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Abstract: To achieve autonomous navigation in complex marine environments, unmanned surface
vehicles are equipped with a variety of sensors for sensing the surrounding environment and
their own state. To address the issue of unsatisfactory multi-sensor information fusion in stochastic
uncertain systems with unknown disturbances, an improved evidence theory multi-sensor data fusion
method is proposed in this article. First, the affiliation function in fuzzy set theory is introduced
as a support function to assign initial evidence for multi-sensor data, and the initial evidence is
corrected according to the degree of data bias. Second, a divergence measure is employed to measure
the degree of conflict and discrepancy among the evidence, and each piece of evidence is allocated
proportional weight based on the conflict allocation principle. Finally, the evidence is synthesized
through the evidence combination rule, and the data are weighted and summed to obtain the data
fusion results. Since it is difficult to obtain dynamic information from multiple sensors carried by
unmanned surface vehicles in practical applications, and considering that the proposed method has
universal applicability, practical application experiments using previous research demonstrate that
the proposed method has higher fusion accuracy than other existing data fusion methods.

Keywords: multi-sensors; Dempster–Shafer evidence theory; data fusion; divergence measure

1. Introduction

The autonomous navigation of unmanned surface vehicles in complex marine envi-
ronments requires sensing their own state and the dynamic information of the surrounding
environment, based on which they can successfully make collision avoidance strategies
to ensure the safety of navigation. The acquisition of this dynamic information relies on a
variety of sensors; therefore, the study of the accuracy of the information collected by the
sensors is beneficial for guaranteeing the safe navigation of unmanned surface vehicles.
A single sensor can only provide partially accurate information and thus cannot exclude
ambiguity in the description of the external environment [1,2]. The complementary char-
acteristics of the discrepancies in the performance of each sensor are the principle ability
of multi-sensor data-fusion technology to combine information from different sources [3],
which is widely used in a variety of fields [4,5], e.g., anomaly diagnosis [6,7], reliability
evaluation [8,9], target tracking [10], etc. Data fusion, which extracts key data from each
sensor to provide superior estimation and improves the reliability of the system, has at-
tracted the attention of many scholars and has become a national and international research
hotspot [11].

To realize the effective fusion of multi-sensor data, a variety of approaches have been
proposed. Among them, the adaptive weighting data fusion method, which can determine
the weighting factor by solving the optimal solution based on the principle of minimizing
the total mean square error, is a relatively simple data fusion method [12]. Zhu et al. [13]
proposed a multi-sensor adaptive fusion method based on fuzzy inference and applied

J. Mar. Sci. Eng. 2023, 11, 1142. https://doi.org/10.3390/jmse11061142 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11061142
https://doi.org/10.3390/jmse11061142
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0001-6433-717X
https://orcid.org/0000-0001-7828-4902
https://orcid.org/0000-0001-5751-6364
https://orcid.org/0000-0002-5886-4675
https://doi.org/10.3390/jmse11061142
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11061142?type=check_update&version=1


J. Mar. Sci. Eng. 2023, 11, 1142 2 of 15

it to the visual inertial measurement unit wheel odometry. Setting the same initial condi-
tions for different aero-propulsion system units cannot solve all faults; to overcome this
problem, Li et al. [14] proposed a new shape-constrained neural data-fusion network for
the construction of health indicators. To address the problem that the limitation of an
unknown distribution of multi-source data leads to the poor stability of simple wavelet
neural networks in a multi-source discrete data environment, Yang et al. [15] proposed a
decision-fusion method combining Bayesian inference and wavelet neural networks. Other
data fusion methods include genetic algorithms [16], particle filtering algorithms [17],
the Kalman filtering algorithm [18,19], etc. However, these methods are not capable of
resolving uncertain information.

Dempster–Shafer (D–S) evidence theory [20] provides an effective solution to the prob-
lem of data fusion uncertainty without prior information, which has led to its widespread
study. To overcome the issue that highly contradictory evidence combination results may
not be consistent with human intuition, Mi et al. [21] proposed a method to fuse the ordered
weighted average operator and the soft likelihood function. To address the issue that
some existing methods cannot effectively take into account the relevant preferences of
decision makers and individual belief degree characteristics, Wang et al. [22] proposed a dy-
namic multi-sensor data fusion method based on weighted average operator and evidence
theory. To deal with the evidence of higher conflict, Xiao [23] proposed a new measure
of reinforcement belief divergence for measuring discrepancies between basic belief as-
signments. The Dempster combination rule is potentially counter-intuitive in the case of
conflicting evidence; to overcome this challenge, Xiao [24] developed a hybrid multi-sensor
data fusion approach by combining an evidence credibility measure and prospect theory.
Song et al. [25] proposed a temporal evidence adaptive fusion method, which determines
the amount of evidence sets based on the temporal fusion results of multiple moments
and selects an appropriate fusion method to fuse the evidence based on the maximum
power pignometric probability distance to evaluate whether the evidence is contradictory
or not. Zhao et al. [26] proposed a new square mean distance measure method to assess
the distance between pieces of evidence, which is combined with modified information
volume to devise a new method of conflicting information fusion. Zhou et al. [27] proposed
a new information fusion method to address the counterintuitive and poor robustness
issues that appear in traditional D-S evidence theory for the fusion of highly conflicting
evidence. However, these methods fuse the probabilities of sensors’ collection of target
attributes for target recognition and fault diagnosis, and they cannot fuse the measurements
of multi-sensors. To realize the fusion of multi-sensor measurements, a new multi-sensor
data fusion method [28] is proposed to convert each measurement into the corresponding
evidence according to its accuracy. Wang et al. [29] extended the method of [28] to propose
a multiple-attribute fusion algorithm combining improved evidence theory and fuzzy
clustering, which uses a fuzzy clustering approach to cluster and group measurements
and then uses improved evidence theory for fusion. However, this method requires a
large amount of data to achieve the fusion accuracy and is not applicable in the case of
a small number of sensors. Therefore, to further improve the accuracy of the method
of [28], a modified multi-sensor data fusion method is proposed in this paper. The main
contributions of this study are summarized as follows.

(1) The affiliation function in fuzzy set theory is introduced as the support function to
assign initial pieces of evidence for the multi-sensor data, and the initial evidence is
corrected according to the degree of the data bias.

