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Abstract: Artificial intelligence (AI) will play an important role in realizing maritime autonomous
surface ships (MASSs). However, as a double-edged sword, this new technology brings forth new
threats. The purpose of this study is to raise awareness among stakeholders regarding the potential
security threats posed by AI in MASSs. To achieve this, we propose a hypothetical attack scenario in
which a clean-label poisoning attack was executed on an object detection model, which resulted in
boats being misclassified as ferries, thus preventing the detection of pirates approaching a boat. We
used the poison frog algorithm to generate poisoning instances, and trained a YOLOv5 model with
both clean and poisoned data. Despite the high accuracy of the model, it misclassified boats as ferries
owing to the poisoning of the target instance. Although the experiment was conducted under limited
conditions, we confirmed vulnerabilities in the object detection algorithm. This misclassification
could lead to inaccurate AI decision making and accidents. The hypothetical scenario proposed in
this study emphasizes the vulnerability of object detection models to clean-label poisoning attacks,
and the need for mitigation strategies against security threats posed by AI in the maritime industry.

Keywords: object detection; cyberthreat; risk scenario; clean-label poisoning attack; poison frog

1. Introduction

The introduction of maritime autonomous surface ships (MASSs) and artificial intelli-
gence (AI) in the maritime industry has revolutionized the operation of vessels, promoting
considerable benefits regarding safety, efficiency, and cost efficiency. Object detection is a
critical area where AI is being utilized in MASSs. Such AI-based object detection systems
enable vessels to detect and identify other vessels, objects, and potential hazards in their
surroundings. By using deep-learning algorithms to identify objects, AI can help MASS in
making informed navigational, speed, and course-correction decisions, thereby reducing
the risk of accidents and ensuring safe operations [1–6]. Object detection is critical in
MASSs because it enables vessels to detect and identify other vessels, objects, and potential
hazards in their surroundings, which is essential for safe navigation, collision avoidance,
and compliance with regulations [4,5].

However, in the maritime industry, AI systems are exposed to cyberthreats that arise
from both unintentionally created and intentionally exploited vulnerabilities, and can have
catastrophic consequences to the safety and security of MASSs and their operators [2–5]. An
attacker could also manipulate the data used by a vessel’s AI algorithms to cause collisions,
damage, or other hazards [2–7] that can result in the vessel being redirected or shut down,
thereby endangering its safety.

In response to the rapid advancements in AI, a dedicated subcommittee (SC 42) was
established under the Joint Technical Committee (JTC 1) of the International Organization
for Standardization (ISO) and International Electrotechnical Commission (IEC). This sub-
committee focuses on standardization efforts pertaining to AI technologies. One of the key
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outputs of ISO/IEC JTC 1/SC 42 was the ISO/IEC TR 24028 technical report, which pro-
vides guidance on the trustworthiness of and security threats to AI systems [8]. The report
covers numerous topics related to the trustworthiness and security of AI, including data
quality, transparency, accountability, and privacy. However, one of its main foci was the
security threats posed by AI systems. The report highlighted the need to address security
threats throughout the life cycle of AI systems, from their design and development to their
operation and maintenance. The report also recognized that security threats in AI could
assume several forms, for instance, data poisoning, adversarial attacks, and cyberattacks.

The cybersecurity threats posed by AI endanger the safe navigation of MASSs, but
stakeholders in the maritime industry are not fully aware of the severity of the issue. This
is because studies on AI cybersecurity threats tend to focus on the technical aspects of
attack algorithms, using generic datasets (such as cats and dogs) that hinder industry
stakeholders from identifying the problem. Therefore, this study aims to raise awareness
among stakeholders by generating and testing a hypothetical attack scenario based on
marine datasets, specifically focusing on data-poisoning attacks, which are a cybersecurity
threat posed by AI in the maritime industry. In Section 2, we review previous research and
explain the contributions of this paper. In Section 3, we examine the clean-label poisoning
attack technique used in this study. In Section 4, we propose a hypothetical attack scenario,
and verify it through experimentation in Section 5. Section 6 discusses the results, and
Section 7 summarizes the research.

