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Abstract: Accurate vessel travel time estimation is crucial for optimizing port operations and ensuring
port safety. Existing vessel travel time prediction models primarily rely on path-finding algorithms
and corresponding distance/speed relationships to calculate travel time. However, these models
overlook the complex nature of vessel travel time, which is influenced by multiple traffic-related
factors such as collision avoidance, shortest path selection, and vessel personnel performance. The
lack of consideration for these specific aspects limits the accuracy and applicability of current models.
We propose a novel context-aware deep learning approach for inland vessel travel time prediction.
Firstly, we introduce a complex network that captures vessel–vessel interaction contexts, providing
valuable traffic environment information as an input for the deep learning model. Additionally,
we employ a convolutional neural network to extract spatial trajectory information, which is then
integrated with interaction contexts and indirect context information. In the vessel travel time predic-
tion procedure, we utilize a long short-term memory network to capture the temporal dependence
within consecutive channel sections’ fused multiple context feature sets. Extensive experiments
incorporating historical data from the Wuhan section of the Yangtze River in China demonstrate the
superiority of our proposed model over classical models in predicting vessel travel time. Importantly,
our model accounts for the specific traffic contexts that had previously been overlooked, leading to
improved accuracy and applicability in inland vessel travel time prediction.

Keywords: inland river traffic; travel time prediction; complex network; deep learning network

1. Introduction

Maritime transportation accounts for the conveyance of over 80% of world trade cargo,
rendering port resource scheduling a busy operation. Regarding port resources, berths
provide parking spaces for vessels, and hoisting machines are the main pieces of equipment
used for loading and unloading containers between container vessels and the front of a
wharf. However, to ensure port safety and improve resource utilization efficiency, port
managers must pre-allocate the different berths and hoisting machines depending on the
sizes and types of arriving vessels (such as hazardous chemical vessels, container vessels,
etc.). Therefore, the accurate estimation of vessel arrival time is crucial for optimizing port
resources. Given that a vessel’s arrival time is a moment that is obtained by summing the
vessel time T, a vessel travel’s time is vital to its arrival time. However, despite receiving
estimated vessel travel time notifications 24 h in advance from port authorities, there
can be discrepancies between the actual and reported vessel travel times due to various
factors [1], including subjective factors such as the captain’s experience or environmental
uncertainties leading to slowdowns. Therefore, the accurate prediction of vessel travel time
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is challenging and yet crucial for determining estimated time of arrival and supporting
port resource scheduling.

An AIS (Automatic Identification System) is a system that actively transmits data from
vessels regarding vessel movement information, such as longitude, latitude, speed, vessel
type, time, maritime mobile service identity (MMSI), etc., through a transmitter. Hence, an
AIS records useful information relative to travel time along the vessel’s itinerary, such as
motion trajectory, regional vessel density, average speed, and the direct travel time from a
fixed origin to the destination over time, making it beneficial for the prediction of vessel
travel time.

While there appearssome growth in the research regarding travel time prediction based
on AIS data, the amount of existing research is still limited. Wu investigated the problem
of determining vessel travel times in inland channels; however, the focus in the cited study
was identifying the distance from the origin to the destination and the corresponding
timestamps based on an AIS [2]. More relevant research was presented in [3,4], where all
of the developed travel time estimation algorithms follow a similar principle; that is, the
travel time estimations are obtained by dividing an estimated path length by an estimated
speed. For example, Alessandrini proposed an online path selection approach utilizing a
grid structure network. This approach then employs the Dijkstra strategy to find the best
next-step navigation grid based on the direction and density features of the current grid.
The travel time to the destination is updated whenever a new grid is determined [3]. Park
adopted reinforcement learning (RL) to predict paths and estimate average speed [4].

These studies mainly relied on the linear relationship between distance and speed,
which may be invalid for long paths because longer paths may entail more uncertainties
such as random deceleration. Considering the nonlinear relationship between multiple
factors and travel time is a recent trend in related research. As a vessel’s navigation is
affected by different route types and its personnel’s performance, Yu utilized machine
learning models to determine the mapping relationship among vessel arrival times with
respect to navigation day and month, route type, and vessel length [5]. Additionally, to
account for the travel time difference in different motion patterns, Xu first employed a
clustering algorithm to group motion patterns and then established travel time Support
Vector Regression (SVR) models for each motion pattern, in which the inputs included the
vessel’s latitude, longitude, speed over ground, course over ground, navigation status, and
remaining distance and the output was the online travel time remaining until arriving at
the destination [6].