(2) A divergence measure is employed to measure the degree of conflict and discrepancy
between the evidence to devise the principle for conflict resolution, and each piece of
evidence is allocated proportional weights based on the conflict allocation principle.

(3) The evidence is synthesized using a more appropriate evidence combination rule
to obtain the weights of measurements, and the data are weighted and summed to
obtain the multi-sensor data fusion results.
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The remainder of the article is organized as follows. Section 2 provides the preparatory
knowledge that needs to be used. A modified multi-sensor data fusion method is proposed
in Section 3. In Section 4, the proposed method is tested against other data fusion methods
using three multi-sensor measurement experiments. The conclusion is given in Section 5.

2. Preliminaries
2.1. D–S Evidence Theory

D–S evidence theory, as an approach based on Bayesian probability theory in the field
of artificial intelligence, is an effective theory for processing uncertain information [30,31].
Due to its effectiveness in modeling imprecision without prior information [32], it is widely
used in decision making [33], pattern classification [34] and other fields.

A discriminative framework Θ consisting of a finite number of complete and mutually
exclusive elements can be expressed as

Θ = {R1, R2, . . . , Rn} (1)

The power set of Θ, denoted by 2Θ [35], can be written as

2Θ= {∅, {R1}, . . . , {R2}, {R1, R2}, . . . , {R1, R2, . . . , Rn}, . . . Θ} (2)

where ∅ denotes the empty set.
The basic belief assignment m maps from 2Θ to [0, 1] and is given as follows

m : 2Θ → [0, 1] (3)

It satisfies {
∑

A⊆Θ
m(A) = 1

m(∅) = 0
(4)

where A ∈ 2Θ denotes a proposition. If m(A) > 0, then A is considered to be the focal
element. The belief function can be expressed as

Bel(A) = ∑
B⊂A

m(B) (5)

The plausibility function is described as

pl(A) = ∑
B∩A=∅

m(B) = 1− Bel(A) (6)

If there exist two independent basic belief assignments m1, m2 in Θ, the form m = m1 ⊕m2
of the Dempster–Shafer combination rule [36] is given as follows

m(A) =

{ 1
1−K ∑

B∩C=A
m1(B)m2(A), A 6= ∅

0, A = ∅
(7)

with
K= ∑

B∩C=∅
m1(B)m2(C) (8)

where B, C ∈ 2Θ, and K represent the conflict coefficient of m1 and m2. It is worth noting that
the Dempster–Shafer combination rule is only feasible when two basic belief assignments
satisfy the condition K < 1.

2.2. Belief Divergence Measure

The uncertainty measure of the basic probability assignment is currently also a sig-
nificant part of the D–S evidence theory that can make it applicable to many fields [37].
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Actually, the uncertainty measure of the basic probability assignment is a measure of the
conflicting pieces of evidence. Measuring the conflict of evidence in the D–S evidence
theory has been an open question, which is crucial to the synthesis of evidence. Several
methods have emerged to measure conflicting evidence over recent decades; one of which
is the divergence measure, e.g., Jensen–Shannon divergence [38], BRE divergence [39], etc.
Based on [32], a divergence measure named Belief Jensen–Shannon (BJS) divergence is
employed, which is described below.

Let m1, m2 be any two mutually exclusive basic belief assignments in the same dis-
criminative framework; the BJS divergence between m1 and m2 is given by

BJS(m1, m2) = H
(

m1+m2
2

)
− 1

2 H(m1)− 1
2 H(m2)

= 1
2

[
∑
i

m1(zi) log
(

2m1(zi)
m1(zi)+m2(zi)

)
+∑

i
m2(zi) log

(
2m2(zi)

m1(zi)+m2(zi)

)] (9)

where H(mk) = −∑i mk(zi) log mk(zi) represents the Shannon entropy, while i = 1, 2, . . . , n
and k = 1, 2.

From (9), it can be seen that if the basic belief assignment is assigned to zero, it causes
the fractional values to tend to infinity, making their logarithmic values also tend to infinity.
BJS will terminate when it encounters such a situation, so a smaller value can be used
instead of zero when the above situation occurs.

Belief Jensen-Shannon divergence exhibits several properties below in practical
applications:

(1) BJS(m1, m2) is mutually symmetric with respect to m1 and m2.
(2) BJS(m1, m2) is bounded and satisfies BJS(m1, m2) ∈ [0, 1].
(3) The square root

√
BJS(m1, m2) can verify the triangle inequality.

3. The Proposed Method

Assuming that there exist n sensors to measure the target z, the measurement obtained
by the jth sensor is zj(j = 1, 2, . . . , n). Inspired by the idea of evidence theory, the overall
measurements {z1, z2, . . . , zn} are treated as the discriminative framework Θ. The basic
belief assignment can be regarded as the weight assignment function for each measurement.
Each measurement is converted into evidence based on its accuracy when synthesized for
all pieces of evidence [28].

The proposed method consists of four main parts: the determination of support
function, the basic belief assignment for measurements, the rule of evidence combination,
and the conflicting measure and weighting combination. The support function is designed
to generate initial evidence, which can reflect the degree of support between the data.
The basic belief assignment is arranged to correct the initial evidence and assign more
reasonable weights to the data. The conflicting measure and weighting combination is to
resolve the highly conflicting contradiction between the pieces of evidence, and the rule of
evidence combination is used to fuse the measurements.

3.1. Determination of Support Function

Due to environmental noise, human interference and the limitation of the sensor’s own
observation accuracy, the measurement of the sensor is the superposition of the true value
of the target and disturbances. Obviously, the overall measurements are within the normal
deviation and fall within the neighborhood of the true value. Considering the ambiguity of
the measurement error of the sensor, the affiliation function is used as a support function
for the data and is defined as

Υij = 1−
2 arctan

(∣∣zi − zj
∣∣)

π
(10)

where zi and zj represent the measurements of the ith and jth sensors.
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If the support Υij is larger, it indicates that the jth sensor’s measurement is closer to
the true value and that the support of the measurement is higher; otherwise, the support
is lower. The support matrix of the j sensor for target recognition in the discriminative
framework Θ is written as

SUPij=



Υ11 · · · Υ1i · · · Υ1n
... · · ·

...
...