2. Background
2.1. Literature Review

Studies on object detection are being conducted as an important challenge in the
implementation of MASSs. Rekavandi et al. offered a guide on image- and video-based
small-object detection using deep learning with a focus on maritime surveillance [9]. The
study provided an overview of deep-learning-based approaches for detecting small objects,
evaluated various techniques, and explored challenges and potential solutions. Shao
et al. proposed a multiscale object detection model for autonomous ship navigation in a
maritime environment [10]. The study focused on the challenges of detecting small objects,
such as buoys and boats, and proposed a multiscale detection approach that combined
global and local information to improve accuracy. Yao et al. proposed a simultaneous
LiDAR-based multiobject tracking and static mapping method for nearshore scenarios [11].
The study focused on the challenges of tracking multiple moving objects in nearshore
environments, and proposed a method that combined LiDAR data and static mapping
to improve tracking accuracy. Yang et al. proposed a modified version of the YOLOv5
object-detection algorithm known as FC-YOLOv5 for use in unmanned surface vehicles [12].
The proposed FC-YOLOv5 algorithm was tested on datasets, compared with other object-
detection algorithms, and demonstrated improved performance concerning detection
accuracy and computational efficiency.

Studies are being conducted to identify and assess risks associated with MASSs and
to explore cybersecurity. Wróbel et al. investigated the use of leading safety indicators
in the maritime industry and their feasibility for MASSs [13]. The study provided an
overview of leading safety indicators and their use in the maritime industry, discussed
the challenges and opportunities of applying them to MASSs, and proposed a framework
for selecting and implementing leading safety indicators for MASSs. Li et al. proposed
a network analysis approach for identifying operational risks in MASSs [14]. The study
focused on the challenges of identifying and analyzing operational risks in MASSs, and
proposed a method that uses network analysis to model the relationships between risk
factors and identify critical risk factors. Akpan et al. discussed the cybersecurity challenges
facing the maritime sector [15]. The study provided an overview of cyberthreats and
vulnerabilities in the maritime industry, explored the potential impact of cyberattacks
on maritime operations, and discussed the current state of cybersecurity practices and
regulations in the industry. Ben Farah et al. performed a systematic survey on recent
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advances and future trends in cybersecurity for the maritime industry [16]. The study
provided an overview of cybersecurity threats and challenges in the maritime sector,
discussed the current state of cybersecurity measures and technologies, and explored future
trends and opportunities for improving cybersecurity in the industry.

As the adoption of MASSs continues, technical studies on AI-based object detection
and cybersecurity are being actively conducted. However, it is challenging to find specif-
ically related studies to AI security threats in the maritime sector. Fortunately, recently,
there have been some studies on adversarial attacks against AI. Walter et al. proposed
adversarial AI test cases for evaluating the robustness of maritime autonomous systems
(MASs) [17]. The study focused on the challenges of developing effective test cases for
evaluating the security and safety of MASs, and proposed a method that uses adversarial
AI techniques to generate realistic attack scenarios. The authors evaluated the proposed
approach using the case study of a MAS, and demonstrated its effectiveness in identifying
vulnerabilities and improving MAS security.

Attacks on AI are divided into black- and white-box attacks depending on whether
the attacker has knowledge of the target model. Black-box attacks involve attacking an
AI model without knowledge of its internal workings, whereas white-box attacks involve
full knowledge of the internal workings of the model. Adversarial and data-poisoning
attacks are two of the most common methods used against AI. Adversarial attacks involve
manipulating inputs to cause incorrect predictions, whereas data-poisoning attacks involve
feeding an AI model with corrupted or biased data during training. Several studies
are developing algorithms against these attack methods (adversarial and data-poisoning
attacks) depending on whether they are black- or white-box attack methods [18,19].

Various algorithms have been studied for adversarial attacks, such as the fast gradient
sign method (FGSM), iterative FGSM method (I-FGSM), momentum iterative FGSM (MI-
FGSM), and projected gradient descent (PGD). FGSM is a type of one-step adversarial
attack by which an attacker perturbs the input data by adding noise on the basis of the
direction of the gradient of the loss function with respect to the input data [20]. The added
noise is limited to avoid being noticeable, but is sufficient to cause incorrect predictions.
I-FGSM is an iterative version of FGSM in which the attacker repeatedly perturbs the
input data in small incremental steps until the desired level of misclassification has been
achieved [21]. MI-FGSM further improves on I-FGSM by adding a momentum term to the
iterative process, which helps the attacker in escaping from the local minima and finding
more effective attack directions [22]. PGD is a stronger and more complex adversarial
attack algorithm that iteratively perturbs the input data in the direction of the gradient
while constraining the perturbations to be within a certain range [23].