However, few studies have explored the impact of traffic congestion information,
which may impede a vessel’s motion on the surface. In areas with a high number of
vessels, the average speed may decrease, thereby affecting travel time. In contrast, the
prediction of travel time considering external factors is a well-researched topic in the road
traffic literature, with many studies utilizing traffic flow and congestion to represent a
traffic context.

For instance, Sheng used delay time to represent the congestion levels of road sec-
tions and constructed a convolutional long short-term neural network that fuses trajectory
features and road traffic congestion information to predict travel times of different tra-
jectories [7]. Peng constructed a time series relationship between travel time and traffic
states, for which current and historical data were employed to predict the travel time of a
given route in the next time interval [8]. Fei proposed a Bayesian dynamic linear model for
real-time, short-term travel time prediction under two types of traffic statuses: recurrent
and non-recurrent congestion [9]. Depicting the surface vessel congestion state and thus
revealing the interactions between vessels is of great importance and as such deserves
further study. Complex network theory has been applied in the aviation transportation
domain to explain traffic congestion states [10]. It has also been applied in a maritime
context to analyze conflicts between vessels, which will be utilized in our later work as
traffic interaction information, where a high amount of conflict indicates a high level of
congestion possibility, as reported in [11].
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With the increasing prevalence of deep learning technology, there has been a growing
interest in applying deep learning to determine the nonlinear mapping of multiple features
in various domains. Kosarirad found that the sonar data generated by impellers with
different numbers of blades had different typical characteristics. Therefore, he adopted
multilayer perceptron neural networks to classify three types (three, four, and five blades,
respectively) of vessel impeller sonar data [12]. The approach utilized high-dimension
feature optimization and dimensionality reduction using a grasshopper algorithm to reduce
the difficulty experienced by the model when attempting to learn nonlinear relationships
and improve classification accuracy. In the road traffic domain, there are also some cor-
relations that cannot be described or quantified by formulas, for example, the correlation
between origin and destination. Sun proposed an LSTM network incorporating travel time
information into the problem regarding the prediction of subsequent locations, finding
that both location prediction and travel time actually improved next location prediction
performance compared with only considering the last locations to predict future locations.
The model revealed that travel time observations in a road may affect a driver’s location
choices [13]. The powerful nonlinear fitting ability of deep learning gives us insights into
establishing multi-source traffic information and determining vessels’ travel times.

In this paper, we propose a novel approach that utilizes deep learning models to
effectively capture the correlation between multiple traffic context information and vessel
travel time. Specifically, our proposed model employs a combination of CNN and LSTM
networks to extract and analyze key features isolated from spatial trajectory data, ultimately
providing insights into travel time estimation. The CNN plays a crucial role in capturing
spatial trajectory features, while the LSTM network accounts for temporal dependencies in
consecutive channel sections’ feature sets. By combining the strengths of CNN and LSTM
networks, our proposed model effectively integrates spatial and temporal information to
provide accurate and reliable travel time estimation. The model’s ability to extract and
merge key features from vessel interactions, along with its capacity to capture temporal
dependencies, allows it to discern intricate patterns and correlations that impact travel time.

The contributions of this work are as follows:
(1) We establish a Vessel Complex Interaction Network (VCIN) that reveals the sur-

face traffic situation, wherein vessels are network nodes, and the interaction relationship
corresponds to edges linking nodes. Compared to traditional traffic flow, the VCIN better
describes the non-stationarity traffic context and implies more valuable information to
predict travel time.

(2) We propose a vessel travel time prediction model based on three feature fusion
modules: traffic context features, trajectory features, and environmental features. Spatial
and temporal correlations are captured through convolutional processes and LSTM neural
networks. The proposed model provides the opportunity to personalize vessel travel time
recommendations based on a vessel’s power characteristics.

(3) We conduct a variety of comparison experiments using real data in the Wuhan
section of the Yangtze River, China, which verify the potential causality between VCIN and
travel time. Ablation experiments also demonstrate the advantage of our proposed model
over state-of-the-art methods.

The remainder of the paper is organized as follows: Section 2 elaborates the multiple
traffic information extraction procedure through three facets. Section 3 details the design of
the vessel travel time prediction model. Section 4 presents the corresponding experimental
prediction results and comparisons, utilizing the AIS data from the Wuhan section of the
Yangtze River. Finally, Section 5 provides our concluding remarks.