...
Υi1 · · · Υii · · · Υin

... · · ·
...

...
...

Υn1 · · · Υni · · · Υnn

 (11)

The support matrix reflects the degree of ambiguity between each datum and the
rest, i.e., the degree of support. It is more roughly equivalent to the probability that the
measurement is close to the true value and serves as initial evidence to provide initial
values for subsequent corrections.

3.2. Basic Belief Assignment for Measurements

In practical applications, the measurement of each sensor is not completely reliable
due to the interference from various factors. Abnormal measurement data can reduce the
accuracy of data fusion and even lead to incorrect fusion results. To exclude the influence
of outliers, the measurement of each sensor needs to be checked for consistency, and the
extent to which the measurement of each sensor agrees with the measurements of other
sensors is fused into the evidence assignment as the degree of confidence.

To measure the magnitude of the deviation of the different sensor measurements,
the distance between measurements zi and zj is defined as

dij =
∣∣zi − zj

∣∣ (12)

where i, j = 1, 2, . . . , n. The mean of the sum of the distances between measurement zi and
other measurements are denoted as

di =

n
∑

j=1
dij

n− 1
(13)

where di is the mean value that reflects the degree of discrepancy between the sensor i
and the other sensors. If di is larger, it means that the discrepancy between the sensor and
the other sensors is larger, indicating a higher probability that the sensor measurement is
an outlier; otherwise, there is a lower probability that it is an outlier. The mean distance
between all measurements is described as

d̄ =

n
∑

i=1
di

n
(14)

From the above analysis, the measurement zi can be converted into evidence. The idea
of basic belief assignment is that the affiliation matrix can be regarded as initial evidence,
i.e., mij(zj) = SUPij, and the degree of discrepancy of each measurement is used to correct
it. If di is larger than d̄, the measurement is considered an outlier and is rejected; otherwise,
it is considered a valid value. The basic belief assignment formula is given as follows:{

mi(zj) = 0, dj > αd̄
mi(zj1)

mi(zj2)
=

dj2
dj1

, dj ≤ αd̄
(15)
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where zj1 and zj2 denote any two valid measurements, and α is a threshold that satisfies
α ≥ 1.

In practice, a set of correction coefficients {ωp}(p = 1, 2, . . . , n) can be generated
from (15), and the correction coefficients are used to normalize and weight each piece of
evidence, i.e.,

m′i(zj) =
ωjmi(zj)

n
∑

p=1
ωpmi(zp)

(16)

where zm represents any one measurement.

3.3. Rule of Evidence Combination

There may be high conflict among the evidence generated by (16), and the original
Dempster evidence combination rule is used to deal with the high-conflict evidence that
may present the paradox, resulting in unreasonable data combination results. The evidence
combination rule based on [28] can solve the above problems more effectively and is also
more suitable for the fusion of measurements, which is given below.

The probabilities of supporting conflicting evidence are assigned to each measurement
in a certain proportion, and the combination formula is given as follows:

m(zj) =
n

∏
i=1

m′ i(zj) + bm̄′i(zj) (17)

where j = 1, 2, . . . , n, m is the mean basic belief assignment of zn among all evidence and b
is a conflict factor, which is written as

b = 1−
n

∑
j=1

n

∏
i=1

m′ i(zj) (18)

where m′i(zn) is expressed as

m̄′i(zj)=
1
n

n

∑
i=1

m′ i(zj) (19)

The basic belief assignment m(zj) for measurement zj in the synthetic evidence is the
weights assigned to the measurements. The fusion results can be expressed as

Z0=
n

∑
j=1

zjm(zj) (20)

3.4. Conflicting Measure and Weighting Combination

The processes of conflicting measure and weighting combination are also more im-
portant as they are the last part of the proposed method. First, they use BJS divergence
to measure the conflict and discrepancy between the pieces of evidence to calculate the
evidence’s credibility weights. Afterward, the evidence’s credibility weights are converted
to evidence for evidence combination. Finally, the evidence is adjusted and combined using
the final weights of the evidence [32]. The flowchart of conflicting measure and weighting
combination is illustrated in Figure 1, whose pseudocode is shown in Algorithm 1.
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Evidence of multi-sensor measurements

Step 1: Construct the divergence matrix

Step 2: Calculate the mean distance of the evidence

Step 3: Compute the similarity of evidence

Step 4: Calculate the evidence credibility degree  

Step 5: Obtain the synthetic average weight evidence 

Fusion results of multi-sensor measurements

Step 6: Combine the synthetic average weight and other evidences

Figure 1. Flowchart of conflicting measure and weighting combination.

Algorithm 1 Conflicting measure and weighting combination.

Inputs: mi, i = 1, 2, . . . , n, mj, j = 1, 2, . . . , n
for i = 1 : n
for j = 1 : n

1: BJSij =
1
2

[
∑
i

mi(zi) log
(

2mi(zi)
mi(zi)+mj(zi)

)
+∑

i
mj(zi) log

(
2mj(zi)

mi(zi)+mj(zi)

)]
end for
end for

2: BJS̄i =
∑n

j=1,j 6=i BJSij
n−1

3: Simi =
1

BJS̄i

4: Crdi =
Sim(mi)

∑n
j=1 Sim(mi)

5: mweight =
n
∑

i=1
(Crdi ×mi)

6: m̄i(zj)=
1
n

n
∑

i=1
mi(zj)

7: b = 1−
n
∑

j=1

n
∏
i=1

mi(zj)

8: m(zj) =
n
∏
i=1

mi(zj) + bm̄i(zj)

9: Z0=
n
∑

j=1
zjm(zj)

Outputs: Z0
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Step 1: The BJS divergence is used to calculate the distance measure of two random
mi(i = 1, 2, . . . , n) and mj(j = 1, 2, . . . , n). The divergence matrix DMM is written as

DMM=



0 · · · BJS1i · · · BJS1n
... · · ·

...
...

...
BJSi1 · · · 0 · · · BJSin

... · · ·
...

...
...

