant can be developed), the definition of the features and dimensions of
the meadow and assessment (by means of a numerical model) of its performance, taking
into account the local wave climate. In addition, the feasibility of its application to coastal
management is discussed.

2. Materials and Methods
2.1. Study Area

The study focuses on the NW Mediterranean coast from latitude 40◦45′ N to 42◦25′ N
and from longitude 0◦45′ E to 3◦15′ E, a 700 km coastal stretch also known as Catalan
coast (Figure 1). The reason for selecting this littoral zone is because it is a fetch-limited
environment and, as a consequence, it is submitted to medium wave energy conditions.
In this coastal area, there are already some sections in which the presence of seagrass
meadows is noticeable being the two most abundant seagrass species Posidonia oceanica and
Cymodocea nodosa. As pointed out by Vacchi et al. [44,88,89], the location of the seagrass
meadows is conditioned by hydrodynamic conditions. In the study area, P. oceanica is
located in coastal areas from water depths of 0.5 m up to 26–27 m (although, in general,
they are located at depths of less than 20 m) occupying a surface of 61.23 km2. C. nodosa
extends over 36.12 km2 between the surface and water depths greater than 15 m [90].
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Figure 1. Location of the study area. (a) Situation of the Catalan coast in the NW Mediterranean;
(b) the Catalan coast; (c) the studied stretch, with spots indicating the presence of seagrass, where
green corresponds to P. oceanica and black to unidentified species.

Another factor considered for selecting this area is the recent evolution of seagrass
meadows there. In previous decades, between 1960 and 2010, seagrass meadows and
particularly P. oceanica, have experienced a considerable regression in both occupied surface
and number of plants. Currently, the surface of seagrass meadows of 75–80% compared
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to that of the pre-industrial era is estimated [90]. In the last years, surface losses have
been barely perceptible [91] or even, in certain areas, there is a positive trend of seagrass
surface evolution [92]. This improvement is probably due to a number of actions and the
application of environmental regulations, as well as an increased awareness of the value of
marine ecosystems [90].

In this coastal area, the wave climate is complex, and some strong events are con-
trolled by large-scale synoptic activity [93], but local topography features (in particular
orographic barriers such as the Pyrenees) condition the wind climate and, as a consequence,
the wave patterns [94]. In addition, irregular bathymetry also contributes to local wave
modification [95]. The directional distribution of waves indicates a predominance of NW
and N wave conditions at the northern and southern stretches of the area, with E and S
wave conditions prevailing in the central part. The most energetic waves are those from
the E or E-NE because the stronger winds coincide with the largest fetches [95].

Finally, this area is a fetch-limited and a micro-tidal environment, with mixed tides
predominantly semidiurnal and tidal ranges of about 20 cm [96].

2.2. Framework

The proposed methodology to determine the feasibility of seagrass meadows as a
coastal protection measure is structured in five steps.

Step 1. Analysis of the feasibility of using seagrass meadows at the selected site.
Step 2. Assessment of the species suitable for this area and selection of the most appropriate.
Step 3. Definition of different meadow configurations.
Step 4. Simulation, using a numerical model of the wave propagation on the littoral area,
considering the local wave climate corresponding to an average year.
Step 5. Comparison of the numerical model results and selection, if applicable, of the
best alternative.

To analyze the feasibility (step 1) of using seagrass meadows as a coastal protection
measure in a coastal area, such area must fulfill several conditions. First of all, it must be a
sandy coast susceptible to being eroded. Secondly, it should preferably be located in an area
of medium- or low-wave energy because, as indicated before, high-energy environments
reduce the density and effectiveness of the meadows [54,57,75–78]. Third, it must be an
area with limited anthropogenic pressure affecting water quality, since its degradation
may hinder meadow development. In particular, discharges of submarine outfalls and
desalination plants must be avoided near the area of study to prevent such degradation.
Finally, the historical presence of meadows in the area is not essential but it provides added
value to the feasibility because it indicates the suitability of seagrass growth.

