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Abstract: Underwater images are widely used in ocean resource exploration and ocean environment
surveillance. However, due to the influence of light attenuation and noise, underwater images
usually display degradation phenomena such as blurring and color deviation; an enhancement
method is required to make the images more visible. Currently, there are two major approaches
for image enhancement: the traditional methods based on physical or non-physical models, and
the deep learning method. Inspired by the fusion-based idea, this paper attempts to combine
traditional methods with deep learning and proposes a multi-input dense connection generator
network (MDNet) for underwater image enhancement. Raw images and processed images are input
into the network together, the shallow information is fully utilized by dense connection, and the
network is trained in generative and adversarial manner. We also design a multiple loss function to
improve the visual quality of the generated images. We conduct both qualitative and quantitative
experiments, and then compare the results with state-of-the-art approaches comprehensively using
three representative datasets. Results show that the proposed method can effectively improve the
perceptual and statistical quality of underwater images.

Keywords: underwater image enhancement; deep learning; generative adversarial network

1. Introduction

Underwater images play an important role in information acquisition in the ocean.
With the development of marine science, more and more underwater operations, such
as underwater vehicle navigation and resource exploration [1,2], are greatly dependent
on images. However, due to the special environment of the ocean, light attenuates in
the water, which makes the contrast ratio of underwater images low. Different light has
different attenuation in the water; the light with higher frequency penetrates the particles
underwater with more ease, which produces blue–green images. Moreover, dissolved
organic matter and suspended particles also introduce huge noise. All those elements make
the underwater images seriously degraded [3]. Therefore, underwater image enhancement
is particularly important in the ocean.

In the past decade, underwater image enhancement has made great progress, and
a variety of methods have been proposed. According to the utilized technologies, algo-
rithms can be divided into traditional physical model-based and non-physical model-based
methods, as well as deep learning methods. The physical model-based methods consider
the degradation principle of underwater images, then achieve image enhancement by
establishing a compensation model. The non-physical model-based methods directly oper-
ate the pixel value to upgrade the visual quality. Deep learning is a data-driven method,
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which extracts valuable features from a large amount of data. In the task of underwater
image enhancement, it is assumed that there is a mapping between distorted image and
high-quality image, and the mapping can be obtained by training neural networks. In this
way, degraded images are translated into high-quality images.

Our pre-experiments found that traditional methods based on physical models or
non-physical models usually have excellent performance in certain underwater images or
scenes. However, it is difficult to deal with most other common scenes. These methods
can enhance some features of an image, but often seriously distort the others, which does
not improve the image quality in the end. For example, image contrast can be improved,
but the color might become worse. However, deep learning methods usually offer a more
balanced performance than traditional methods when dealing with complex underwater
scenes, as shown in Figure 1.
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Figure 1. Comparison between traditional methods and deep learning methods. (a) Raw underwater
images. (b) CLAHE [4]. (c) Two-step [5]. (d) RGHS [6]. (e) GCF [7]. (f) UDCP2016 [8]. (g) FUnIE-
GAN [9]. (h) WaterNet [10]. (i) Shallow-Uwnet [11]. (j) MDNet.

Fusion-based idea [12] is a processing strategy that fuses images processed by multiple
methods to achieve better results. The combination of multiple methods can provide
multi-scale features, overcome the limitations of a single method to a certain extent, and
achieve better results [13]. Therefore, this paper attempts to combine these two methods
above to employ their respective advantages. The traditional method is used to preprocess
underwater images, while deep learning is used for further enhancement. The main
contributions of this paper are listed below:

1. The most advanced underwater image enhancement methods based on traditional
methods and deep learning are compared and analyzed using three representative datasets
(UIEB [10], EUVP [9] and U45 [14]). Our comparison and analysis provide comprehensive
and valuable conclusion about the current underwater image enhancement.

2. A multi-input dense connection generator network, MDNet, is proposed. Raw
images and processed images are input into the network together, and the shallow informa-
tion is fully utilized by dense connection. MDNet has achieved state-of-the-art performance
in some public datasets. Several examples are shown in Figure 1.