BJSn1 · · · BJSni · · · 0

 (21)

Step 2: The mean evidence distance BJS̄i across the evidence mi is defined as

BJS̄i =
∑n

j=1,j 6=i BJSij

n− 1
(22)

Step 3: The similarity of the evidence mi is described as

Simi =
1

BJS̄i
(23)

Step 4: The credibility degree of the evidence mi obtained from the similarity normal-
ization is given by

Crdi =
Sim(mi)

∑n
j=1 Sim(mi)

(24)

Step 5: According to the weight Crdi of the evidence, the synthetic average weight
evidence is written as

mweight =
n

∑
i=1

(Crdi ×mi) (25)

Step 6: The weight evidence, viewed as ordinary evidence, is fused with other pieces
of evidence based on the rule of evidence fusion.

4. Experiments

Since the proposed method is universal, the fusion performance of experimental data
from other aspects can also reflect the multi-sensor information fusion performance of
unmanned surface vehicles. The feasibility and effectiveness of the proposed method and its
superiority over other fusion methods were verified by testing all fusion algorithms on the
measurement data of two multi-sensor experiments provided by [28] and the measurement
data of one multi-sensor experiment provided by [40].

4.1. Experiment 1

The nondestructive measurement for the metallization layer thickness of the vacuum
electronic device requires that several measurements be averaged to obtain more accu-
rate results, which will consume a significant amount of time and resources. Therefore,
eight data are sampled from fifty iterations of sample thickness measurement data collected
by the multi-sensors as experimental data for data fusion, and the average value of 65.57 µm
from the fifty tests is used as the reference accuracy; the sampling data are shown in Table 1.

According to (11), the initial evidence generated by the support matrix for each
measurement of the multi-sensors are

mij(zj) =


1 0.7856 · · · 0.9365

0.7857 1 · · · 0.8440
...

...
...

0.9365 0.8440 · · · 1


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From (13) and (14), the elements consisting of dj are calculated as d1 = 0.3386,
d2 = 0.3186, d3 = 0.4071, d4 = 0.3729, d5 = 0.8957, d6 = 0.3100, d7 = 0.3471, d8 = 0.3100.

The average distance between all measurements is d̄ = 0.4125. The correction factors
obtained from (15) are calculated as ω1 = 0.1362, ω2 = 0.1448, ω3 = 0.1133, ω4 = 0.1237,
ω5 = 0.0515, ω6 = 0.1488, ω7 = 0.1329, ω8 = 0.1488.

Table 1. Metallization layer thickness measurements.

Number Measurement (µm) Number Measurement (µm)

1 65.41 5 66.45
2 65.76 6 65.73
3 65.31 7 65.81
4 65.35 8 65.51

The corrected pieces of evidence are shown in Table 2. As can be seen from Table 2,
one piece of evidence can be assigned to each measurement of the multi-sensors according
to the improved basic belief assignment method, and the probabilities of each piece of
evidence corresponding to outliers are assigned to zero, which can exclude the interference
of outliers to the data fusion. The divergence matrix DMM is constructed as follows:

DMM =


0 0.0060 · · · 0.0068

0.0060 0 · · · 0.0001
...

...
...

0.0006 0.0034 · · · 0


Table 2. Mass function for each evidence.

Basic Belief
Assignment

Measurement

z1 z2 z3 z4 z5 z6 z7 z8

m1(z1) 0.1632 0.1363 0.1271 0.1426 0 0.1431 0.1206 0.1670
m2(z2) 0.1293 0.1749 0.1000 0.1124 0 0.1763 0.1554 0.1517
m3(z3) 0.1591 0.1319 0.1412 0.1503 0 0.1385 0.1168 0.1622
m4(z4) 0.1601 0.1331 0.1349 0.1511 0 0.1397 0.1177 0.1634
m5(z5) 0.1284 0.1723 0.1004 0.1123 0 0.1734 0.1638 0.1495
m6(z6) 0.1311 0.1702 0.1014 0.1140 0 0.1783 0.1512 0.1538
m7(z7) 0.1277 0.1734 0.0988 0.1110 0 0.1747 0.1644 0.1499
m8(z8) 0.1510 0.1446 0.1172 0.1316 0 0.1517 0.1280 0.1760

The mean evidence distance BJS̄i across the pieces of evidence can be calculated as
BJS̄1 = 0.0037, BJS̄2 = 0.0036, BJS̄3 = 0.0049, BJS̄4 = 0.0045, BJS̄5 = 0.0038, BJS̄6 = 0.0032,
BJS̄7 = 0.0040, BJS̄8 = 0.0025.

The similarity of the evidence is computed as Sim1 = 274, Sim2 = 279, Sim3 = 204,
Sim4 = 222, Sim5 = 264, Sim6 = 312, Sim7 = 249, Sim8 = 404.

The evidence’s credibility degree can be obtained as Crd1 = 0.1241, Crd2 = 0.1263,
Crd3 = 0.0925, Crd4 = 0.1007, Crd5 = 0.1195, Crd6 = 0.1414, Crd7 = 0.1126, Crd8 = 0.1830.

The synthetic average weight evidence is calculated as mw(z1) = 0.1433,
mw(z2) = 0.1552, mw(z3) = 0.1140, mw(z4) = 0.1271, mw(z5) = 0, mw(z6) = 0.1603,
mw(z7) = 0.1401, mw(z8) = 0.1600.

The synthesized evidence is derived as m(z1) = 0.1437, m(z2) = 0.1547, m(z3) = 0.1150,
m(z4) = 0.1280, m(z5) = 0, m(z6) = 0.1596, m(z7) = 0.1398, m(z8) = 0.1593.

The fusion result obtained from (20) is Z0 = 65.5678, and the data fusion results of the
proposed method and other comparative methods are displayed in Table 3. It can be seen
from Table 3 that the fusion result of the proposed method has higher accuracy compared
to other comparative methods. Although the improvement in accuracy of the proposed
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method is not so obvious, the fusion result of the proposed method is close to the reference
true value, which is already considered a more effective performance improvement effect.
There are two reasons why the proposed method is capable of achieving approximate
equivalence to the true value. One is because the support relationship of the measurements
and the mutual evaluation of the sensors can effectively identify anomalous measurements.
The second is due to the use of the Belief Jensen-Shannon divergence to measure the
credibility of the evidence, which increases the weights of reliable pieces of evidence and
decreases the weights of unreliable evidence, thus mitigating its negative impact on the
final fusion result.