Taking into account these factors, a 3.1 km long coastal stretch located on the Catalan
coast has been selected. As can be seen in Figure 1c, in this stretch there are already
seagrass meadows, indicating that the use of seagrass in this region is possible. In the
selected area, where a sandy coast exists, there are no desalination plants. In addition, the
two submarine outfalls existing in this coastal stretch are connected to treatment plants
and discharge to depths greater than 30 m, that are beyond the area where some seagrass
species (e.g., P. oceanica) may exist. Finally, it can be considered a medium-wave energy
area, due to the limited fetch conditions. All these considerations lead to the conclusion
that the existence of seagrass meadows at the selected site is feasible (step 1).

For step 2, a list of seagrass species existing in similar or neighboring areas must be
elaborated because among them are those that are more likely to succeed in a meadow
creation or restoration process. As indicated in the previous section, in this region two main
seagrass species are relatively abundant: P. oceanica and C. nodosa, which account for
63% and 37%, respectively, of the total seagrass surface on the Catalan coast, estimated
at 97.35 km2 [90]. These two species have different plant features that can influence
their contribution to wave attenuation such as leaf length and width, canopy height,
root length or growth rate, among others. In particular, P. oceanica leaves are longer
(1 m or more vs. 20–45 cm) and wider (1 cm vs. 0.6 cm) than those of C. nodosa. As pointed
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out by different authors [97], the attenuation of waves and currents depends on the meadow
biomass, which is related to plant density and the size and number of leaves, being
P. oceanica, the European species with the longest and widest leaves, the highest number of
leaves per shoot and, as a consequence, the species with the greatest biomass. In addition,
P. oceanica is more independent of seasonal variations than other species, so its biomass is
more constant throughout the year [57]. Therefore, P. oceanica wave attenuation capacity
should be higher, and, for this reason, this species has been selected for this study. In
addition, the use and effectiveness of P. oceanica for wave attenuation have been widely
studied in flume [49,50,85] or field experiments [98,99].

Step 3 consists of defining the different meadow configurations. This mainly includes
meadow location (range of water depths), dimensions (surface occupied) and plant features
(stem density and height). In addition, seagrass distribution is spatially heterogeneous,
ranging from continuous to patchy meadows [100]. In this case, to limit the number
of simulations to be carried out, only variations in stem density and height have been
considered, keeping constant the dimensions of the meadow that extends along 3.1 km of
coastline and 0.8 km in the cross-shore direction and assuming that the plants are uniformly
distributed (Figure 2). The chosen setting is one of many possible options and has been
selected just to illustrate the application of this methodology. Nevertheless, the limits of
the meadow are within the range suggested by Vacchi et al. [88,89]. In the next section, the
scenarios used in this study are described.
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Figure 2. Extension of the proposed meadow (dark green) and existing meadows (light green) in the
study area.

For step 4, the wave propagation to the coast, there are different types of models that
can be used such as Boussinesq-type models, which have been widely used to study coastal
disaster reduction and protection [101–103]. In this case, the analysis has been carried out
with the numerical model SWAN [104,105]. This model has been chosen because it is one of
the common tools used worldwide for wave propagation and due to its ability to reproduce
energy dissipation due to vegetation [38]. The influence of seagrass on hydrodynamics has
been assessed through the vegetation module validated by Suzuki et al. [106].

Step 5 consists of the comparison of numerical model results between those of the
selected scenarios and the reference situation to assess the effect of seagrass on hydro-
dynamics. In this way, at each node, the absolute difference in significant wave height
(Hs) has been calculated, as well as the relative attenuation (in percentage). In addition,
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the maximum and average attenuation values in the points located in the meadow have
been obtained.

2.3. Model Validation

The model has been validated without vegetation for different storms that occurred
in the study area [107,108]. In particular, using data from a buoy located in the area, the
SWAN model was validated for different events. Thus, for a storm that occurred in 2013
between February 27 and March 3, with Hs between 1 m and 4.5 m, the model achieved the
following metrics that measure the deviation of the numerical results from the observations:
RMSE = 0.22 m, bias = 0.01 m, scatter index = 0.11 and correlation coefficient r = 0.98.

In addition, for wave propagation on seagrass, the SWAN model was validated with
data from flume experiments [109]. The data used for such validation were obtained from
experiments conducted on the large-scale flume CIEM located at the Universitat Politècnica
de Catalunya. In these experiments, the effect of P. oceanica on wave parameters and beach
profile morphology was analyzed using a 10 m long seagrass meadow with 40 cm and
60 cm high leaves and 269 stems/m2 in a 2 m deep area.