2. Related Work

As an important way to improve the visual quality of unclear pictures, image enhance-
ment has attracted more and more researchers’ attention. According to the used principles,
underwater image enhancement technologies can be divided into traditional methods and
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deep learning methods. The traditional methods mainly include non-physical model-based
methods and physical model-based methods.

2.1. Physical Model-Based Method

A physical model-based method takes into account the mathematical modeling of un-
derwater image degradation process. By estimating the model parameters, the degradation
process is reversed to obtain high-quality images. Therefore, this approach is also called
image restoration.

Dark channel prior (DCP) [15] is a commonly used underwater image enhancement
method which was first utilized for image defogging by establishing a fog degradation
model. There are similarities in modeling between haze images and underwater images, so
DCP can also be applied to underwater image enhancement [16]. In the work of Ref. [17],
DCP was combined with wavelength compensation to enhance underwater images. Con-
sidering that the red channel decays rapidly underwater and becomes unreliable, in [8], an
underwater dark channel prior (UDCP2016) was proposed only for blue and green channels.
In addition, there are others that perform enhancement processing according to optical
characteristics. Ref. [18] predicted the depth of underwater scene according to the different
attenuation of the RGB color channels, then completed enhancement modeling through
the Markov random field. As the light attenuation varies in different water environments,
Wang et al. [19] proposed a new adaptive attenuation prior curve to simulate the light
attenuation process in different water environments. Ref. [20] used dark pixels and distance
information (depth map) to estimate backscattering. The estimation of spatially varying
light sources was then used to obtain the distance attenuation coefficient. According to the
characteristics of underwater images, Ref. [21] first corrected the illumination and color
of underwater images, and then realized dehazing based on the estimation of artificial
background light and transmission map depth.

2.2. Non-Physical Model-Based Method

Non-physical model-based method neither relies on the mathematical model of under-
water optical imaging nor considers the degradation process of the image. It improves the
visual quality by adjusting pixel values directly. Image information is extracted without
any prior knowledge [22], which makes it more universal.

Early approaches including white balance algorithm [23] and contrast limited his-
togram equalization (CLAHE) [4] all belong to non-physical model-based methods. In
Ref. [24], the authors improved the color deviation and contrast of underwater images by
directly stretching the range of dynamic pixels in the GRB and HIS color space. However,
this operation often leads to the occurrence of over- or under-enhancement. In general,
over- or under-enhancement are prevented by limiting the numerical range of pixels [25,26].
Underwater images are often accompanied by color deviation and low contrast. There-
fore, researchers often use different methods to deal with them separately. Based on the
gray world hypothesis [27], Fu et al. [5] proposed a two-step approach which includes
a color correction algorithm and a contrast enhancement algorithm. In Ref. [28], further
improvements were made by using adaptive gray world for color correction and employ-
ing Differential Gray-Levels Histogram Equalization to improve the contrast of the image.
Huang et al. [6] corrected the image contrast by redistributing the histogram of each RGB
channel, while color was corrected by stretching the “L” component and modifying the “a”
and “b” components in the CIE-Lab color space.

Another approach attempts to enhance underwater images based on the Retinex
model. In Ref. [29], the authors proposed a novel variational framework for Retinex to
decompose reflectance and illumination. Different strategies were adopted to improve
reflectance and illumination so as to improve the detail and brightness of the image. An
improvement was made by Xiong et al. [7], who imposed Gaussian curvature priors on
reflectance and illumination to prevent over-enhancement.
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2.3. Deep Learning Method

Deep learning is a data-driven approach which automatically learn features from
massive data. During the past years, underwater image enhancement has made remarkable
progress due the development of deep learning and the availability of large-scale datasets.
Deep learning assumes that there is a mapping between raw underwater images and high-
quality images. Underwater image enhancement is realized by neural network models
which are trained through paired or unpaired images.

