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Abstract: A critical step in the visual navigation of unmanned surface vehicles (USVs) is horizon
line detection, which can be used to adjust the altitude as well as for obstacle avoidance in complex
environments. In this paper, a real-time and accurate detection method for the horizon line is
proposed. Our approach first differentiates the complexity of navigational scenes using the angular
second moment (ASM) parameters in the grey level co-occurrence matrix (GLCM). Then, the region
of interest (ROI) is initially extracted using minimal human interaction for the complex navigation
scenes, while subsequent frames are dynamically acquired using automatic feature point matching.
The matched ROI can be maximally removed from the complex background, and the Zernike-
moment-based edges are extracted from the obtained ROI. Finally, complete sea horizon information
is obtained through a linear fitting of the lower edge points to the edge information. Through various
experiments carried out on a classical dataset, our own datasets, and that of another previously
published paper, we illustrate the significance and accuracy of this technique for various complex
environments. The results show that the performance has potential applications for the autonomous
navigation and control of USVs.

Keywords: horizon line detection; unmanned surface vehicles; intelligent navigation system; visual
navigation technology; marine images

1. Introduction

Unmanned surface vehicles (USVs) can be deployed in complex natural environments,
replacing manned ships in numerous applications, such as rescue, disaster relief, and envi-
ronmental monitoring [1]. A closed-circuit television (CCTV)-system-based vision sensor is
one of the conventional assemblies for USVs. Compared to laser rangefinder instruments,
synthetic aperture radar vision sensors have extensive advantages, such as data richness,
low cost, and good stability [2–4]. A USV with autonomous navigation capabilities can
ensure self-safe and efficient execution to complete specific tasks; in particular, the rapid
development of visual navigation technology has laid an important foundation for au-
tonomous navigation [5,6]. For long voyages, early determination of the sea level relies on
visual navigation technology to help maintain USV balance and smooth navigation [7,8].

The horizon line detection operation is an essential foundation of visual navigation
technology. In general, the area above the horizon line is represented as a contour dividing
the background and the water, which encompasses the navigable area for the USV. Horizon
line detection greatly affects the performance of subsequent steps, such as intelligent
autonomous navigation, situational awareness, dynamic positioning, obstacle detection,
and target tracking, and the entire navigation system plays an important role [9]. Although
many horizon line detection methods have been proposed for open-field environments,
few methods are available for complex natural environments, such as harbours and inland
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rivers, and often the robustness and accuracy do not address the practical needs [10]. How
to extract the critical pixel points from the billions of raw pixels that make up a horizon
line, whose accuracy and robustness in a natural navigation environment is unknown, still
remains to be understood. For example, once there are reflections, obstacle occlusions,
illumination changes, camera jitter, irregular waves, and other disturbances on the water
surface, horizon line detection becomes quite a challenging problem [11]. The horizon line is
the boundary that distinguishes the background area from the navigable area. Accordingly,
the navigable area determination problem can be equated to a horizon line detection
operation, which is a hot research topic to improve the autonomy of USVs [12]. Therefore,
the problem of detecting horizon lines using intelligent CCTV systems for USVs is a topic
of practical importance, which can help ships maintain balance, estimate their altitude,
determine navigable areas, and identify obstacles to be avoided.

In the field of autonomous USV navigation, some typical approaches for horizon line
detection have been successful in open waters [13,14]. However, real-time and accurate
detection of the horizon line in complex environments also needs to address the following
central issues: (1) There are challenges in distinguishing the sea and the sky with similar
colours and low contrast, which is caused by the prevailing atmospheric and illumination
conditions. (2) Horizon line detection methods are significantly different for single-frame
images and dynamic videos. (3) A quick algorithm for horizon line detection needs to be
explored for a moving USV in a cluttered environment. (4) Traditional horizon line detection
approaches have poor generalization performances, and they often obtain unstable results.
(5) When the horizon line is not completely straight or there are other straight lines that
create interferences, low-resolution results may occur.