Two series of tests were carried out with Tp = 3.71 s for both series and Hs = 0.41 m (R1)
and Hs = 0.60 m (R2), respectively. The tests consisted of 12 time series of 500 waves and
duration of 30 min each at prototype scale. Wave heights across the profile were recorded
using different wave sensors (pressure transducers and acoustic and resistive wave gauges).
For further details about the experiments and the recorded data, see Astudillo et al. [61].

The model was calibrated trying to fit the model results to the measured data, using
the drag coefficient CD (which is closely related to the flexibility of the plant) as a calibration
parameter. To this aim, the values of the drag coefficient were based on the estimated ranges
of earlier experiments: Sánchez-González et al. [110] obtained CD values between 0.1–1.0,
Cavallaro et al. [111] between 0.2–4.0 and Koftis et al. [50] between 0.75–2.0. Recently,
Twomey et al. [112] reported values of CD in the range 0.18–2.30 for P. oceanica. The CD
values used in the model calibration were 0.3, 0.7, 1.0 and 1.5, finding that the value that
best fit the experimental data was 0.7.

This process showed the importance of this coefficient since, depending on the value
adopted, differences in the significant wave height given by the model of up to 10 cm
were obtained, which represents differences of up to 15%. For further details about the
calibration process, see the work of Russek [109].

Figure 3 presents the comparison between experimental data and numerical model
results, showing that the model fits the data reasonably well although it shows a slight
tendency to overpredict the measured data, in particular, over and behind the meadow. The
metrics measuring goodness-of-fit also reflect the good performance of the model. For exper-
iment R1: RMSE = 0.022 m, normalized RMSE = 0.06, bias = 0.012 m, normalized bias = 0.03
and scatter index = 0.051 and for experiment R2: RMSE = 0.027 m, normalized RMSE = 0.05,
bias = 0.003 m, normalized bias = 0.006 and scatter index = 0.050. Notice that the positive
bias confirms this overprediction trend of the model.
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Figure 3. Validation of the SWAN model with flume experiments. Red triangles: laboratory measure-
ments; blue circles: model results; the green rectangle indicates the position of the seagrass meadow
in the flume. R1: Waves with Hs = 0.41 m; R2: Waves with Hs = 0.60 m.
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2.4. Model Configuration

For the modeling of the selected coastal stretch, the study considers four littoral scenarios:

- Scenario 0. Absence of seagrass meadows. This is used as reference scenario for
comparing the amount of energy reaching the coastal area and, thus, the efficiency of
the different meadow configurations in dissipating wave energy.

- Scenario A. Existence of a meadow of P. oceanica in the study area, with an average
meadow height of 0.5 m and a density of 150 stems/m2.

- Scenario B. Existence of a meadow of P. oceanica in the study area, with an average
prairie height of 0.25 m and a density of 150 stems/m2.

- Scenario C. Existence of P. oceanica meadows in the study area, with an average
meadow height of 0.5 m and a density of 500 stems/m2.

In the area of study, some presence of seagrass meadows has been identified (Figure 1c),
but their state of conservation is unknown. For this reason, the effect that the existing
natural meadows may have on hydrodynamics has been disregarded and, accordingly,
the reference case of the numerical simulation (Scenario 0) is characterized by the total
absence of seagrass. On the contrary, seagrass configurations A, B and C represent different
degrees of maturity and only have to be understood as tests for long-term action strategies.
Scenarios A and B are representative of the initial stages of the intervention whereas
scenario C is representative of a well-developed meadow achieved at a longer time scale.
Thus, the numerical modeling for scenarios A, B and C contemplates the existence of a
meadow artificially restored, with the values of seagrass height and density previously
indicated and dimensions 3.1 × 0.8 km, whose location is shown in Figure 2.

The set-up of the SWAN model for its application to the study area requires the defini-
tion of several seagrass parameters to carry out the interaction between hydrodynamics
and the meadow:

- Meadow density: Studies carried out by Ruiz et al. [90] reported that the average density
of P. oceanica meadows in the Catalan coast ranged between 150 and 1000 stems/m2.
Some local studies of characterization showed a local density of 455 stems/m2, with a
coverage of 30%. For this reason, a conservative value of 150 stems/m2 has been selected
for scenarios A and B. For scenario C, a density of 500 stems/m2 has been assumed,
simulating a successful case of seagrass artificial planting.