Deep learning heavily relies on large-scale datasets, and the quality of the datasets
determines the upper limit of the effectiveness that deep learning can achieve. Due to
the unique underwater environment, it has always been a challenge to obtain the ground
truth of an underwater image. The usual approach is to use different methods to enhance
underwater images and select the best one as the ground truth. However, such generated
ground truth still does not perform well in some challenging situations. Due to the lack of
ground truth, Li et al. [30] used generative adversarial network (GAN) to simulate under-
water images from the in-air images. With the synthetic dataset, they proposed a two-stage
convolutional neural network (CNN) to enhance underwater images. With the good perfor-
mance of GAN in the field of image translation [31], GAN has also been successfully used
for underwater image enhancement [32]. In Ref. [33], the authors proposed a multiscale
dense GAN in which a large number of residual connections were added. Considering the
lack of physical model constraints in end-to-end learning, Ref. [34] embedded the physical
model into the network design, and GAN was adopted for coefficient estimation based on
Akkaynak and Treibitz’s work [20]. Based on the fusion-based idea, Li et al. [10] inputted
the preprocessed images and the raw images together to train an enhancement neural
network and proposed a CNN with multiple inputs and single output named WaterNet.
Usually, neural networks require a lot of computing resources, which makes it difficult to
deploy on mobile devices. To solve this problem, Refs. [9,11] proposed lightweight neural
networks, respectively, which can achieve a good running speed with limited computing
resources while ensuring the performance and improved the deployable performance of
the model.

Previous deep learning methods usually use a single input to enhance the underwater
image. However, one of the advantages of deep learning method is that it allows flexible
multiple inputs. Inspired by the fusion-based idea, this paper proposes a multi-input
dense connection generator network, MDNet, which inputs the preprocessed images
and the raw images into the generator together. It ingeniously combines the traditional
method with the deep learning method and continues to use the deep learning idea for
further enhancement. In addition, the traditional methods and deep learning methods
are compared and analyzed, which provides a comprehensive perspective for the current
underwater image enhancement.

3. The Proposed Method
3.1. Model Structure

This paper mixes the preprocessed images with raw images, then inputs the mixed
images into the neural network for processing. At the same time, GAN is used for training
in the generative and adversarial manner. High-quality underwater enhanced images are
generated by a well-trained generator. The schematic diagram of the proposed method is
shown in Figure 2.

GAN is used to enhance the underwater images. Firstly, raw images are pretreated by
traditional methods. The pretreated images and the raw images are both imported to the
generator that produces the enhanced images. Then, the enhanced images together with
the ground truth are input into the discriminator that determines whether the input images
are “true” (ground truth). In this way, the generator and the discriminator are trained
circularly to continuously improve the generator’s ability of producing “false images”
(enhanced images) and the discriminator’s ability of identifying “true or false”. In this way,
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the generated images become more and more close to the ground truth. Finally, we obtain
a generator network that can improve the visual quality of underwater images.
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3.1.1. The Generator

Different from semantic segmentation and object detection [35,36] which emphasize
pixel level understanding, image enhancement focuses on mapping degraded images
with brighter and clearer images to improve visual quality. This puts forward higher
requirements for the retention and restoration of image details. In the process of neural
network processing, high-level semantic features can be extracted from the image, but
shallow details are also lost. Therefore, we designed a multi-input dense connection
generator network to improve the utilization of shallow information, as shown in Figure 3.
The proposed generator is composed of a full convolution network and three densely
connected convolution blocks in series. The inputs are raw images and preprocessed
images; CLAHE is selected for image preprocessing. The two inputs are first fused together,
and the feature map after one convolution layer is then connected to the output of each
convolution block by skipping. The final output is processed by a convolution layer again.
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Convolution block: The convolution block includes three parts: down-sampling, up-
sampling and convolution. Down-sampling is realized by a convolution with a kernel
size of 4 × 4 and a stride size of 2. Compared with pool operation, this can extract more
image features, which is conducive to information fusion. Up-sampling is realized by a
transpose convolution with a kernel size of 4 × 4 and a stride size of 2. The feature map is
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extracted by down-sampling, then restored to the original size by up-sampling, and further
processed by a convolution layer. It can be expressed by the following formula:

Iout = Conv(TranConv(Pool(Iin))) (1)

where Iin and Iout refer to input and output, respectively, Pool refers to pooling operation,
TranConv refers to transpose convolution, Conv refers to convolution operation.