Table 3. Comparison of fusion results of all methods.

Method Fusion Results (µm) Absolute Error (µm) Relative Error (%)

Arithmetic mean 65.6663 0.0963 0.1469
Xiong et al. [25] 65.5601 0.0099 0.0151

Proposed method 65.5678 0.0022 0.0034

4.2. Experiment 2

The performance of the proposed method continues to be tested using the measure-
ments of a characteristic parameter as an example. Table 4 shows the measurements of
10 sensors with variance obtained from historical data and the true value set to 1.

Table 4. Measurements from 10 sensors.

Number Measurement Variance Number Measurement Variance

1 1.000 0.05 6 0.650 0.25
2 0.990 0.07 7 1.010 0.10
3 0.980 0.10 8 1.020 0.10
4 0.970 0.20 9 1.030 0.20
5 0.500 0.30 10 1.500 0.30

The initial evidence generated by the support matrix for each measurement of the
multi-sensors are given by

mij(zj) =


1 0.9936 · · · 0.7048

0.9936 1 · · · 0.6998
...

...
...

0.7048 0.6998 · · · 1


The elements consisting of dj are calculated as d1 = 0.1633, d2 = 0.1633, d3 = 0.1656,

d4 = 0.1700, d5 = 0.5167, d6 = 0.3833, d7 = 0.1656, d8 = 0.1700, d9 = 0.1767, d10 = 0.5944.
The average distance between all measurements is d̄ = 0.2669. The correction factors

obtained from (15) are constructed as follows: ω1 = 0.1276, ω2 = 0.1276, ω3 = 0.1259,
ω4 = 0.1226, ω5 = 0.0403, ω6 = 0.0544, ω7 = 0.1259, ω8 = 0.1226, ω9 = 0.1180,
ω10 = 0.0351.

The corrected evidences are shown in Table 5. It can be seen from Table 5 that multiple
outliers in the measurements are given a weighting of 0, indicating that the proposed
method is capable of eliminating the effects of anomalous data, despite the presence of
multiple outliers. The divergence matrix is constructed as follows:

DMM =


0 0.0051 · · · 0.0309

0.0051 0 · · · 0.0531
...

...
...

0.0309 0.0531 · · · 0


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Table 5. Mass function for each evidence.

Basic Belief
Assignment

Measurement

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

m1(z1) 0.1482 0.1484 0.1444 0.1397 0 0 0.1453 0.1406 0.1344 0
m2(z2) 0.1474 0.1478 0.1454 0.1407 0 0 0.1445 0.1398 0.1337 0
m3(z3) 0.1469 0.1476 0.1468 0.1420 0 0 0.1440 0.1393 0.1332 0
m4(z4) 0.1466 0.1477 0.1465 0.1436 0 0 0.1437 0.1390 0.1329 0
m5(z5) 0.1466 0.1477 0.1467 0.1439 0 0 0.1436 0.1388 0.1326 0
m6(z6) 0.1466 0.1465 0.1467 0.1439 0 0 0.1436 0.1388 0.1326 0
m7(z7) 0.1474 0.1460 0.1436 0.1389 0 0 0.1464 0.1417 0.1354 0
m8(z8) 0.1469 0.1457 0.1431 0.1384 0 0 0.1459 0.1430 0.1367 0
m9(z9) 0.1467 0.1456 0.1428 0.1382 0 0 0.1456 0.1427 0.1382 0

m10(z10) 0.1467 0.1484 0.1426 0.1379 0 0 0.1457 0.1430 0.1386 0

The mean evidence distance BJS̄i across the pieces of evidence can be calculated as
BJS̄1 = 0.000021, BJS̄2 = 0.000022, BJS̄3 = 0.000029, BJS̄4 = 0.000037, BJS̄5 = 0.000042,
BJS̄6 = 0.000041, BJS̄7 = 0.000027, BJS̄8 = 0.000037, BJS̄9 = 0.000047, BJS̄10 = 0.000053.

The similarity of the pieces of evidence is computed as Sim1 = 47931, Sim2 = 45264,
Sim3 = 34587, Sim4 = 27382, Sim5 = 24074, Sim6 = 24113, Sim7 = 37688, Sim8 = 27081,
Sim9 = 21486, Sim10 = 18975.

The evidence’s credibility degree can be obtained as Crd1 = 0.1553, Crd2 = 0.1467,
Crd3 = 0.1121, Crd4 = 0.0887, Crd5 = 0.0780, Crd6 = 0.0781, Crd7 = 0.1221, Crd8 = 0.0878,
Crd9 = 0.0696, Crd10 = 0.0615.

The synthetic average weight evidence is calculated as mw(z1) = 0.1471, mw(z2) = 0.1472,
mw(z3) = 0.1449, mw(z4) = 0.1407, mw(z5) = 0, mw(z6) = 0, mw(z7)= 0.1449,
mw(z8) = 0.1406, mw(z9) = 0.1346, mw(z10) = 0.

The synthesized evidence is derived as m(z1) = 0.1470, m(z2) = 0.1470, m(z3) = 0.1449,
m(z4) = 0.1407, m(z5) = 0, m(z6) = 0, m(z7) = 0.1448, m(z8) = 0.1407, m(z9) = 0.1348,
m(z10) = 0.

The fusion result obtained from (20) is 0.9997, and the data fusion result of the proposed
method and other methods are displayed in Table 6. It can be seen from Table 6 that the
fusion result of the proposed method has higher accuracy compared to other methods,
which indicates that the proposed method also performs well in additional experiments
and is universal, further validating the effectiveness of the proposed method. The proposed
method obtains a high fusion accuracy by fusing less data, which is capable of achieving
and engineering acceptable measurement accuracy.

Table 6. Measurement fusion results of all methods.

Method Fusion Results Absolute Error Relative Error (%)

Arithmetic mean 0.9650 0.0350 3.5
Xiong et al. [25] 0.9995 0.0005 0.05

Proposed method 0.9997 0.0003 0.03

4.3. Experiment 3

To further verify the performance of the proposed method, the measurements of the
thermostat temperature are tested as an example. The assumed true temperature is 50.50 ◦C.
Any eight data from the thirty data are selected as test data and are shown in Table 7.
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Table 7. Metallization layer thickness measurements.