2. Multiple Traffic Information Extraction

The procedure of predicting inland vessel travel time mainly consists of two modules,
as illustrated in Figure 1, including multiple traffic information extraction and travel time
prediction. In Section 2, we clarify the first module with respect to two facets, namely,
channel section division and sub-trajectory extraction, the traffic context extraction of sub-



J. Mar. Sci. Eng. 2023, 11, 1146 4 of 17

trajectory, where the Vessel Complex Interaction Network (VCIN) is proposed to depict the
surface traffic context.
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Figure 1. Workflow of our vessel travel time prediction via VCIN.

2.1. Channel Section Division and Sub-Trajectory Extraction

Trajectory information is a salient feature representing a vessel’s route; we decided
to incorporate trajectory structure information into our deep learning model. However,
incorporating the entirety of the trajectory may degrade model performance; thus, reducing
the length of the trajectory can ease the model’s learning. For this reason, we first divided
channel sections based on the Douglas and Peucker (DP) algorithm, and the sub-trajectories
were formed according to keypoints falling into the corresponding channel sections.

We calculated the arithmetic mean of the upstream and downstream trajectories [14]
to represent the channel centerline, which is shown in Figure 2.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 4 of 17 
 

 

The procedure of predicting inland vessel travel time mainly consists of two mod-
ules, as illustrated in Figure 1, including multiple traffic information extraction and travel 
time prediction. In Section 2, we clarify the first module with respect to two facets, namely, 
channel section division and sub-trajectory extraction, the traffic context extraction of sub-
trajectory, where the Vessel Complex Interaction Network (VCIN) is proposed to depict 
the surface traffic context. 

 
Figure 1. Workflow of our vessel travel time prediction via VCIN. 

2.1. Channel Section Division and Sub-Trajectory Extraction 
Trajectory information is a salient feature representing a vessel’s route; we decided to 

incorporate trajectory structure information into our deep learning model. However, incorpo-
rating the entirety of the trajectory may degrade model performance; thus, reducing the length 
of the trajectory can ease the model’s learning. For this reason, we first divided channel sec-
tions based on the Douglas and Peucker (DP) algorithm, and the sub-trajectories were formed 
according to keypoints falling into the corresponding channel sections. 

We calculated the arithmetic mean of the upstream and downstream trajectories [14] 
to represent the channel centerline, which is shown in Figure 2. 

 
 

Figure 2. Illustrations of channel centerline and DP algorithm on centerline. 

Then, we employed the DP algorithm [15] to partition the channel centerline in order 
to detect the key points. Figure 2 illustrates the DP algorithm; it is typically a curve com-
pression method used for the turning point detection of a curve through the identification 
of significant directional shifts. The algorithm searches for the farthest point p from the 
line defined by the first and last points. If the transverse distance 𝑙 to the line calculated 
using (1) exceeds the threshold, point p is saved, and the curve is then split at p to form a 
new line to which the algorithm is recursively applied. The solid line is the original curve 
connected by the collected points, and the dashed lines represent a DP simplified curve. 
As shown in Figure 2, 𝑝ଶ is the first farthest point to the line defined by 𝑝଴ and 𝑝௡, and 

Figure 2. Illustrations of channel centerline and DP algorithm on centerline.

Then, we employed the DP algorithm [15] to partition the channel centerline in
order to detect the key points. Figure 2 illustrates the DP algorithm; it is typically a
curve compression method used for the turning point detection of a curve through the
identification of significant directional shifts. The algorithm searches for the farthest point
p from the line defined by the first and last points. If the transverse distance l to the line
calculated using (1) exceeds the threshold, point p is saved, and the curve is then split at p to
form a new line to which the algorithm is recursively applied. The solid line is the original
curve connected by the collected points, and the dashed lines represent a DP simplified
curve. As shown in Figure 2, p2 is the first farthest point to the line defined by p0 and pn,
and it is saved since the distance l exceeds the threshold. However, since the distances
l1 and l3 are both smaller than the threshold, the corresponding points p1 and p3 would
be discarded

l =
|(yb − ya)

∗xp − (xb − xa)∗yp + xbya − ybxa|√
(xb − xa)

2 + (yb − ya)
2

(1)
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where l represents the distance from point p to the line determined by pa = (xa, ya) and
pb = (xb, yb).