Skipping connection: The input is connected (by channel accumulation) with the
output of each convolution block by skipping. When the gradient disappears, this skipping
connection imposes a greater weight on the channel related to the original input than the
output channel with a separate convolution block. This ensures that the features can be
learned from each convolution block while retaining the basic features of the input. In
addition, the generator model is fully convoluted and does not use a full connection layer,
so it has a more flexible size on the input image.

3.1.2. The Discriminator

For the discriminator, we refer to [9] and use the structure of Markovian Patch-
GANs [31]. This kind of structure processes the image layer by layer, and a characteristic
matrix of n× n× 1 size is obtained. Each element in the matrix corresponds to a patch
in the image. The whole image is discriminated by discriminating all elements. This
kind of structure assumes the independence of pixels beyond the patch-size (that pixels
other than patch-size are independent), that is, images are discriminated only based on
patch-level information. This assumption is very important for effectively capturing high-
frequency features such as local textures and styles [37]. In addition, this structure has
higher efficiency in calculation as it requires fewer parameters due to the comparison based
on patch-level.

As shown in Figure 4, the generated image and ground truth are superimposed
together for identification. After 5 convolution layers and 4 nonlinear activation functions,
the image is judged with a result of “true or false”. The first four layers in the discriminator
adopt a 3× 3 convolution kernel with a step size of 2. The last layer uses a 4× 4 convolution
kernel with a step size of 1. ReLU is used as the nonlinear activation function.
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3.2. Loss Function

A standard conditional GAN-based model learns a mapping G : (X, Z)→ Y , where
X represents the input, Z represents random noise, Y is obtained by generator G, and the
conditional adversarial loss function is as follows:

LcGAN = EX,Y[log D(Y)] + EX,Y[log(1− D(X, G(X, Z)))] (2)

Generator G tries to minimize LcGAN while D tries to maximize LcGAN . Based on this,
we add three additional aspects, global similarity, image content, local texture and style to
quantify the perceived image quality.

Global similarity: The existing methods have shown that adding an L1(L2) loss to
the objective function enables G to learn to sample from a globally similar space in an
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L1(L2) sense [31,38]. Since the L1 loss function does not easily cause ambiguity, we add the
following loss term in the objective function:

L1(G) = EX,Y,Z[||Y− G(X, Z)||1] (3)

Image content: The loss of content is added to the objective function to encourage
G to generate enhanced images (i.e., representation) similar to the target image (ground
truth). Inspired by [39,40], the advanced features extracted from the block5-conv2 layer of
the pre-trained VGG-19 network are used as the image content function Φ(·). The content
loss function is defined as follows:

Lcon(G) = EX,Y,Z[||Φ(Y)−Φ(G(X, Z))||2] (4)

Local texture and style: Markovian PatchGANs can effectively capture high-frequency
information about local textures and styles. Hence, discriminator D is used to emphasize
the consistency of local texture and style in an antagonistic way [31].

Structural similarity: At the same time, we add structural similarity (SSIM) loss to the
loss function to standardize the structure and texture of the generated image:

LSSIM(G) = 1− 1
N

N

∑
i=1

SSIM(xi, yi) (5)

SSIM compares image blocks based on brightness, contrast and structure:

SSIM(x, y) = (
2µxµy + c1

µ2
x + µ2

y + c1
)(

2σxy + c2

σ2
x + σ2

y + c2
) (6)

where µx(µy) donates the average of x(y), σ2
x(σ

2
y ) indicates the variance of x(y), σxy is the

covariance between x and y. In addition, c1 = (255× 0.01)2 and c2 = (255× 0.03)2 are
constants that ensure numeric stability.