Research on data-poisoning attacks has been underway since the early days of machine-
learning studies. Turner, Tsipras, and Madry introduced a novel approach to attacking
machine-learning models known as clean-label backdoor attacks [24]. These attacks in-
volve the insertion of trojan examples into the training dataset, carefully labeled to appear
benign and avoid suspicion, thus triggering significant misclassifications during testing.
The authors underscored the vulnerability of deep-learning models to subtle manipula-
tions and the importance of developing robust defenses against such attacks. Similarly,
Saha, Subramanya, and Pirsiavash proposed an innovative attack technique involving
the embedding of backdoor triggers within neural network models [25]. By modifying
a small fraction of training samples, they ensured that these triggers remained dormant
until a specific pattern was present in the input, thereby activating the backdoor behavior.
The authors also stressed the challenges associated with detecting and mitigating hidden
trigger backdoor attacks. Expanding the scope of clean-label backdoor attacks, Zhao et al.
devised a method specifically targeting video recognition models [26]. They developed a
strategy to insert hidden triggers into the training data while preserving its performance on
clean-label samples. These triggers activate backdoor behavior only when a specific pattern
is present in the input video, causing misclassification. The researchers demonstrated the
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effectiveness of their attack method on various video recognition tasks and evaluated the
robustness of different defense mechanisms against such an attack.

Algorithms such as the poison frog, convex polytope, and bullseye polytope have
been studied for data-poisoning attacks. The poison frog algorithm injects small amounts
of malicious data into the training data to influence the AI model’s decision making [27].
The attack is known as “poison frog” because it mimics the behavior of the poison dart frog,
which uses a small amount to incapacitate prey or threats by causing paralysis. Convex
polytope is a data-poisoning attack that modifies the training data by adding a set of points
that lie within a convex polytope, a geometrical shape with straight sides and flat faces [28].
These points are carefully selected to maximize the effect of the attack on the AI model’s
decision making. The bullseye polytope is a variant of the convex polytope attack [29]. In
this attack, malicious points are selected to lie within a smaller subset of the original convex
polytope, creating a “bullseye” pattern that increases the effectiveness of the attack.

2.2. Contribution of This Paper

Although technical studies on object recognition and cybersecurity in the maritime
sector are active, those on AI security threats are only just beginning. In contrast, the AI
science field involves studying algorithms for adversarial and data-poisoning attacks on
AI, focusing on improving the attack performance, often using general datasets such as
Canadian Institute for Advanced Research 100 classes (CIFAR-100). To raise awareness on
AI threats among stakeholders in the maritime industry and promote further studies, it
is necessary to conduct experiments using datasets and scenarios to which stakeholders
can relate. To achieve this, this study proposes a plausible hypothetical attack scenario
using maritime datasets, and verifies the scenario by performing a clean-label poisoning
attack on the YOLOv5 object recognition model. The results of these experiments increase
stakeholders’ awareness of the risks of clean-label poisoning attacks, and highlight the
need for studies and defense methods against attacks.

3. Theory: Clean-Label Poisoning Attack

Data-poisoning attacks by which attackers exploit the vulnerabilities of machine-
learning models by corrupting their training data have been a well-known threat to machine-
learning systems for several years. These examples could be used to manipulate the
behavior of a model, leading to incorrect predictions or decisions. However, as machine-
learning technology has advanced, traditional data-poisoning attacks are more easily
detected. Consequently, attackers have shifted their focus to clean-label poisoning attacks,
which can be more difficult to detect [24,25,27,30,31].

Clean-label poisoning attacks are a type of data-poisoning attack in which an adver-
sary manipulates the training data without changing the associated labels. The aim is to
introduce subtle, hard-to-detect changes that degrade the performance of the model or
cause it to produce specific errors. The general procedure for a clean-label poisoning attack
is as follows [24,25,27,30–35]:

1. Data collection: An attacker first gathers information about the target model and
its training dataset. This can be achieved using public datasets or datasets with
distributions similar to those of the target model.