The channel sections between each pair of retained points will be formed once the
DP compression process is completed. We also determined the sub-trajectories, which are
defined as the part of the vessel track that falls in a channel section. The sub-trajectory
information is a salient feature representing the entire vessel route, wherein a longer sub-
trajectory indicates a longer travel time. A CNN is then applied to extract the spatial
structure of sub-trajectories, where the extracted information will combine with traffic
context information to achieve prediction tasks.

2.2. Traffic Context Extraction of Sub-Trajectory
2.2.1. Interaction Information Extraction

Vessels may reduce their speed when facing an encounter [16], which, subsequently,
may have an influence on the vessels’ travel time. Current algorithms are usually tested
using vessel clusters or density to describe the traffic congestion. However, such methods
only show the static features regarding the number of vessels in a region. Few studies
consider the impact of the traffic interaction environment on the movement of vessels. In
this section, we further incorporate the surface traffic dynamic interaction information into
our deep learning model, which represents the environment congestion degree.

In a channel section, a vessel complex interaction network (VCIN) G = {V, E, W}
is defined as follows: V = {vi|i ∈ I} stands for the set of vessels, and I = {1, 2, . . . , N},
E =

{
eij =

(
vi, vj

)∣∣i, j ∈ I
}

is the set of interaction links. N represents the number of
regional vessels, and W =

{
wij
∣∣i, j ∈ I

}
is the corresponding weight of eij. An example

with five vessels is demonstrated in Figure 3.
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The deduction of whether there is an interaction between a pair of vessels is deter-
mined by calculating their convergence and divergence relationships, which are represented
by the approaching rate Rij in (2). If the approaching rate Rij is greater than or equal to 0,
the vessel pair exhibits a divergence trend and does not have any interactions, as shown
in Figure 3a. Otherwise, there is a convergence trend, indicating the possibility of conges-
tion, as shown in Figure 3b,c; subsequently, the weight of each edge is calculated using
Equation (3). The closer the relative distance and the greater the relative speed between
vessels, the higher the risk of congestion or collision; therefore, we use the relative distance
inverse function and relative speed to quantitatively express the weight in Equation (3)

Rij =

→
Dij ·

→
V ij∥∥∥∥→Dij

∥∥∥∥ =

∥∥∥∥→V ij

∥∥∥∥ · cos (
→
Dij,

→
V ij) (2)

wij = λe−λ|
→
Dij | + δ|

→
V ij| (3)
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where
→
Dij and

→
V ij represent the vector distance and vector velocity of the two vessels,

respectively.
→
Dij is calculated based on the two vessels’ coordinate information from an

AIS, and
→
V ij is calculated based on speed information from the AIS. λ and δ are coefficients

that depend on the navigation environment.
The weight between each vessel pair presents a micro interaction situation. We sum

all the weights in this channel section to account for the macro traffic interaction context,
which is denoted as con f licts.

con f licts = ∑m
i=1wij (4)

where m is the number of vessel pairs in a channel section whose Rij < 0.
To train the model, we extracted the sub-trajectory features in Section 2.1 and extracted

four consecutive con f licts values in the channel section corresponding to the sub-trajectory
to represent the traffic context information, which was concatenated with the output of the
convolution layer. That is, as shown in Figure 4, when the travel time prediction task is
initiated at the current time of 9:20, four con f licts values at 9:15, 9:10, 9:05, and 9:00 are
extracted within a five-minute interval. These values are combined in the form of a vector.
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2.2.2. Indirect Information Extraction

Indirect information such as date, vessel characteristics, and kinetic performance
also influence a vessel’s travel time. For example, traffic flow exhibits short-term regular
changes [5], with more vessels on the water during the day than at night. Additionally,
long-term regularity, such as seasonal changes, and the kinetic performance of different
vessels have an influence on vessel speed, leading to variations in travel time. Therefore,
indirect information must be utilized to improve prediction accuracy.

However, it can be challenging for neural networks to disentangle the underlying
meaning of text attributes. Inspired by previous work [17], we perform one-hot encoding
for each categorical attribute, such as month, week, day/night, and vessel type, as shown
in Figure 5. We then concatenate the resulting embeddings with the vessel’s digital infor-
mation, such as vessel length, width, and power, resulting in a vector that can be used as
an input to our deep learning model for prediction.
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3. Vessel Travel Time Prediction Model