- Canopy height: Although the leaf heights have up to 1 m in the study area [90], what
matters is the canopy height, which is lower than the length of the leaves due to their
bending. As indicated above, two values have been considered: 0.5 m and 0.25 m,
corresponding, respectively to mature or young plants.

- Plant diameter: For the three scenarios with plants, an equivalent diameter of 0.01 m
has been assumed considering the data of Dalla Via et al. [113] and Zeller et al. [114].
Nevertheless, according to data of Ruiz et al. [90], this hypothesis is conservative,
and the obtained results can be considered a lower bound of the wave attenuation
obtained by the analyzed seagrass meadows.

- Drag coefficient: The literature indicates that the coefficient of friction, defined as CD,
is a function of the hydrodynamic conditions, water depth and intrinsic properties of
the meadow (which determine the plant flexibility) [115]. In this study, CD has been
obtained from the results of the calibration process.

Wave propagation has been performed nesting three domains, with progressive reduc-
tion of mesh dimensions and results of the coarser grids providing boundary conditions for
the finer ones (Figure 4). The outer grid (DOM 3) is rectangular and has a spatial resolution
of 200 × 200 m; the intermediate grid (DOM 2) is also rectangular and 70 × 70 m; the finer
mesh (DOM 1) is curvilinear of dimensions of 15 × 18 m if the water depth is greater than
14 m and 8 × 18 m for shallower depths.
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Figure 4. Location of the three domains used in numerical modelling and the buoy where the wave
data were recorded.

To analyze the performance of the different meadow configurations, the local wave
climate has been considered. To this aim, wave data recorded at a buoy located in the study
area (Figure 4) and managed by the Spanish Port Authority (Puertos del Estado) have been
used [116]. These data have been grouped by directions (in sectors of 22.5◦) and wave
heights (in bins of 1 m), obtaining the frequency of each combination. Each hydrodynamic
condition has been propagated towards the coast, considering the combinations (with the
frequency of occurrence greater than 0) of Hs and directions that generate incident waves
towards the coast, as shown in Table 1. Between parenthesis, the number of wave periods
considered for each combination of wave height and direction is indicated. Accordingly,
74 different wave conditions have been considered for each scenario, giving a total of
296 numerical simulations (74 wave conditions x 4 scenarios).

Table 1. Combinations of directions and wave heights were considered in the study.

Hs (m)

Direction 0–1 1–2 2–3 3–4 4–5 >5

ENE X (3) X (3) X (2) X (2) X (2) X (1)
E X (3) X (3) X (2) X (2) X (2) X (1)

ESE X (3) X (3) X (2) X (2)
SE X (3) X (3) X (2) X (2)

SSE X (3) X (3) X (2) X (2)
S X (3) X (3) X (2) X (2) X (2)

The output of the numerical simulations are the values of significant wave height (Hs)
at each node of the domain. With the aim of obtaining representative results for an average
wave climate, an integration of all the matrices resulting for each of the scenarios has been
conducted, as explained in the next section. The obtained results correspond to the annual
average of Hs at each node for each scenario.
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3. Results

Figure 5 shows the annual average Hs at each point i (Ĥsi) for the DOM2 obtained
by multiplying the Hsij obtained at each point i in each simulation j by the frequency of
presentation (fj) of the wave conditions simulated and making the addition of the values
corresponding to all simulations (74) at each node, as shown in Equation (1).

Ĥsi =
74

∑
j=1

fjHsij (1)
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Figure 5. Annual average significant wave height in the nearshore area for the four scenarios analyzed.

As can be seen, the annual average Hs is relatively small, with values of around 0.7 m
or even smaller in the entire studied domain. This is because this is a fetch-limited area (in
all directions) and the intensity, in terms of Hs, the biggest storms are constrained by these
bounded fetches. Although extreme events with Hs greater than 3 m are recorded in the
area, their frequency of presentation is very small (around 2%) and they hardly contribute
to the annual average [116], while waves with Hs≤ 2 m represent almost the 95%, as shown
in Figure 6.
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In particular, for all scenarios, a Hs of 0.7 m is observed between the outer limit of
the domain and water depths of 15 m. From there towards the shoreline, Hs progressively
decreases due to bottom friction and wave breaking. This wave attenuation is more intense
in the area where the seagrass meadow is located (water depths between 10 and 3 m).