2. Poison sample selection: An attacker selects a subset of data points to modify or from
which to create new instances. The choice of sample depends on the attacker’s goal,
such as targeting a specific class or introducing a specific type of error.

3. Data manipulation: An attacker subtly manipulates the selected data points to create
poisoned instances. These manipulations can include adding, removing, or modifying
features to make the instances appear legitimate while still affecting the learning
process of the model.

4. Injection of poisoned data: The attacker injects manipulated data points into the target
model’s training dataset. This can be achieved through various ways, for instance,
by compromising the data collection process, infiltrating the data storage system, or
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leveraging insider access. An attacker can deploy poisoned data or move to the next
step and deploy a poisoned model. As shown in Figure 1, the algorithm generates
a poisoned instance by extracting the features of the target cat image and applying
them to the base dog image. In the input domain, which is visible to the human eye,
the instance appears to be a dog, but in the feature domain, which is perceived by AI,
the instance appears to be a cat.

5. Model retraining: The target model is retrained with the poisoned dataset by in-
corporating poisoned instances into its learning process. This typically results in
degraded performance or specific errors depending on the attacker’s goals. As shown
in Figure 2, the victim collects the poisoned instance, and because there are no appar-
ent anomalies in the image, it is unsuspectingly labeled as a dog and trains the model.
In this example, the poisoned instance is exaggerated for the sake of understanding;
however, in reality, it is nearly indistinguishable from the base instance.

6. Exploiting the compromised model: Once the model has been retrained, the attacker
exploits the compromised model for their purposes. This can involve causing mis-
classifications, bypassing security measures, or altering the model’s behavior in other
malicious ways. As shown in Figure 3, when an attacker inputs the target instance
into the poisoned model, it is classified as the same class as the poisoned instance
because they share similar features. Because the label of the poisoned instance is
“dog,” the target instance is also classified as “dog,” resulting in misclassification.
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A clean-label poisoning attack is particularly challenging to defend against because
the poisoned datapoints retain their original labels, rendering them more difficult to detect.
Although various algorithms have been studied in relation to clean-label poisoning attacks,
in this study, we introduce a relatively simple poison frog algorithm, aiming to verify
vulnerabilities in object detection of MASSs using this approach.
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Shafahi et al. proposed a targeted clean-label poisoning attack on neural networks.
The poison frog algorithm aims to generate poisoned data points that can cause a model
to misclassify a specific target instance while maintaining a subtle and hard-to-detect
appearance. The algorithm is based on solving a bilevel optimization problem, and involves
iteratively updating the poisoned datapoints using the gradient information from the loss
function of the target model. Table 1 summarizes the poison frog algorithm [27].

Table 1. Poison frog algorithm.

Input Original data points x and their true labels y; target model with parameters θ, loss function L(θ, x, y)
Output Poisoned datapoints x*

Algorithm

1. Find poisoned datapoints x* that minimize the distance to the original datapoints while maximizing the
model’s loss on the target test point:
min_x* D(x, x*) subject to min_θ L(θ, x*, y*)
where D(x, x*) denotes a distance metric between the original datapoints x and the poisoned datapoints x*.
2. Compute the gradient of the inner optimization problem with respect to the poisoned datapoints using the
implicit function theorem:
∇_x* L(θ*, x*, y*) = −H(θ*, x*, y*)−1 * J(θ*, x*, y*)
where θ* denotes the optimal model parameters, H(θ*, x*, y*) denotes the Hessian matrix of the loss function,
and J(θ*, x*, y*) denotes the Jacobian matrix of the loss function with respect to the poisoned datapoints.
3. Iteratively update the poisoned datapoints using the computed gradient:
x*ˆ(t + 1) = x*ˆ(t) − α * ∇_x* L(θ*, x*ˆ(t), y*)
where x*ˆ(t) denotes the poisoned datapoints at iteration t, α denotes the learning rate, and∇_x* L(θ*, x*ˆ(t), y*)
denotes the computed gradient.
4. Repeat steps 2 and 3 until convergence or a predefined number of iterations.
5. Inject the generated poisoned datapoints x* into the training dataset and retrain the target model.

4. Methodology
4.1. Proposed Hypothetical Scenario

In this study, we propose a hypothetical scenario where an object detection model
misclassifies a boat as a ferry owing to a data-poisoning attack, and validate it through
experimentation. The scenario we devised is as follows:

1. An attacker captures scenes of a ferry approaching the target vessels for piracy pur-
poses.

2. A poisoning image is generated using the clean-label poisoning algorithm with the
base image of a boat for each frame of the captured video.