Multiple types of traffic information were extracted from Sections 2.1 and 2.2 and
used in the following sections. In this section, we present the results of deep learning
techniques, specifically, CNN and LSTM networks, to extract spatial–temporal correlations
between sub-trajectory and traffic context features to predict vessel travel time accurately.
The framework of the travel time prediction model operating with multi-traffic information
(TTP-MTI) is shown in Figure 6, where the inputs contain three aspects, namely, vessel sub-
trajectory (T), traffic interaction context information (con f licts), and indirect information,
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and the output is the travel time consumed ( tt). The nonlinear relationship between them
is shown in (5)

tt = f (T, con f licts, ind) (5)

where f represents the nonlinear function of the deep learning model.
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Specifically, since the sub-trajectory feature best reflects the spatial evolution process
of each vessel travelling, it is necessary to capture the feature of the sub-trajectory using
a CNN. We use convolution layers to capture the spatial features with a 2D convolution
kernel. The trajectory information after employing the CNN is mapped into a vector. The
convolution layer is expressed as follows:

Conk = tanh(Wk ⊗ T + bk) (6)

where Conk represents the kth characteristic of the convolution output. tanh denotes
the hyperbolic tangent activation function. Wk stands for the weight matrix of the kth
convolution kernel, and bk is the corresponding offset. ⊗ denotes convolution operation.

Then, we use the concatenate layer to fuse the sub-trajectory information, traffic
interaction information, and indirect information to obtain the fused feature vector, as
determined through (7). LSTM is adopted to memorize the long-term dependencies of
a series of fused traffic data among consecutive channel sections, and the output is the
travel time of the entire trajectory. It is worth mentioning that the ground truth of the travel
time is obtained by manually subtracting the time from the origin and last trajectory point
information (‘time’), which is used to calculate the loss of the model.

f usedi = Con⊕ con f licts⊕ ind (7)

tt = LSTM{ f used1, f used2 . . ., f usedn} (8)

In the equation above, f usedi represents the ith channel section fused information, Con
denotes k convoluted features, and ⊕ indicates the concatenate operation.

In order to evaluate the prediction ability of our proposal model, we used three evalu-
ation metrics—Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean
Absolute Percentage Error (MAPE)—to calculate the difference between the prediction
values and observations. RMSE is the most commonly used performance metric in traffic
flow prediction research. The MAE is used to calculate the absolute error between the true
travel time and the predictions, providing an intuitive measure of the error value. However,
it cannot reflect the ratio of predictions relative to the original true value. Hence, we used
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the MAPE to calculate the ratio. Given that travel time is unlikely to have a true value of
zero, the MAPE is a suitable index for prediction evaluation in our study.

RMSE =

√
1
n∑n

i=1(ŷi − yi)2 (9)

MAE =
1
n∑n

i=1‖ŷi − yi‖ (10)

MAPE =
1
n∑n

i=1

∥∥∥∥ ŷi − yi
yi

∥∥∥∥ (11)

In the equation above, ŷi is the model-predicted vessel travel time value, while yi is
the corresponding observation value.

4. Experiments
4.1. Resutls Regarding Channel Sections and Sub-Trajectries

The AIS data used in this paper were collected from the database of the Ship Super-
vision Center of the Wuhan Maritime Safety Administration, corresponding to a dataset
covering an area of approximately 141 km in the Wuhan section of the Yangtze River and
spanning 1 October to 1 December 2022, as shown in Figure 7. However, the AIS data as a
series of messages following a nonstandard pattern of irregular time intervals and there are
many bad datapoints due to transmitter failures, which often leads to inaccuracies or drift.
Therefore, a preprocessing step was needed to clean the data and remove errors, which
includes two aspects.
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Figure 7. Raw AIS data covering an area of 141 Km of Yangtze River.

First, the AIS outliers concerning speed anomalies were eliminated based on the 3σ
principle [18], the speed distribution and the fitted gauss curve are shown in Figure 3.
Second, we manually eliminated bad AIS points with abnormal positions using the ArcGIS
geographic information platform. Afterwards, we collected the normal AIS points for use
in later research, as shown in Figure 8.
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Each vessel has a unique MMSI and time information; therefore, we can obtain vessel
trajectories according to each MMSI, and each trajectory is connected chronologically,
as shown in Figure 9. It is worth noting that we only retained trajectories that did not
include any intermediate stops or port stays as research objects, as this improved prediction
accuracy. This is because we are only interested in determining the time it takes to travel
through a section, regardless of any operational processes that occur at the port.
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Figure 9. Vessel trajectory data based on AIS data.