The final objective loss function is as follows:

G∗ = agr min
G

max
D

LcGAN(G, D) + L1(G) + Lcon(G) + LSSIM(G) (7)

4. Results and Discussion
4.1. Datasets

We collected some datasets of ocean scenes and made full use of them to train and
evaluate our proposed methods.

(1) UIEB dataset: This dataset contained a large number of images collected from real
underwater environment, Google, YouTube and the related papers. The reference images
in the dataset were generated by 12 different enhancement methods. The ground truth was
selected from the images by 50 persons with respect to their visual quality. The dataset
contains a total of 890 paired images and 60 challenging images (without ground truth).
Referring to the practice of [10], 800 pairs of images were randomly selected from 890 pairs
of images as the training set, and the remaining 90 pairs of images were used as the test set.
In order to facilitate the training and testing process, images in the dataset were uniformly
scaled to the size of 256 × 256.

(2) EUVP dataset: This dataset contained more than 12 thousand paired images and
8 thousand unpaired images. During the production of the dataset, seven different cameras
were used to shoot underwater, and the best image was selected as the reference image. It
also contains some carefully selected images from YouTube. EUVP contains three subsets.
We chose the EUVP-Imagenet subset with rich scenarios as our training and test set. EUVP-
Imagenet contains 4260 paired images. A total of 4000 images were selected randomly
for training, and the remaining 260 images were used as test set. The size of the images
is 256 × 256.
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(3) U45 Dataset: This dataset collected 45 real underwater images (without ground
truth), including three types: green, blue and fog, corresponding, respectively, to the color
casts, low contrast, and haze-like effects of underwater degradation. The size of the images
is 256 × 256.

We used the EUVP and UIEB datasets to train and evaluate the proposed network, re-
spectively. Because there is no ground truth in the U45 dataset, we used the network trained
by the UIEB dataset to enhance U45, and we used non-reference evaluation indicators for
quantitative evaluation.

4.2. Implementation Details

(1) Experimental details: We implemented the proposed method on a laptop equipped
with 11800H CPU, RTX 3070 GPU and 16 G memory. A total of 200 iterations of training
were carried out on the PyTorch framework. The batch-size was set to 8. The Adam
optimizer was used to optimize the training, and the learning rate was set to 3× 10−4, the
decay of 1st-order momentum was 0.5, and the decay of 2nd-order momentum was 0.99.

(2) Comparison Methods: The methods for comparison included CLAHE [4], the state-of-
the-art deep learning methods included FUnIE-GAN [9], WaterNet [10], Shallow-Uwnet [11],
and the traditional methods included two-step [5], RGHS [6], GCF [7], UDCP2016 [8]. To
ensure a fair comparison, we adopted the same setting in all competing methods as provided
by the original papers.

4.3. Qualitative Evaluation

We divided the underwater scene into four categories: color deviation scenes, light
spot scenes, scattering scenes and extreme degeneration scenes. The results of different
methods and the corresponding reference images are shown in Figures 5–8.