3. The attacker uploads the dataset pretending that it is a new trustworthy dataset for
object detection.

4. The collision avoidance system developer (victim) unknowingly trains their model
using the poisoned dataset, which appears normal to the human eye and produces
high accuracy during training.

Steps 1 to 4 are illustrated in Figure 4.
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5. The collision avoidance system, which includes a poisoned-object detection model, is
installed on a ship and operates normally.

6. The pirate uses a boat to approach the target vessel in a real, similar location to the
captured scenes.

7. The poisoned-object detection model is triggered by the poison image and misclassifies
the approaching boat as a ferry, thereby failing to detect a boat.

8. Through this clean-label poisoning attack, the collision avoidance system fails to detect
the approaching boat, potentially rendering the target vessel vulnerable to piracy.

Steps 5 to 8 are illustrated in Figure 5.
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4.2. Validation of the Proposed Scenario

To verify the validity of this scenario as a potential security threat and gain a com-
prehensive understanding of its occurrence, we devised an experimental procedure that
aligned with the generated scenario, and conducted tests accordingly [24–27]. While real-
world vision systems utilize videos as inputs for object detection in deep-learning models,
our experimental procedure involved extracting video clips frame by frame, treating them
as individual still images, and feeding them to the deep-learning model. Although this
assumption deviates from real-world conditions, it allowed for us to control variables that
may influence the experiment, thereby enabling the effective evaluation of the impact of
clean-label poisoning attacks.

The experimental procedure comprised four phases, as shown in Figure 6. In the first
phase, we preprocessed the SMD-Plus dataset to meet the requirements of YOLOv5, and
split the dataset into a malicious dataset to be used for the attack, training dataset to train
the YOLOv5s model, and test dataset to evaluate the model’s performance. In the second
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phase, we assumed the role of an attacker and generated poisonous instances using the
poison frog algorithm with the malicious dataset. In the third phase, we assumed the role
of the victim, and trained the model with poisoned instances and a clean training dataset.
The poisoned instances appeared to be normal at first glance, so they were used for model
training without suspicion. During this phase, the object detection model was poisoned
due to the poisoned instances. Lastly, in the fourth phase, we evaluated the poisoned
model’s performance by inputting the test dataset to confirm that it operated normally, and
executed the attack by inputting the target instance.
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5. Results: Experimental Clean-Label Poisoning Attack
5.1. Dataset Preparation

The acquisition of datasets for the maritime industry can be challenging. The Maritime
and Port Authority of Singapore (MPA) and Singapore Management University (SMU) have
publicly released the Singapore Maritime Dataset (SMD) for research and development
purposes. This dataset includes more than 2 million automatic identification system
vessel movements, allowing for researchers to analyze vessel behavior, and develop new
algorithms and systems for maritime operations [36]. The SMD is continuously updated,
and is available to researchers and developers worldwide to promote innovation in the
maritime industry. However, it contains several labeling errors and imprecise bounding
boxes, hindering using it as a benchmark dataset for object classification. Consequently,
Kim et al. proposed SMD-Plus to improve annotations, particularly the precise bounding
box annotations for small maritime objects [37]. SMD-Plus also combines classes with
indistinguishable labels to provide additional training data for object recognition. Table 2
lists the classification of training classes in SMD-Plus.
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Table 2. Details of the SMD-Plus dataset.

Class Class Identifier Number of Objects

Boat 1 14,021
Vessel/ship 2 125,872

Ferry 3 3431
Kayak 4 3798
Buoy 5 3657

Sailboat 6 1926
Others 7 24,993

In this experiment, we extracted a single still image per frame from the available
videos in the SMD-Plus dataset and modified the annotation format to ensure compatibility
with YOLOv5. This process involved converting the original common objects in context
format annotations to the YOLOv5 format, which specifies the coordinates and class of each
object within the image. We selected two videos from the SMD-Plus dataset to simulate a
malicious attack. For the remaining data, we split the dataset into 80% for training and 20%
for testing to train and validate the object detection model.