We created two separate datasets based on the trajectory course information: the
Upstream and Downstream datasets. The Upstream dataset contains 2105 trajectories,
while the Downstream dataset consists of 2165 trajectories. A total of 4270 vessel trajectories
were selected for later research. Detailed vessel-type information is presented in Table 1.

Table 1. Details of the data for training and testing.

Splitting Data
Trajectory Patterns

Upstream Downstream

Oil tanker 494 544
Cargo 302 471

Container 463 431
Chemical tanker 210 202
Multiple vessel 636 517

Total 2105 2165

The channel centerline was obtained by determining the arithmetic mean of the
Upstream and Downstream trajectories. We applied DP to the channel centerline to retain
the key points. The relationship between the threshold distance of the DP and the number
of retained points of the channel centerline is depicted in Figure 10a. It can be observed
that as the distance increases, the number of key points decreases and tends to stabilize.
While we need to ensure adequate representations to build channel sections, we set the
threshold distance to 3500 m in our study, which resulted in obtaining 11 key points along
the Yangtze River from Wuhan to Ezhou. A visualization of the key points that form the
channel sections is shown in Figure 10b.
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The entire trajectories were segmented according to the key points, and we displayed
part of vessel sub-trajectories, where each sub-trajectory is labeled with its vessel type, as
shown in Figure 11. Inspired by previous work [7], the sub-trajectories were then projected
onto two-dimensional pictures. A CNN was then applied to extract the spatial structure
relationships between the vectors, where the extracted information was combined with
traffic interaction information to predict vessel travel time.
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4.2. Analysis of Traffic Interactions Context

Taking Section a in Figure 10 as an example, we calculated the con f licts for Section
a every 5 min for a period of 2 days, where the λ and δ parameters were set to 120 and
0.8, respectively, according to expert assessments. There are 576 time slices in this period.
From Figure 12a, it can be observed that the traffic flow on the water’s surface exhibited
time-varying characteristics. Compared with traditional traffic flow information, conflicts
fluctuated more drastically, with a variance of 113,677.059 in Figure 12b, which is much
higher than that in traffic flow. We used an unsupervised clustering method k-means
algorithm to classify the surface state based on these two indicators. It can be found that
the traffic flow can be divided into three states, and the conflicts more reasonably reflect the
state of the water’s surface, which is divided into five categories, as shown in Tables 2 and 3.
It can be concluded that con f licts can reveal hidden interactive information that traditional
traffic flow does not capture.
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Table 2. Congestion state based on traffic flow.

Congestion State Smooth Mild Congestion Serious Congestion

Traffic flow 0–16 16–24 >24

Table 3. Congestion state based on conflicts.

Congestion
State Smooth Basically

Smooth
Mild

Congestion
Moderate

Congestion
Series

Congestion

con f licts 0–183 183–438 438–811 811–1132 >1132

We compared the two indicators in Figure 12c and found that con f licts provide a
more outstanding feature of surface situations over time. A high con f licts value may
demonstrate that vessels on the surface are relatively close even if there are few vessels.
Incorporating more meaningful sources of information indicating the state of the water’s
surface is essential to improving model performance and achieving better predictions of
vessel travel time.

For a certain sub-trajectory, we incorporated four consecutive con f licts values into our
deep learning model, which represents the traffic interaction information of our prediction
task, as clarified in Section 2.2.1. The traffic interaction information combines the latent
feature information regarding sub-trajectories that has been extracted by the CNN. Then,
LSTM is applied to learn the temporal relationships in a series of fused data in order to
output the final travel time.

4.3. Travel Time Prediction Experiment

In this section, we present the training process and the results of the travel time
prediction experiments conducted on the two test datasets. We introduce the evaluation
metrics used in our model and compare the effectiveness of our model against classic travel
time prediction models through comparison experiments. Furthermore, we report the
results of an ablation experiment undertaken to demonstrate the superiority of our model.

4.3.1. Training of TTP-MTI

Training-related parameters’ settings: The number of epochs was set to 100, the
learning Rate was set to 0.0001, and the batch size was preset to 32. The convolution kernel
size was set to 3 × 3. MAE was used as the loss function for the Adam optimizer.

Running environment: The program was written in Python, and the model was built
based on Keras and run on a GPU (Nvidia GeForce GTX 1060).

In order to train TTP-MTI, all of the trajectory pictures labeled in advance were divided
into a training set (80%) and a test set (20%). To determine the best structure of the CNN,
the performance of six different structural models with the same hyperparameters was
compared based on the training set. The variables include the number of convolutional
layers and the number of convolutional layer nodes, as shown in Table 4.