The absorption level of light in water depends on its wavelength. Red light attenuates
the quickest while blue light does slowest [41]. The attenuation brings color deviation to
the image, resulting in a greenish or bluish color phenomenon. Examples are shown in
Figure 5. For the green scenes, Two-step and GCF can effectively eliminate color deviation.
However, WaterNet and MDNet (proposed) make the image slightly yellow. In case of
a blue scene, WaterNet, Shallow-Uwnet and MDNet (proposed) can effectively remove
color distortion, while CLAHE, GCF and FUNIE-GAN aggravate the red component in the
image and cause distortion.
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Artificial light sources are often used for light compensation in ocean exploration.
Generally, artificial light sources radiate from a fixed point to the surrounding area. In this
way, there is an obvious light spot on the center of the target and the light source, which
results in insufficient light conditions in other areas. Comparisons of light spot scenes
are shown in Figure 6. GCF, WaterNet, Shallow-Uwnet and MDNet can well restore the
details of the periphery of the spot, but GCF and WaterNet also unnecessarily increase the
brightness of the spot area.
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Scattering causes complex changes in the propagation path of light, thus changing the
distribution of light in space. In underwater images, the scattering effect depends on the
distance d between targets and the sensor. In Figure 7 (the top line), the blurring effect and
color degradation are easily revised in low-scatter scenes (d is small) except UDCP2016. In
high-scatter scenes (d is big) (the bottom line in Figure 7), the color distortion and blurring
effect of the image are difficult to revise. CLAHE, two-step, GCF and UDCP2016 aggravate
the red distortion, while WaterNet, Shallow-Uwnet and MDNet achieve relatively better
overall results.
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In an extremely degraded environment with weak light and serious scattering of
suspended particles, underwater images present quite low quality and include color distor-
tion, low contrast and blurring. This brings huge challenges to enhancement algorithms.
Comparisons are shown in Figure 8. Only RGHS, WaterNet and MDNet performed well in
this task. On the contrary, GCF and UDCP2016 caused serious distortion.
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4.4. Quantitative Evaluation

Two kinds of indicators were used to evaluate the enhancement performance: the full
reference evaluation indicators and the non-reference evaluation indicator. Full reference
evaluation indicators include peak signal to noise ratio (PSNR) and SSIM. The formula of
PSNR is as follows:

PSNR(x, y) = 10× log10(
255

MSE(x, y)
) (8)
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PSNR compares the generated image x with the ground truth y based on the mean-
square error (MSE). SSIM is shown in Formula 6.

Underwater image quality measure (UIQM) [42] was selected as a non-reference eval-
uation indicator. It is a specified indicator that can comprehensively evaluate underwater
images from three perspectives: color, sharpness and contrast. The expression is as follows:

UIQM = c1 ×UICM + c2 ×UISM + c3 ×UIConM (9)

where UICM, UISM and UIConM represent the color index, sharpness index and contrast
index of the image, respectively [42]. The coefficient settings are c1 = 0.0282, c2 = 0.2953,
c3 = 3.5753. The underwater image quality can be thoroughly evaluated through the linear
combination of the three indexes.

We used the original image as the only input and conducted a single-input ablation
study (called MDNet-). The experimental results of different methods on UIEB dataset are
shown in Table 1. In traditional methods, RGHS achieved the best performance on PSNR,
CLAHE achieved the best performance on SSIM, while GCF obtained the highest score on
UIQM. What needs to be noted is that the original UIEB dataset used the two-step method
to generate ground truth. Therefore, the two-step method definitely acquires the best
results on this dataset. Consequently, we did not use the two-step approach for comparison
to make it fair. In deep learning methods, the proposed MDNet performed the best on all
three indicators. Although MDNet and WaterNet have the same mean value of a SSIM
indicator, the variance of MDNet is much smaller. It can be concluded that MDNet has
a competent performance on the UIEB dataset on various indicators. The results of the
ablation study on UIEB (including the other two datasets) also demonstrate the improved
effect brought by multiple inputs.

Table 1. Results of different methods on UIEB dataset.

Methods PSNR↑ SSIM↑ UIQM↑
CLAHE [4] 20.84 ± 3.59 0.85 ± 0.08 2.94 ± 0.57
RGHS [6] 23.24 ± 5.51 0.83 ± 0.10 2.55 ± 0.70
GCF [7] 20.43 ± 4.22 0.82 ± 0.09 3.16 ± 0.43

UDCP2016 [8] 15.65 ± 3.93 0.68 ± 0.12 2.15 ± 0.64

FUnIE-GAN [9] 20.29 ± 3.12 0.79 ± 0.06 3.08 ± 0.29
WaterNet [10] 19.52 ± 4.00 0.82 ± 0.10 2.98 ± 0.39