In this paper, we aim to address the above horizon line detection issues in a complex
maritime scenario based on our previous work [15–17]. For this, the criteria for defining
a complex scenario need to be clearly defined as a first step, which will also document
the various challenging scenarios. Second, a novel and efficient horizon line detection
algorithm is developed based on minimal manual interactions. Finally, some experiments
are designed to evaluate the performance with other state-of-the-art networks on the
Singapore maritime dataset (SMD) [18], maritime obstacle detection dataset (MODD) [19],
and our self-collected Yangtze River navigation scene dataset (YRNSD). In summary, the
main contributions of this paper are as follows:

(1) We propose criteria for classifying a complex scenario using the grey level co-occurrence
matrix (GLCM) to cover various challenging scenarios.

(2) We develop an efficient method based on a novel dynamic region of interest (ROI)
approach to detect the horizon line in a challenging scenario for a moving USV.

(3) We show that it is possible to use weak manual interactions and autonomous feature
extraction techniques to detect the horizon line for intelligent visual navigation.

The remainder of this paper is organized as follows. A review of the related literature
for horizon line detection is presented in Section 2. Section 3 provides design considerations
and preliminaries, including the criteria for complex maritime scenarios. The details
of our proposed method are presented in Section 4, which contains five steps, namely,
classification of the scenario complexity, expanded ROI extraction, dynamic ROI matching,
edge extraction based on Zernike moments and lower edge-point linear regression fitting.
In Section 5, the experimental results obtained with our proposed method are presented
and compared with other relevant state-of-the-art approaches. The subsequent conclusions
and future work prospects are given in Section 6.

2. Related Work

Several approaches have been explored and reported for detecting horizon lines using
onboard or onshore sensors. According to a review of the literature, the development
of these approaches has progressed through three categories. The first category is the
manual sifting of local features, which mainly uses colour, edge and texture information.
For example, Ref.[20] first converts an RGB image into a binarized image using an Otsu
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threshold segmentation algorithm, and then combines a Hough transform to find the
longest line and treats it as the horizon line. Ref. [21] extended Canny edge detection
and a Hough transform to the field of horizon line detection. Similarly, Ref. [2] obtained
some candidate horizons based on a Canny edge detector a Hough transform and then
used a voting method and picked the horizon with the most votes as the true horizon. The
inherent drawback of such methods based on local features is their instability in complex
maritime environments, because the parameter selection relies on artificial empirical prior
knowledge or underlying assumptions ([22,23]). For example, edge information easily
suffers more in the presence of edge gaps, and texture information is easily blocked by local
shadows and obstructions. Although edge gap filling processes have been proposed, it is
also easy to get into trouble when the edge gap is larger than the search window.

The second category is adaptive global features. Most of the methods in this class
are based on the overall features of an image and do not rely on prior knowledge, and
these methods outperform the local feature methods ([24,25]). The extreme values of the
gradient change are first sampled for each vertical column in the gradient image, and
then the random sample consensus (RANSAC) method is used to fit the horizon line.
Ref. [26] proposed a hierarchical horizon detection algorithm that combines a Canny edge
detector with a Hough transform to adaptively find the longest line and then fine-tunes
it to obtain the horizon line information. Ref.[27] extracted a rectangular region above a
virtual horizon as a region-growing seed, and the region-growing algorithm helped obtain
the final horizon. The overall features include colour distribution, texture information, and
spatial context, and they can only be used as a basis for rough-level segmentation, as these
features and principles may not be suitable for complex marine environments. Meanwhile,
these methods still suffer from a homogeneous distribution problem in the water surface
case, and there are local regions with abnormal changes in grey values that can reduce the
accuracy, such as water surface shadows and obstacle occlusions.