5.2. Poison Instance Generation

In the malicious dataset obtained from SMD-Plus, we prepared base instances using
frame-separated images extracted from videos featuring ferries, and target instances us-
ing frame-separated images extracted from videos containing boats. Subsequently, we
generated poisoned instances using the poison frog algorithm with the ResNet50 neural
network [27,28]. To ensure that the changes to the images were not noticeable to humans,
we set the number of iterations to 5000, epsilon to 0.02, and alpha to 0.001. The poisoned
instances generated for each frame are shown in Figure 7. Despite natural variations in
the objects’ positions between frames, no anomalies were discernible to the human eye.
Consequently, the victim was likely to label objects as ferries without becoming suspicious.
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5.3. Deep-Learning Model and Attack Execution

We combined the training dataset generated by splitting the SMD-Plus dataset and
the poisoned instances to create a training dataset. We then selected a pretrained model
to perform transfer learning using the YOLOv5 algorithm. YOLOv5 offers four models
based on speed and accuracy, that is, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. For
this experiment, we selected the YOLOv5s model as the base model, the smallest model
that was expected to be more vulnerable to data-poisoning attacks, and performed transfer
learning by fine-tuning it with a downstream task to improve the training speed and
accuracy. The training parameters were set to 100 epochs, and the batch size was 16 [15,17].
Transfer learning is a common training method used to improve the performance of models
with relatively small datasets wherein a pretrained model that trained on a large volume of
data is used as the base model. However, models generated through transfer learning are
more vulnerable to data-poisoning attacks [27].
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After completing the training, we verified the accuracy of the object detection with
the trained model using the test dataset split from the SMD-Plus dataset. Figure 8 shows
the resulting images of object detection for ferries. The left-hand side image in Figure 8
was classified as a ferry with a confidence of 0.82, while the right-hand side image was
classified as a boat with a high confidence of 0.91.
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Table 3 lists the mean average precision (mAP) for each class with a confidence
threshold of 0.5. The model exhibited high mAP values for all classes, including boats
and ferries. Furthermore, even when considering the mAP of all classes simultaneously,
the model achieved a high level of object detection performance with a score of 0.858.
This implies that, despite being trained with poisoned instances, the model performed
exceptionally well, rendering it challenging for the victim to detect any abnormal behavior
in the model.

Table 3. Results of object detection for the test dataset.

Class Precision Recall mAP@0.5

All 0.894 0.797 0.858
Boat 0.992 0.886 0.937

Vessel/ship 0.894 0.941 0.960
Ferry 0.833 0.862 0.855
Kayak 0.737 0.467 0.590
Buoy 1.000 0.789 0.895

Sailboat 0.902 1.000 0.995
Others 0.901 0.630 0.772

Next, a poisoning attack was executed using a target instance, causing a boat to be
misclassified as a ferry with high confidences of 0.87 and 0.89, as shown in Figure 9. The
model misclassified the object owing to the features of the target instance hidden in the
poisoned instances used to train the model.
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5.4. Result Analysis

To conduct a more detailed examination of the misclassification of boats resulting from
the clean-label poisoning attacks, we compared the data extracted from two video clips,
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as summarized in Table 4 [24–27]. The right-hand side image in Figure 8 was obtained
from the MVI_1469_VIS.avi file in the SMD-Plus dataset, with a total of 528 images used
for testing. Furthermore, the images in Figure 9 were extracted from the MVI_1470_VIS.avi
file in the same dataset, with 168 images used for the attack. In general, errors in object
detection can be categorized as either failure to detect or misclassification. Among the
images extracted from the MVI_1469_VIS.avi file, which constituted the test set, only
two instances of undetected objects were observed, with no instances of misclassification
recorded. These missed detections could be attributed to the performance limitations of the
model, indicating a need for improvement, but without raising significant concerns. On the
other hand, all 168 images extracted from the MVI_1470_VIS.avi file that were used for the
attack exhibited misclassification. The occurrence of 168 misclassifications throughout the
entire video clip of about 7 s triggered under specific conditions by the poisoned images
can be considered a critical error.

Table 4. Comparison of object detection results on two image sets.