Shallow-Uwnet [11] 20.78 ± 5.13 0.81 ± 0.10 2.84 ± 0.52
MDNet- 20.67 ± 4.39 0.78 ± 0.09 2.91 ± 0.43
MDNet 22.27 ± 3.51 0.82 ± 0.06 3.09 ± 0.34

The results of different methods on EUVP-Imagenet dataset are shown in Table 2.
Among the traditional methods, RGHS achieved the best performance on PSNR and
SSIM, while GCF achieved the best performance on UIQM. In deep learning methods,
Shallow-Uwnet was the best on PSNR and SSIM, while MDNet followed closely. The
proposed MDNet showed the best results on UIQM. On this dataset, deep learning methods
performed generally better than traditional methods on PSNR and SSIM, while traditional
methods were better than learning methods on UIQM. Thus, the proposed approach not
only kept the good results on the PSNR and SSIM indicators, but also largely improved the
UIQM value that other learning methods did not have.

The full reference evaluation indicators require ground truth; thus, only UIQM was
used to evaluate the results of different methods on the U45 dataset (without ground truth),
as shown in Table 3. Among the traditional methods, GCF achieved the best performance
on UIQM. In deep learning methods, FUnIE-GAN was the best on UIQM, while MDNet
followed closely. MDNet has reached the top three position on this dataset.
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Table 2. Results of different methods on EUVP-Imagenet dataset.

Methods PSNR↑ SSIM↑ UIQM↑
CLAHE [4] 18.72 ± 1.97 0.66 ± 0.08 2.92 ± 0.35

Two-step [5] 18.50 ± 2.77 0.65 ± 0.10 3.04 ± 0.25
RGHS [6] 22.56 ± 2.89 0.69 ± 0.07 2.30 ± 0.41
GCF [7] 18.18 ± 4.00 0.66 ± 0.18 3.42 ± 0.27

UDCP2016 [8] 19.32 ± 4.42 0.64 ± 0.09 2.20 ± 0.45

FUnIE-GAN [9] 23.00 ± 2.20 0.75 ± 0.07 3.14 ± 0.31
WaterNet [10] 19.89 ± 4.59 0.74 ± 0.08 2.89 ± 0.42

Shallow-Uwnet [11] 24.86 ± 2.68 0.79 ± 0.07 3.08 ± 0.34
MDNet- 23.04 ± 2.54 0.75 ± 0.08 3.19 ± 0.30
MDNet 23.47 ± 2.46 0.76 ± 0.08 3.21 ± 0.30

Table 3. Results of different methods on U45dataset.

Methods UIQM↑
CLAHE [4] 3.04 ± 0.62

Two-step [5] 3.31 ± 0.28
RGHS [6] 2.57 ± 0.74
GCF [7] 3.36 ± 0.27

UDCP2016 [8] 2.41 ± 0.70

FUnIE-GAN [9] 3.40 ± 0.25
WaterNet [10] 3.27 ± 0.27

Shallow-Uwnet [11] 3.03 ± 0.42
MDNet- 3.32 ± 0.25
MDNet 3.34 ± 0.28

4.5. Analysis of Results

(1) Performance analysis: The proposed MDNet combines traditional methods with
deep learning methods and further improves the quality of underwater images by using
deep learning methods on the basis of preprocessing with traditional methods. In qualita-
tive evaluation, MDNet can effectively enhance underwater images and improve visual
quality for different scenes. In a quantitative evaluation, compared with other deep learning
methods, MDNet has achieved excellent performance on all three datasets. Moreover, the
image preprocessing method of MDNet can be easily replaced by others, thus making the
approach quite flexible.

(2) Comparison with ground truth: In this work, we found that the performance of the
proposed MDNet is very close to ground truth on many images intuitively. In some cases,
it is even better than the ground truth of poor quality (as shown in Figure 9). This indicates
the strong capability of the proposed method in enhancing underwater images.