The third category is intelligent detection methods, also called regression-based ap-
proaches. This class of approaches tends to use a coarse-to-fine strategy, i.e., initially
focusing on the overall structural information and subsequently updating features using
the finer details to provide more accurate predictions. Horizon line predictions use se-
mantic segmentation based on deep learning ([28–30]). The key is transforming horizon
line detection into clustering and classification. At the same time, logistic regression and
polynomial spline modelling are less effective in treating the probability distribution and
physical characteristics of a detected horizon line. Depending on the degree of manual
labelling for the training data, these approaches can be subdivided into semisupervised and
supervised learning ([31]). For example, Ref. [32] designed a semisupervised water region
segmentation learning method for USVs in a changing unknown environment by using
automatically labelled training data with the aid of LiDAR. Ref.[11] combined a multiscale
approach and a convolutional neural network (CNN) to detect the horizon in maritime
scenarios. In general, a horizon line extraction has two parts, a region of interest (ROI)
extraction and horizon line estimation, where the important features are extracted first and
then trained with intelligent detection methods. The vast majority of the above methods
have been proven to be robust and accurate in general environments but have poor gener-
alization performances for complex visual navigation environments, such as when mirror
reflections exist on the water surface, or during water fogging or obstacle interference.

3. Design Considerations and Preliminaries

Before performing an accurate horizon line detection, we must differentiate the actual
navigational environment captured using a CCTV system to determine whether the USV’s
navigational scenario is in open water or complex water. Open-water scenarios are usually
defined as outer waters with a wide field of view, making the horizon line detection
relatively simple. However, complex water scenarios are usually inland rivers and harbours
with heavy traffic, where the detection of horizon lines for complex scenarios is susceptible
to numbers factors.
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First, the water surface is susceptible to extremely dark or bright areas due to direct
sunlight or reflections. For example, object shadows are formed when the light shining
on the surface of an object is partially or completely blocked ([33]). In addition to the
effect of light projection, the reflection of the sun on the water surface can create large
patches of extremely bright light that considerably block the continuity of the horizon line,
as shown in Figure 1a. Second, complex scenarios are bound to have other ships, floating
objects, navigation aids, and other types of cluttered background, as shown in Figure 1b,
which disrupt the continuity of the horizon line features. When there are multiple obstacles
blocking each other, horizon line detection will be even more challenging. Third, USVs are
usually lightweight vessels, and when they are moving quickly, it is difficult to maintain the
balance of the hull in a sustainable manner, resulting in a certain angle of tilt of the horizon
line (as shown in Figure 1c), which may be random and unpredictable. In addition, special
weather conditions, such as night, rain, snow, and fog, can also affect the accurate extraction
of the horizon line. As shown in Figure 1d, foggy weather can cause the distinction between
the water area and the background area to be blurred. As a result, the image information
captured in complex scenarios is more complex and does not have a clear distinction
between the water area and the background area compared to open water. Therefore,
complex scenarios and their determination criteria are defined before conducting a horizon
line detection to facilitate the coverage of a variety of challenging scenarios.

(a) Setting sun. (b) Cluttered background.

(d) Scene tilting. (d) Foggy weather.

Figure 1. Examples of typical complex elements.

4. Proposed Approach
4.1. Classification of the Scenario Complexity

A spatial relationship is considered to be a function of the distance between two pixels,
and the texture features extracted from a camera image using a grey level co-ocurrence
matrix (GLCM) [34] can be used to differentiate between navigation scenario complexities.
Before the construction of the GLCM, we need to transform the original navigation scenarios
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into grey-level images. Assume an M× N navigation scene I is transformed into a grey
image Igray, which is described as:

Igrey = f (x, y)M×N = 0.299 ∗ R(x, y) + 0.587 ∗ G(x, y) + 0.114 ∗ B(x, y) (1)

Igrey is an image with Ng grey grades, and (x1, y1) and (x2, y2) are two pixel points in scene
Igrey with distance d in the direction of θ. Then, the GLCM of this navigation scene is
calculated as follows:

P(i, j, d, θ) = #{(x1, y1), (x2, y2) ∈ M× N | I(x1, y1) = i, I(x2, y2) = j} (2)

where # denotes the number of elements in the set. i, j = 0, 1, 2, . . . , Ng − 1 represents the
grey levels of two pixels. The angular second moment (ASM) is one GLCM feature, which
is often used to describe the uniformity of the greyscale distribution in images. The ASM is
calculated as follows:

ASM =
Ng−1

∑
i=0

Ng−1

∑
j=0

P(i, j, d, θ)2 (3)

When the distribution of elements in the GLCM is more concentrated around the main
diagonal, a smaller ASM indicates a more uniform distribution of pixel greyscales and finer
textures; conversely, it indicates an uneven distribution of pixel greyscales and coarser
textures. Hence, we use the ASM value as a criterion to determine the complexity of the
scenario in this paper.