Number Measurement (◦C) Number Measurement (◦C)

1 49.80 5 50.55
2 49.92 6 50.60
3 50.25 7 50.64
4 50.15 8 50.75

The initial evidence generated by the support matrix for each measurement of the
multi-sensors are

mij(zj) =


1 0.9240 · · · 0.5163

0.9240 1 · · · 0.5590
...

...
...

0.5163 0.5590 · · · 1


From (13) and (14), the elements consisting of dj are calculated as d1 = 0.6086,

d2 = 0.5057, d3 = 0.3457, d4 = 0.3743, d5 = 0.3457, d6 = 0.3600, d7 = 0.3828, d8 = 0.4771.
The average distance between all measurements is d̄ = 0.4250. The correction factors

obtained from (15) are calculated as ω1 = 0.0840, ω2 = 0.1011, ω3 = 0.1479, ω4 = 0.1366,
ω5 = 0.1479, ω6 = 0.1420, ω7 = 0.1335, ω8 = 0.1071.

The corrected pieces of evidence are shown in Table 8. As can be seen from Table 8,
the proposed method can similarly exclude outliers by assigning evidence to the measure-
ments. The divergence matrix DMM is constructed as follows

DMM =


0 0 · · · 0.0098
0 0 · · · 0.0099
...

...
...

0.0098 0.0099 · · · 0


Table 8. Mass function for each evidence.

Basic Belief Assignment
Measurement

z1 z2 z3 z4 z5 z6 z7 z8

m1(z1) 0 0 0.2360 0.2344 0.1907 0.1769 0.1619 0
m2(z2) 0 0 0.2366 0.2347 0.1906 0.1767 0.1615 0
m3(z3) 0 0 0.2425 0.2098 0.1975 0.1830 0.1672 0
m4(z4) 0 0 0.2365 0.2332 0.1913 0.1772 0.1619 0
m5(z5) 0 0 0.1896 0.1629 0.2328 0.2165 0.1982 0
m6(z6) 0 0 0.1840 0.1581 0.2268 0.2249 0.2061 0
m7(z7) 0 0 0.1817 0.1561 0.2245 0.2228 0.2150 0
m8(z8) 0 0 0.1810 0.1556 0.2245 0.2232 0.2157 0

The mean evidence distance BJS̄i across the pieces of evidence can be calculated as
BJS̄1 = 0.0052, BJS̄2 = 0.0052, BJS̄3 = 0.0039, BJS̄4 = 0.0051, BJS̄5 = 0.0040, BJS̄6 = 0.0048,
BJS̄7 = 0.0052, BJS̄8 = 0.0053.

The similarity of the evidence is computed as Sim1 = 194, Sim2 = 191, Sim3 = 257,
Sim4 = 196, Sim5 = 247, Sim6 = 210, Sim7 = 193, Sim8 = 189.

The evidence’s credibility degree can be obtained as Crd1 = 0.1153, Crd2 = 0.1140,
Crd3 = 0.1533, Crd4 = 0.1170, Crd5 = 0.1473, Crd6 = 0.1250, Crd7 = 0.1152, Crd8 = 0.1128.

The synthetic average weight evidence is calculated as mw(z1) = 0, mw(z2) = 0,
mw(z3) = 0.2113, mw(z4) = 0.1925, mw(z5) = 0.2102, mw(z6) = 0.2002, mw(z7) = 0.1857,
mw(z8) = 0.

The synthesized evidence is derived as m(z1) = 0, m(z2) = 0, m(z3) = 0.2110,
m(z4) = 0.1930, m(z5) = 0.2098, m(z6) = 0.2002, m(z7) = 0.1859, m(z8) = 0.
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The fusion result obtained from (20) is Z0 = 50.44, the data fusion results of the
proposed method and other fusion methods are displayed in Table 9. It can be observed
from Table 9 that the fusion result of the proposed method has higher accuracy compared
to other fusion methods. The fusion accuracy of the proposed method is not significantly
improved compared to other fusion methods, which is due to the fact that the fusion
result of the proposed method is closer to the true value, and the discrepancy between the
measurements is not significant. However, the universality and superiority of the proposed
method over other fusion methods are further verified by this experiment.

Table 9. Comparison of fusion results of all methods.

Method Fusion Results (µm) Absolute Error (µm) Relative Error (%)

Arithmetic mean 50.33 0.17 0.3366
Xiong et al. [25] 50.42 0.08 0.1584

Proposed method 50.44 0.06 0.1188

5. Conclusions

To solve the problem of unsatisfactory accuracy of multi-sensor data fusion for mea-
surements with uncertainty and without prior information, an improved evidence theory
multi-sensor data fusion method is proposed. Basic belief assignment in evidence theory
is realized by introducing a support function and a mutual support evaluation between
sensors. A divergence measure is employed to measure the degree of conflict and discrep-
ancy to weaken the conflict between pieces of evidence; drawing on the idea of evidence
combination can obtain effective evidence synthesis results. The experimental results show
that the proposed method can obtain high fusion accuracy with relatively few detection
data without prior information, which is conducive to engineering implementation and
can be used in multi-sensor information fusion for unmanned surface vehicles. Since the
proposed method draws on the idea of evidence theory for multi-sensor data fusion, a
more accurate measure of mutual evaluation for each sensor and a reasonable conversion
of evidence can further improve the fusion performance of the method, which will be the
focus of subsequent research. The proposed method can also be explored in combination
with machine learning techniques and implemented in real-time with multi-sensor data
fusion for unmanned surface vehicles under different weather conditions and water depths,
and its performance in practical applications can be evaluated to further improve the
accuracy and efficiency of the method. It would be interesting to explore how the proposed
method performs with different types of sensors, such as lidar, radar, and sonar, which
are commonly used in autonomous navigation systems for unmanned surface vehicles.
Furthermore, it would be worthwhile to compare the proposed method with other popular
fusion algorithms, such as Kalman filtering, particle filtering, and the smooth variable
structure filter, to assess its effectiveness in various scenarios.