On the other hand, a superficial comparison of the annual average Hs of the four
scenarios does not show any appreciable difference among them in most of the plotted
areas. This happens because the seagrass meadow (where the greatest differences could
take place) only covers a small fraction of such area. Nevertheless, if the differences in
annual average Hs are plotted in the area where the meadow is located (Figures 7–9),
the wave attenuation due to the presence of the meadow is clearly perceptible and major
differences in annual averaged Hs are found where the seagrass is located.

Thus, Figure 7 which represents differences in average Hs in scenario A with respect
to scenario 0 shows how the average Hs reduction over the area where the meadow is
located is 2.1 cm, which represents in relative terms 3.7%. The maximum attenuation values
reached in such area are 7.3 cm or 14.3% with respect to the reference scenario. Although
the average wave attenuation may seem poor, if the 75th percentile is considered, the Hs
decrease ranges between 6.0% and 14.3%, mainly concentrated between isobaths −1 and
−5 m.
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In Figure 8, the differences in annual average Hs between scenarios 0 and B are
presented. The results show an average reduction of the annual Hs over the meadow of
0.5 cm, which represents a relative decrease of 1.0%. The maximum reduction of annual
average Hs reached is 1.9 cm, which represents 4.2%. If the 75th percentile of the obtained
values is taken into account, the wave attenuation ranges between 1.6% and 4.2%, also
concentrated in water depths between 1 m and 5 m.

Finally, in Figure 9, the differences in annual average Hs between scenario 0 and
scenario C are shown. In these cases, the average Hs reduction over the meadow is 5.9 cm
representing, in relative terms, 10.5%. The maximum values of attenuation recorded are
18.8 cm and 36.1%. If the 75th percentile of the obtained results is considered, the Hs
reduction ranges between 17.4% and 36.1%, mostly located between isobaths −1 m and
−5 m.

4. Discussion
4.1. Wave Attenuation Due to Seagrass

Results show that, even considering plant and seagrass conservative parameters
(plant diameter, stem density, plant height), a significant reduction of annual average
wave heights reaching the beach can be achieved by placing seagrass meadows (through
implantation or restoration) in front of a sandy beach. These reductions range between 1%
and 10.5% of all the meadow area is considered and between 1.6% and 36.1% if only the
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area with greater submergence ratios is considered. As both wave set-up and sediment
transport are dependent on wave height, this leads to a reduction of the flooding and
erosive potential of waves in this area and, accordingly, contributes to coastal protection.
The obtained results, based on numerical modeling are in agreement with observations in
flume tests [49,50,61,85], field experiments [98,99] or other numerical studies [117–119].

Although the wave reduction achieved with the presence of the meadow may seem
modest, as shown by Astudillo et al. [61] in field experiments at the prototype scale, a
decrease in wave height of about 8% can lead to significant reductions of sediment transport
and shoreline retreat. In addition, it must be stressed that the obtained values refer to the
annual average wave energy reaching the beach so that the protection effect on the beach
extends over time.

The wave attenuation attained is strongly related to the meadow concentration, in
particular stem density and canopy height. Thus, if the stem density is the same, the wave
attenuation is greater for greater canopy heights, as shown in Figure 10, where the relative
differences between scenarios B and A are shown, reaching values up to 11%.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 12 of 21 
 

 

erosive potential of waves in this area and, accordingly, contributes to coastal protection. 

The obtained results, based on numerical modeling are in agreement with observations in 

flume tests [49,50,61,85], field experiments [98,99] or other numerical studies [117–119]. 

Although the wave reduction achieved with the presence of the meadow may seem 

modest, as shown by Astudillo et al. [61] in field experiments at the prototype scale, a 

decrease in wave height of about 8% can lead to significant reductions of sediment 

transport and shoreline retreat. In addition, it must be stressed that the obtained values 

refer to the annual average wave energy reaching the beach so that the protection effect 

on the beach extends over time. 

The wave attenuation attained is strongly related to the meadow concentration, in 

particular stem density and canopy height. Thus, if the stem density is the same, the wave 

attenuation is greater for greater canopy heights, as shown in Figure 10, where the relative 

differences between scenarios B and A are shown, reaching values up to 11%. 