Table 4. Comparison of different convolutional structures.

Structure Number of
Conv. Layers

Number of Nodes in
Each Conv. Layer Upstream MAE Downstream

MAE

A 2 32-32 0.351 0.342
B 2 32-64 0.336 0.295
C 3 32-32-64 0.231 0.228
D 3 32-64-64 0.254 0.247
E 4 32-32-32-64 0.289 0.263
F 4 32-32-64-64 0.272 0.266
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As shown in Table 4, it is clear that the best structure is structure C, which presents the
lowest MAE and consists of three convolution layers with a combination of nodes equal to
32-32-64. The training process is shown in Figure 13.
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4.3.2. Travel Time Prediction Results

We evaluated the model’s prediction performance regarding inland vessel travel time
when applied to the test set. To verify the effectiveness of the VCIN, we conducted a
comparison experiment on two sets of traffic context information based on the optimal
structure in Section 4.3.1: traditional traffic flow information and con f licts as determined
by the VCIN. The observations are shown in Figure 14; we analyzed the Upstream and
Downstream separately to reveal the different prediction difficulties. The performance for
the Downstream predictions was generally better than that for the Upstream predictions
in all four scenarios. This is because upstream vessels flow against the current, making
their speed more difficult to control, resulting in more random travel times. In contrast,
downstream ships follow the current trend, enabling less resistance and faster speeds,
leading to more stable and predictable travel times. Additionally, the prediction accuracy
decreases as the prediction travel time increases. This can be explained by the fact that
longer trajectories may entail more random turns or temporal stops, making travel time
prediction more difficult.

Comparing Figure 14a,b with Figure 14c,d, it can be observed that our model leverag-
ing the VCIN’s analysis significantly improves prediction performance in both upstream
and downstream prediction tasks. While the traffic flow captures only static features
and does not fully reflect the dynamic interactions of vessels impacting the vessel speed
and travel time, the con f licts metric successfully captures this detail and provides evolv-
ing information through its fluctuating value, leading to improved prediction accuracy.
Specifically, a higher con f licts value may indicate a longer travel time.
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4.4. Comparison Experiment

In order to evaluate the effectiveness of our proposed model, we implemented it
and compared it against four competing baselines described in the literature. The test
set trajectories were chosen to demonstrate the capabilities of our model and baselines in
various scenarios. The four models are explained below:

Speed/distance-based [3]: This model uses path-finding algorithms to predict the
remaining route to a destination in order to estimate the remaining distance and then
calculates the travel time by dividing the remaining distance by an estimated velocity. In
our study, since the trajectories were provided in advance, we calculated the travel time by
dividing the length of the trajectories by an estimated velocity.

SVR-based [6]: This model establishes a non-linear mapping relationship between
the distance to the destination and the remaining travel time using the Support Vector
Regression (SVR) model. This relationship does not consider intermediate speed and
other processes and is an end-to-end model that includes six inputs of a vessel’s latitude,
longitude, speed over ground, course over ground, navigation status, and remaining
distance.

SPD-LSTM [19]: This model uses the traffic flow speed as context information and
employs a section-based approach that utilizes Long Short-Term Memory (LSTM) for
prediction, but it does not consider the traffic context information.

The results of the comparative experiment are presented in Figure 15. The Speed/
Distance-based model showed poor performance across all metrics in both downstream and
upstream prediction tasks. This simple method calculates the linear relationship between
trajectory length and estimated speed, which proved inadequate due to fluctuations in
speed in real-world scenarios. In contrast, the SVR-based model demonstrated improved
prediction results by leveraging nonlinear regression techniques that model the relationship
between travel time and distance. The SPD-LSTM model exhibited acceptable predictive
ability across various metrics by learning dependencies from the input time-series informa-
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tion to make time-relative travel time predictions, but it did not consider the traffic context
information. However, all these models were subject to insufficient contextual information,
as travel time was affected by various factors such as the environment and vessel type.
Our proposed model showed the best results in terms of three metrics compared to the
baselines. The TTP-MTI model has been validated as a promising model for predicting
inland vessel travel times since it considers the essential features of trajectory using CNN
rather than just the length value, which indicates topographical structure information of
an inland channel. Additionally, the fusion of traffic contexts also contributed to the final
predictions. The predictability for upstream vessels is better than that for downstream
vessels, and the analysis in Section 4.3.2 explains why: upstream vessels flow against the
current and have a more random speed, while downstream vessels follow the current trend,
leading to more stable and predictable travel times.
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4.5. Ablation Experiment

To validate the effectiveness of the model architecture of the proposed deep learning
model, we conducted an ablation experiment by comparing our model with variations for
which one or more input modules are removed. We denoted the models as M1, M2, M3,
and M, among which M is our complete model.