Author Contributions: The work presented here was performed in collaboration with all authors.
S.Q. designed, analyzed, and wrote the paper. Y.F. guided the full text. G.W. conceived the idea. H.Z.
analyzed the data. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Key Research and Development Program of
China (Grant number 2022YFB4301401), the National Natural Science Foundation of China (Grant
number 61976033), the Pilot Base Construction and Pilot Verification Plan Program of Liaoning
Province of China (Grant numbers 2022JH24/10200029), the Key Development Guidance Program of
Liaoning Province of China (Grant numbers 2019JH8/10100100), and the China Postdoctoral Science
Foundation (Grant number 2022M710569).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



J. Mar. Sci. Eng. 2023, 11, 1142 14 of 15

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, Q.; Jin, T.; Mohamed, M.A. A fast and robust fault section location method for power distribution systems considering

multisource information. IEEE Syst. J. 2022, 16, 1954–1964. [CrossRef]
2. Huang, F.; He, Y.; Deng, X.; Jiang, W. A Novel Discount-Weighted Average Fusion Method Based on Reinforcement Learning For

Conflicting Data. IEEE Syst. J. 2022, 1–4. [CrossRef]
3. Montanari, A.N.; Oliveira, E.D. A novel analog multisensor design based on fuzzy logic: A magnetic encoder application. IEEE

Trans. Signal Process. 2017, 17, 7096–7104. [CrossRef]
4. Kordestani, M.; Saif, M.; Orchard, M.E.; Razavi-Far, R.; Khorasani, K. Failure prognosis and applications-survey of recent

literature. IEEE Trans. Rel. 2021, 70, 728–748. [CrossRef]
5. Wen, L.; Li, X.; Gao, L.; Zhang, Y. A newconvolutional neural networkbased data-driven fault diagnosis method. IEEE Trans. Ind.

Electron. 2018, 65, 5990–5998. [CrossRef]
6. Gong, W.; Wang, Y.; Zhang, M.; Mihankhah, E.; Chen, H.; Wang, D. A fast anomaly diagnosis approach based on modified CNN

and multisensor data fusion. IEEE Trans. Ind. Electron. 2021, 69, 13636–13646. [CrossRef]
7. Zheng, Y.; Luo, Q.; Cui, Y.; Dai, H.; Han, X.; Feng, X. Fault identification and quantitative diagnosis method for series-connected

lithium-ion battery packs based on capacity estimation. IEEE Trans. Ind. Electron. 2022, 69, 3059–3067. [CrossRef]
8. Song, Y.; Wang, X.; Zhu, J.; Lei, L. Sensor dynamic reliability evaluation based on evidence theory and intuitionistic fuzzy sets.

Appl. Intell. 2018, 48, 3950–3962. [CrossRef]
9. Xiao, F. GIQ: A generalized intelligent quality-based approach for fusing multisource information. IEEE Trans. Fuzzy Syst. 2021,

29, 2018–2031. [CrossRef]
10. Li, S.; Cheng, Y.; Brown, D.; Tharmarasa, R.; Zhou, G.; Kirubarajan, T. Comprehensive time-offset estimation for multisensor

target tracking. IEEE Trans. Aerosp. Electron. Syst. 2019, 56, 2351–2373. [CrossRef]
11. Safari, S.; Shabani, F.; Simon, D. Multirate multisensor data fusion for linear systems using Kalman filters and a neural network.

Aerosp. Sci. Technol. 2014, 39, 465–471. [CrossRef]
12. Li, D.; Shen, C.; Dai, X.; Zhu, X.; Luo, J.; Li, X.; Chen, H.; Liang, Z. Research on data fusion of adaptive weighted multi-source

sensor. Comput. Mater. Contin. 2019, 61, 1217–1231. [CrossRef]
13. Zhu, J.; Tang, Y.; Shao, X.; Xie, Y. Multisensor fusion using fuzzy inference system for a visual-IMU-wheel odometry. IEEE Trans.

Instrum. Meas. 2021, 70, 1–16. [CrossRef]
14. Li, Z.; Wu, J.; Yue, X. A shape-constrained neural data fusion network for health index construction and residual life prediction.

IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 5022–5033. [CrossRef]
15. Yang, W.; Chen, B.; Yu, L. Bayesian-Wavelet-Based Multisource Decision Fusion. IEEE Trans. Instrum. Meas. 2021, 70, 1–10.

[CrossRef]
16. Liu, F.; Cai, X.; Shi, B.; Wang, Y. Multisensor data fusion based on genetic algorithm. In Electronic Imaging and Multimedia Systems;

SPIE: Santa Clara, CA, USA, 1996; Volume 2898, pp. 43–48.
17. Xu, C.; Shi, Y.; Wan, J.; Duan, S. Uncertainty-Constrained Belief Propagation for Cooperative Target Tracking. IEEE Internet Things

J. 2022, 9, 19414–19425. [CrossRef]
18. Li, C.; Wang, Z.; Song, W.; Zhao, S.; Wang, J.; Shan, J. Resilient Unscented Kalman Filtering Fusion with Dynamic Event-Triggered

Scheme: Applications to Multiple Unmanned Aerial Vehicles. IEEE Trans. Control. Syst. Technol. 2022, 31, 370–381. [CrossRef]
19. Liu, X.; Zhou, B.; Huang, P.; Xue, W.; Li, Q.; Zhu, J.; Qiu, L. Kalman filter-based data fusion of Wi-Fi RTT and PDR for indoor

localization. IEEE Sens. J. 2021, 21, 8479–8490. [CrossRef]
20. Yager, R.R. Entailment for measure based belief structures. Inf. Fusion 2019, 47, 111–116. [CrossRef]
21. Mi, X.; Lv, T.; Tian, Y.; Kang, B. Multi-sensor data fusion based on soft likelihood functions and OWA aggregation and its

application in target recognition system. ISA Trans. 2021, 112, 137–149. [CrossRef]
22. Wang, J.; Yu, Q. A Dynamic multi-sensor data fusion approach based on evidence theory and WOWA operator. Appl. Intell. 2020,

50, 3837–3851. [CrossRef]
23. Xiao, F. A new divergence measure for belief functions in D–S evidence theory for multisensor data fusion. Inf. Sci. 2020, 514,

462–483. [CrossRef]
24. Xiao, F. Evidence combination based on prospect theory for multi-sensor data fusion. ISA Trans. 2020, 106, 253–261. [CrossRef]

[PubMed]
25. Song, Y.; Zhu, J.; Lei, L.; Wang, X. Self-adaptive combination method for temporal evidence based on negotiation strategy. Sci.