In the same way, if the canopy height is the same but the density is larger, wave at-

tenuation is greater, as shown in Figure 11, where the relative differences in Hs between 

scenarios A and C are presented, attaining values up to 26%. This is in line with Paul and 

Amos [80] who indicated that a minimum shoot density is necessary to achieve wave 

damping. 

 

Figure 10. Relative differences in annual average Hs between scenario B and scenario A. 

Hs relative differences. Scenario B and A

UTMx

U
T

M
y

Figure 10. Relative differences in annual average Hs between scenario B and scenario A.

In the same way, if the canopy height is the same but the density is larger, wave
attenuation is greater, as shown in Figure 11, where the relative differences in Hs between
scenarios A and C are presented, attaining values up to 26%. This is in line with Paul
and Amos [80] who indicated that a minimum shoot density is necessary to achieve
wave damping.

Another remarkable feature of the results is that the largest wave damping is con-
centrated in water depths between 1 and 5 m. This is because the reduction takes place
mainly when the submergence ratio (canopy height over water depth) is greater than
0.19, as shown by several authors [49,50,85,120]. For water depths greater than 5 m, the
submergence ratio is smaller than 0.1, greatly reducing the effectiveness of the meadow in
attenuating waves. On the other hand, for water depths less than 1 m, most of the energy is
dissipated by bottom friction and wave breaking and, as a consequence, the differences in
average wave heights are negligible among the studied scenarios.
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Figure 11. Relative differences in annual average Hs between scenario C and scenario A.

Another factor analyzed in this study is the wave attenuation carried out by seagrass
meadows as a function of the incident wave direction. With this aim, results between
scenario A and scenario 0 (reference) have been compared for the six wave directions
considered (ENE, E, ESE, SE, SSE and S), being the results shown in Figure 12. Although
there are slight differences between the wave damping reached in each direction (values
between 7.25% for the E and 8.51% for the ESE), the differences are small, indicating that
the wave direction is not significant in the wave attenuation process. This is because the
wave height reduction takes place in the areas with greater submergence ratios in the wave
path over the meadow. Anyway, whatever the direction of the waves, the distance traveled
over the area of the meadow with greater submergence ratios is long enough for the waves
to feel the effect of the plants.
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4.2. Limitations of the Study

The presented results are illustrative of the potential of seagrass meadows for coastal
protection, but the limitations of the modeling process and associated uncertainties must
be taken into account. The model is a simplification of a very complex reality and cannot
accurately reproduce the wave behavior as it interacts with the meadow. This is due
to the difficulty of reproducing some factors such as plant flexibility, which is closely
linked to the drag coefficient [111]. The overall trend is that the drag coefficient (and as
a consequence the wave height reduction) decreases with plant flexibility [109,111]. This
is a very important point since, as noted in Section 2.3, variations in the drag coefficient
can lead to differences in model results of up to 15%. Nevertheless, in some scenarios, the
impact of plant flexibility may be irrelevant because it is overshadowed by others. Thus,
Dijkstra and Uittenbogaard [121] pointed out that in a very dense meadow plant flexibility
may not matter anymore since plant position is unlikely to change because it has no space
to do it.

Another potential source of uncertainty would be the presence of tidal currents, which
would modify wave propagation patterns and wave–meadow interactions. Nevertheless,
in open coasts located in micro-tidal environments such as the case studied here, tidal
currents are negligible and do not affect the results.

Another uncertainty factor is associated with the accuracy of the numerical model.
Although, as shown when comparing the model results with experimental data, the degree
of approximation obtained is reasonable, the model tends to slightly overpredict the wave
height. In particular, this happens over and behind the meadow. However, it is to be
expected that the error made in evaluating Hs is bounded. In addition, for comparative
purposes as here, in which the aim is to determine which is the best option among several
settings, the final result obtained will be the best alternative.

4.3. Implications for Coastal Protection

It must be stressed that the studied area is not a high-wave energy environment, due
to the aforementioned limited fetches. As pointed out by several authors [57,122,123] in
areas of large wave energy, the effectiveness of seagrass meadows as a coastal protection
measure is reduced because large storms generate a decline in meadow density. This is due
to the high level of sediment movement generated by large wave energy, which exposes
seagrass to considerable erosion with subsequent exposure of roots and rhizomes [124].
In addition, as pointed out by other authors [125,126], the shelter of seedlings plays an
important role in the success of restauration. In our case, the studied area can be considered
a medium-wave energy environment (95% of sea states with Hs ≤ 2 m, as indicated in
Section 3) and, for this reason, the coastal protection provided by the meadow is greater
than in more energetic coastal regions.