• M1 excludes vessel type, size, and power information, assuming all vessels are of the
same type without incorporating additional distinguishing features;

• M2 excludes traffic interaction context information;
• M3 excludes date information in inputs;
• M4 only inputs the trajectory without the convolution process, leading to some redun-

dant trajectory characteristics in the model.

The results of the ablation experiment are presented in Table 5.

Table 5. Comparison of model performance.

Model
Upstream Downstream

MAE RMSE MAPE MAE RMSE MAPE

M1 2.2567 2.9831 0.3223 2.0129 2.7294 0.3116
M2 2.1291 2.5784 0.2125 1.7861 2.5301 0.2084
M3 1.9122 2.2084 0.1971 1.3499 1.9836 0.1782
M4 1.9673 2.5562 0.2085 1.7221 2.5192 0.1943
M 0.4337 1.3095 0.1213 0.3894 1.2811 0.0937

It can be observed from the results of the ablation experiment that the prediction
accuracy of M1 deteriorated sharply compared with our approach, which means that the
vessel size and power information had the most significant impact on prediction perfor-
mance. This is consistent with the common understanding that vessels have varying power



J. Mar. Sci. Eng. 2023, 11, 1146 15 of 17

capacities, which can greatly affect their average speed or travel time on a given route.
M2 indicated that traffic interaction context information had an influence on travel time
predictions. Date information (M3) did not have a significant impact on the prediction
performance. Furthermore, the exclusion of the convolutional neural network (M4) de-
creased prediction accuracy, indicating that the convolutional neural network learned to
extract useful trajectory features to support the prediction task. Overall, our proposed
model exhibited the least prediction error compared to the ablation models, confirming the
necessity and effectiveness of the designed deep learning prediction architecture.

4.6. Error Distribution of Different Types of Vessels

As demonstrated in the ablation experiment above, the consideration of the vessels’
individual parameters, including type information, significantly improved the predictions.
To further understand the predictability of different types of vessels, we computed the
error distributions (MAPE) for different types of vessels in four intervals based on the test
set, as shown in the statistical histogram in Figure 16. This analysis provides a deeper
understanding of the model’s performance for various vessel types.
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The five types of vessels analyzed—oil tankers, multipurpose vessels, chemical tankers,
cargo ships, and container ships—were divided into four error intervals (0–0.15, 0.15–0.2,
0.2–0.25, and 0.25–0.3, respectively). As shown in Figure 16a, the proportion of oil tankers
decreased with an increasing error, with 37% of vessels being oil tankers in the 0–0.15
interval. This indicates that the majority of oil tankers had good predictions and that their
travel times were relatively easy to predict. In contrast, multipurpose vessels posed the
greatest challenge, with their travel time proportion exhibiting an increasing trend. This
may be because oil tankers often adopt fixed-point navigation for safety and economic
reasons, thus other vessels will actively avoid approaching them, leading to a more stable
movement process and easier time predictions. However, multipurpose vessels exhibit
stronger mobility with greater uncertainty, making their prediction difficult. Similar trends
can be found in Figure 16b. In conclusion, the predictions reveal that different vessel types
have different levels of predictability performance.

5. Conclusions

This paper has addressed the issue of predicting travel times for inland vessels, which
has been insufficiently studied in previous research due to a lack of traffic context infor-
mation. We proposed a novel VCIN to capture the dynamic interactions between vessels,
enabling the extraction of effective traffic interaction contexts. We also developed a deep
learning prediction model that combines CNN and LSTM to determine the spatial features
of trajectory and the dependency of section-based multiple fused data. Through a series of
comparison experiments conducted on a real-world dataset from the Wuhan section of the
Yangtze River, we have demonstrated the enhanced effectiveness of our proposed model
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compared to classic methods. Our ablation experiment further supports the superiority of
our model’s design.

Future work could extend our model to solve the online travel time prediction problem
through taking more uncertain factors into account, such as sudden accidents or collisions
on the water. Moreover, collecting online crew manipulation actions and investigating their
correlations with vessel travel time could also be a promising avenue of research.
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