(3) Comparison between traditional methods and deep learning methods: It is worth
noting that traditional methods tend to perform better on certain underwater images or
scenes (as shown in Figure 5, the two-step and GCF results in the top line), which is also
consistent with the fact that images processed by traditional methods are often selected
as ground truth in dataset generation [10]. However, traditional methods have difficulty
dealing with complex and diverse underwater scenes, and often produce over- or under-
enhancement (such as two-step and GCF in Figure 8). In this situation, deep learning
approaches display stronger generalization performance, and their overall performance is
better than that of the traditional approaches (it can also be seen from the test indicators).
Therefore, for a single underwater scene, an appropriate traditional method would be
usually qualified; however, in terms of more complex and changeable scenes, a deep
learning method can be a better choice.



J. Mar. Sci. Eng. 2023, 11, 1183 12 of 15J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 9. Some examples of enhanced images that are better than the ground truth in UIEB dataset. 

(3) Comparison between traditional methods and deep learning methods: It is worth 
noting that traditional methods tend to perform better on certain underwater images or 
scenes (as shown in Figure 5, the two-step and GCF results in the top line), which is also 
consistent with the fact that images processed by traditional methods are often selected as 
ground truth in dataset generation [10]. However, traditional methods have difficulty 
dealing with complex and diverse underwater scenes, and often produce over- or under-
enhancement (such as two-step and GCF in Figure 8). In this situation, deep learning ap-
proaches display stronger generalization performance, and their overall performance is 
better than that of the traditional approaches (it can also be seen from the test indicators). 
Therefore, for a single underwater scene, an appropriate traditional method would be 
usually qualified; however, in terms of more complex and changeable scenes, a deep 
learning method can be a better choice. 

4.6. Application Tests 
To verify the validity of the proposed method in this paper, we conducted the SIFT-

based key point matching test [43] and the global contrast-based salient region detection 
test [44]. The numbers of key points matched to the original underwater image in Figure 
10a,b are 45 and 222, respectively. After processing with the method, the numbers of key 
points that can be matched are displayed in Figure 10c,d, which are 335 and 342, respec-
tively. The results show that the images processed with our method can match more key 
points. The salient region detection tests are presented in Figure 11. Comparing our results 
with the original underwater images, it can be concluded that the proposed method leads 
to a clearer saliency map, which provides more image details. 

Figure 9. Some examples of enhanced images that are better than the ground truth in UIEB dataset.

4.6. Application Tests

To verify the validity of the proposed method in this paper, we conducted the SIFT-
based key point matching test [43] and the global contrast-based salient region detec-
tion test [44]. The numbers of key points matched to the original underwater image in
Figure 10a,b are 45 and 222, respectively. After processing with the method, the numbers
of key points that can be matched are displayed in Figure 10c,d, which are 335 and 342,
respectively. The results show that the images processed with our method can match more
key points. The salient region detection tests are presented in Figure 11. Comparing our
results with the original underwater images, it can be concluded that the proposed method
leads to a clearer saliency map, which provides more image details.
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5. Conclusions and Future Work

This paper proposes an underwater image enhancement method, MDNet, which com-
bines the traditional method with the deep learning method. Qualitative and quantitative
evaluations have demonstrated the excellent performance of MDNet, and application tests
have also validated its effectiveness. In addition, the method allows the use of arbitrary
enhancement methods for preprocessing which offers strong flexibility to the approach.
The quality of the images enhanced by MDNet can even be better than some ground truth
in many cases. In the meantime, we found that traditional methods usually work better
in the case of individual images or certain simple scenes. In complex environments, deep
learning methods offer better performance in general cases.

In this paper, only CLAHE was used and discussed in image preprocessing. More
algorithms can be introduced to our approach. Deep learning part of the algorithm can also
be further improved to obtain better performance. The quality of datasets will have great
influence on deep learning-based approaches. However, there are still some low-quality
ground truths in many datasets, such as UIEB and EUVP. Therefore, it merits to build a
high-quality underwater image enhancement dataset in the future.
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