Therefore, although some of the parameters used to characterize the meadow are
conservative and the model tends to overpredict wave heights, so that the obtained results
may be considered a lower bound of what might be expected, significant wave damping
can be achieved by using seagrass meadows in coastal zones with limited wave energy
but placing them in areas where the submergence ratio is relatively large (greater than 0.1).
Thus, as shown in this study, the annual average amount of wave energy reaching coastal
areas can be reduced by such meadows and, hence, beach erosion and flooding decreased.

Taking into account the previous considerations, we can conclude that seagrass mead-
ows may be an effective littoral protection measure and it is worth considering them in
coastal defense projects.

As indicated above, the use of seagrass as a coastal protection measure requires
the conservation, restoration or creation of new seagrass meadows. Although seagrass
rehabilitation has failed in some cases due to a variety of factors [127–130], recent successful
projects have demonstrated that active restoration facilitates the recovery of seagrass
meadows [126,130–136]. Consequently, in fetch-limited areas where the wave energy is
limited and where the environmental conditions allow the restoration or implantation of
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seagrass meadows, coastal managers should consider its use as a coastal protection measure.
In this way, the methodology described here can be a useful tool for coastal stakeholders
to help them in the design of seagrass meadows with the aim of coastal protection. In
addition, a project focused on the use of seagrass for coastal defense could consider more
scenarios, so that the wider variety of meadow typologies and configurations analyzed
could increase the probability of success.

The study should be completed with a cost-benefit analysis. This analysis is not
addressed in this case due to the difficulty of assessing the value of all ecosystem ser-
vices provided by the seagrass meadow. Anyway, in the long term, as pointed out by
different authors [21,22], the lower maintenance costs associated with NBS with respect
to conventional engineering alternatives plus the additional (besides coastal protection)
ecosystem services that they provide, make it very likely that the benefits using seagrass
meadows as a coastal defense measure far exceed their costs. Finally, seagrass meadows
can contribute to climate change mitigation through carbon sequestration and, in contrast
to artificial structures, they may naturally adapt to climate change maintaining their coastal
protection function [137].

5. Conclusions

A methodological framework to assess the effectiveness of transplanted seagrass
meadows as a coastal protection measure has been developed. It includes the analysis
of the feasibility of using seagrass at a certain site, the selection of the most suitable
species, the definition of different meadow configurations, the numerical simulation of
wave propagation over the meadows (over an average wave climate year) and the selection
of the best alternative.

To illustrate the usefulness of the proposed methodology, it has been applied to a
coastal stretch of the Catalan coast (NW Mediterranean). Although only a reduced number
of meadow configurations and conservative plant parameters have been simulated, the
results show that significant reductions (up to 10.5% on average over the meadow and up
to 36.1% in the areas with maximum attenuation) in the average annual wave height can
be achieved in the nearshore area due to the presence of the seagrass meadow. The wave
damping depends largely on canopy height and meadow density. The greater the value
of these parameters, the greater the wave attenuation reached. Another fact to be taken
into account is that the meadow is particularly effective in dissipating wave energy if the
submergence ratio is relatively large (greater than 0.19). The main implications for coastal
protection are the following:

- The presence of seagrass meadows reduces the amount of energy reaching the beach,
which contributes to its defense against flooding and erosion.

- The seagrass meadow creation or restoration can be an effective coastal protection
measure. In addition, such measures provide other ecosystem services that enhance
their suitability,

- The use of seagrass meadows as a coastal protection measure is especially suitable in
fetch-limited areas, where the intensity of storms is conditioned by such bounded fetches.

- Restoration and implantation of meadows are more likely to succeed and prevail if a
large density of shoots or seeds is used. This, in turn, increases the effectiveness of the
meadow to reduce wave heights reaching the coast, so the additional cost of planting
more seagrass is widely compensated by its enhanced coastal protection function and
the ecosystem services it provides.

- Coastal managers can use the methodology described here to assess whether the use
of seagrass meadows is feasible in their areas of jurisdiction and, if possible, decide on
the optimal meadow layout to achieve the desired level of protection.
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