China Inf. Sci. 2020, 63, 1–13. [CrossRef]
26. Zhao, K.; Sun, R.; Li, L.; Hou, M.; Yuan, G.; Sun, R. An improved evidence fusion algorithm in multi-sensor systems. Appl. Intell.

2021, 51, 7614–7624 [CrossRef]
27. Zhou, K.; Lu, N.; Jiang, B. Information Fusion-Based Fault Diagnosis Method Using Synthetic Indicator. IEEE Sens. J. 2023,

23, 5124–5133. [CrossRef]
28. Xiong, Y.; Ping, Z. Data fusion algorithm inspired by evidence theory. J. Huazhong Univ. Sci. Technol. 2011, 39, 50–54.
29. Wang, W.; Yan, Y.; Zhang, R.; Wang, Z.; Fan, Y.; Yang, C. Multi-attribute fusion algorithm based on improved evidence theory and

clustering. Sensors 2019, 19, 4146. [CrossRef]

http://doi.org/10.1109/JSYST.2021.3057663
http://dx.doi.org/10.1109/JSYST.2022.3228015
http://dx.doi.org/10.1109/JSEN.2017.2752959
http://dx.doi.org/10.1109/TR.2019.2930195
http://dx.doi.org/10.1109/TIE.2017.2774777
http://dx.doi.org/10.1109/TIE.2021.3135520
http://dx.doi.org/10.1109/TIE.2021.3068553
http://dx.doi.org/10.1007/s10489-018-1188-0
http://dx.doi.org/10.1109/TFUZZ.2020.2991296
http://dx.doi.org/10.1109/TAES.2019.2948517
http://dx.doi.org/10.1016/j.ast.2014.06.005
http://dx.doi.org/10.32604/cmc.2019.06354
http://dx.doi.org/10.1109/TIM.2021.3051999
http://dx.doi.org/10.1109/TNNLS.2020.3026644
http://dx.doi.org/10.1109/TIM.2021.3094829
http://dx.doi.org/10.1109/JIOT.2022.3165818
http://dx.doi.org/10.1109/TCST.2022.3180942
http://dx.doi.org/10.1109/JSEN.2021.3050456
http://dx.doi.org/10.1016/j.inffus.2018.07.003
http://dx.doi.org/10.1016/j.isatra.2020.12.009
http://dx.doi.org/10.1007/s10489-020-01739-8
http://dx.doi.org/10.1016/j.ins.2019.11.022
http://dx.doi.org/10.1016/j.isatra.2020.06.024
http://www.ncbi.nlm.nih.gov/pubmed/32622541
http://dx.doi.org/10.1007/s11432-020-3045-5
http://dx.doi.org/10.1007/s10489-021-02279-5
http://dx.doi.org/10.1109/JSEN.2023.3238344
http://dx.doi.org/10.3390/s19194146


J. Mar. Sci. Eng. 2023, 11, 1142 15 of 15

30. Liu, P.; Yu, G.; Wang, Z.; Zhou, B.; Chen, P. Object classification based on enhanced evidence theory: Radar–vision fusion
approach for roadside application. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [CrossRef]

31. Liu, B.; Deng, Y.; Cheong, K.H. An improved multisource data fusion method based on a novel divergence measure of belief
function. Eng. Appl. Artif. Intell. 2022, 111, 104834. [CrossRef]

32. Xiao, F. Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy. Inf. Fusion 2019,
46, 23–32. [CrossRef]

33. Fu, C.; Chang, W.; Xue, M.; Yang, S. Multiple criteria group decision making with belief distributions and distributed preference
relations. Eur. J. Oper. Res. 2019, 273, 623–633. [CrossRef]

34. Liu, Z.G.; Pan, Q.; Dezert, J.; Martin, A. Combination of classifiers with optimal weight based on evidential reasoning. IEEE Trans.
Fuzzy Syst. 2018, 26, 1217–1230. [CrossRef]

35. Gao, X.; Liu, F.; Pan, L.; Deng, Y.; Tsai, S.B. Uncertainty measure based on Tsallis entropy in evidence theory. Int. J. Intell. Syst.
2019, 34, 3105–3120. [CrossRef]

36. Chen, L.; Deng, Y.; Cheong, K.H. Permutation Jensen–Shannon divergence for Random Permutation Set. Eng. Appl. Artif. Intell.
2023, 119, 105701. [CrossRef]

37. Deng, Y. Uncertainty measure in evidence theory. Sci. China Inf. Sci. 2020, 63, 210201. [CrossRef]
38. Lin, J. Divergence measures based on the shannon entropy. IEEE Trans. Inf. Theory 1991, 37, 145–151. [CrossRef]
39. Song, Y.; Deng, Y. A new method to measure the divergence in evidential sensor data fusion. Int. J. Distrib. Sens. Netw. 2019,

15, 1550147719841295. [CrossRef]
40. Wang, W.Q.; Yang, Y.L.; Yang, C.J. A data fusion algorithm based on evidence theory. Control. Decis. 2013, 28, 1427–1430.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIM.2022.3154001
http://dx.doi.org/10.1016/j.engappai.2022.104834
http://dx.doi.org/10.1016/j.inffus.2018.04.003
http://dx.doi.org/10.1016/j.ejor.2018.08.012
http://dx.doi.org/10.1109/TFUZZ.2017.2718483
http://dx.doi.org/10.1002/int.22185
http://dx.doi.org/10.1016/j.engappai.2022.105701
http://dx.doi.org/10.1007/s11432-020-3006-9
http://dx.doi.org/10.1109/18.61115
http://dx.doi.org/10.1177/1550147719841295

	Introduction
	Preliminaries
	D–S Evidence Theory
	Belief Divergence Measure

	The Proposed Method
	Determination of Support Function
	Basic Belief Assignment for Measurements
	Rule of Evidence Combination
	Conflicting Measure and Weighting Combination

	Experiments
	Experiment 1
	Experiment 2
	Experiment 3

	Conclusions
	References