Source Input Images Not Detected Misclassified

MVI_1469_VIS.avi 528 2 0
MVI_1470_VIS.avi 168 0 168

This experiment allowed for us to confirm two key findings. First, the model exhibited
high-confidence misclassifications, indicating that it confidently identified the detected
object as a ferry with probabilities of 87% and 89%; however, adjusting the confidence
threshold did not resolve the misclassifications. Second, the model generally performed
well under normal circumstances when a test dataset was used, but triggered misclassi-
fications under specific situations, such as when a target instance was input. Thus, it is
challenging to determine whether the model has been subjected to poisoning.

6. Discussion

The vulnerability of computer vision using AI algorithms, such as YOLOv5, has gar-
nered significant attention and highlighted the importance of studying it among researchers
in the field of AI. However, stakeholders in the maritime industry, while focused on improv-
ing object detection for MASSs under challenging conditions (such as small size, partial
visibility, or adverse weather), have shown less concern regarding the vulnerabilities of
AI. This study aims to raise awareness among stakeholders of the security threats posed
by AI in the maritime industry. Therefore, the objective of this study was to propose and
validate a risk scenario wherein AI misclassifies boats as ferries, hindering the detection of
approaching boats and potentially leading to piracy incidents. To validate this hypothesis,
a four-phase experiment was conducted. In the first phase, the SMD-Plus dataset was
preprocessed to meet the YOLOv5’s requirements, and the dataset was split for experimen-
tation. In the second phase, poisoned instances were generated using the ResNet50 neural
network and the poison frog algorithm. In the third phase, a poisoned model was created
through transfer learning using poisoned instances and a training dataset with a pretrained
YOLOv5s model. In the fourth phase, the accuracy of the poisoned model was evaluated
using the test dataset, and the attack was executed using the target instance.

Despite demonstrating high accuracy in object detection with a mAP of 0.858, the
poisoned model misclassified the boats as ferries when tested with the target instances due
to the poisoning attack. This indicated that the model was affected by the hidden feature
information embedded in the target instances, triggering misclassifications upon their
input. Particularly noteworthy is that the target instances appeared to be normal to human
eyes, hindering detecting the presence of hidden feature information. Therefore, research
is needed to detect and remove hidden feature information in seemingly normal images
or to modify the model’s learning parameters to mitigate vulnerabilities. A robust model
demonstrates high performance without triggering misclassification in such clean-label
poisoning attacks.
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Because this experiment generated a hypothetical scenario using a limited dataset
and attack method, it is difficult to generalize the vulnerability of AI systems in actual
operational environments. However, the significance of this study lies in raising awareness
and fostering appreciation among stakeholders regarding potential threats related to AI
when employing datasets acquired from the maritime domain, instead of commonly used
datasets such as those involving dogs and cats.

7. Conclusions

In this study, a hypothetical attack scenario targeting an object detection system for
MASS was proposed and tested using the SMD-Plus dataset and poison frog algorithm to
attack the YOLOv5 model, causing the misclassification of boats as ferries. Despite the high
accuracy exhibited by the poisoned YOLOv5 model, its vulnerability was demonstrated
by causing misclassification through a data-poisoning attack. This study is significant in
raising awareness among stakeholders in the maritime industry about the importance of
being cautious of data-poisoning attacks and understanding the security threats posed by
AI. In addition, it emphasizes the need for developing strategies and emergency plans to
mitigate security threats posed by AI.

During the experiment, we encountered difficulties in obtaining a dataset, which
led us to using the SMD-Plus dataset. Although the SMD-Plus dataset is useful, it does
not represent all maritime conditions. In addition, we only used it to help stakeholders
in understanding the concept of clean-label data-poisoning attacks. Therefore, in future
research, we will create a dataset that includes various maritime conditions by incorporating
other datasets such as Seaships and MARVEL and perform clean-label data-poisoning
attacks on the developed dataset. Furthermore, to ensure the efficiency of this experiment,
we employed still images extracted frame by frame. However, in future studies, we intend
to conduct experiments using video inputs to examine the impact of a more realistic
approach and evaluate the real-time processing capability of YOLOv5.

Lastly, the poison frog algorithm utilized in this study represents a relatively simple
approach among various types of clean-label poisoning attack algorithms. To comprehen-
sively evaluate the vulnerability of object detection, we plan to apply different algorithms
and suitable methods for the maritime domain to mitigate the discussed vulnerabilities.
These methods include techniques for detecting or removing inappropriate information
embedded in the images, and model training approaches that enhance the robustness of
object detection.
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