4.2. Expanded Region-of-Interest (ROI) Extraction

As the valuable information containing the horizon line feature points is usually
concentrated in the central region of the whole image, if all the pixels of the whole image
are traversed for the search calculation, it is not only computationally time-consuming
but also difficult to meet the real-time requirements, and it introduces a large amount of
unnecessary noise interference, which increases the image processing difficulty. Therefore,
region-of-interest (ROI) extraction is a necessary operation for image processing.

As shown in Figure 2, to simplify horizon line detection, an original ROI defining a
bounding box (yellow) around the touched line must be drawn by the user. Due to the
small size of the display and the jittering hands of the user, the ROI is properly expanded
as the the red bounding box. The following relationship exists between the expanded and
original ROI: {

xe = xo + ∆x1 + ∆x2 = M

ye = yo + ∆y1 + ∆y2 = N
′ (4)

where xe and ye denote the width and height of the expanded ROI, and xo and yo denote the
width and height of the original ROI, respectively. ∆x and ∆y represent the expansion of
the ROI compared to the original ROI in the horizontal and vertical directions, respectively.
The image captured by the vision camera is of a M ∗ N resolution, with three-channel RGB.
In the actual processing, the width of the expanded ROI xe is M, which is the width of the
captured image. Usually, the values of ∆x1 and ∆x2 can be unequal, i.e., the user is not
required to manually draw the original ROI as horizontally centred. However, ∆y1 and
∆y2 are generally equal and take values of 20 pixels unless the size of the expanded ROI
exceeds the boundary of the captured image, in which case the upper/lower boundary of
the expanded ROI is taken directly from the upper/lower boundary of the captured image.
The value of N

′
is approximately equal to one-fifth of N.



J. Mar. Sci. Eng. 2023, 11, 1130 6 of 15

Figure 2. Schematic of interactive-based expanded ROI extraction.

4.3. Dynamic ROI Matching

Using an interactive-based expanded ROI extraction strategy, the expanded ROI to be
selected for a horizon line detection can be reduced. Unfortunately, it is also impractical to
perform interactive ROI extraction for every frame because the workload is undoubtedly
huge for video images of at least 25 frames per second (FPS). Considering that video images
captured by the shipboard camera are continuous sequences containing time-stamped
information, there is strong spatial continuity between the sequence images over a short
time interval. Therefore, we only select the first image frame for interactive ROI extraction
in the initialization phase of the algorithm, which is a minimal interaction that is usually
acceptable in a crowdsourcing approach. The specific process of dynamic ROI matching is
as follows:

Step 1: Initialization of the master areas. The expanded ROI IeROI in the first video
frame of the shipboard camera acts as the master areas. IeROI is coregistered until all the
video images are registered.

It=0
eROI(i, j) ∈ It=0(x, y) (5)

Step 2: Coarse extraction of the keypoints. The keypoints Pt of the master areas It
eROI

and It+1(x, y) are initially extracted using the oriented features from a accelerated segment
test (oFAST), which introduces the concept of feature orientation to achieve the feature
point rotation invariance.

Pt ∈ It
eROI ∩ It+1(x, y) (6)

Step 3: Fine extraction of the keypoints. Construct the Hessian matrix for the keypoints
and finely extract P̃t again to select the keypoint with better traceability. For the keypoints
P̃t, the following two conditions need to be met simultaneously:{

det(HP) > det(Hi) i = 1, 2, 3, · · · , 8
∑8

i=1[det(HP)− det(Hi)] > detth
(7)

where det(HP) and det(Hi) both represent the Hessian matrix discriminant. detth indicates
the set threshold value. Equation (7) implies that while the Hessian matrix discriminant of
P̃t is a local maximum, the sum of their differences needs to be greater than detth.

Step 4: The keypoint descriptor. After a fine extraction of the keypoints, we use the
rotated binary robust independent elementary features (RBRIEF) operator to compute the
feature descriptors. The RBRIEF descriptor is constructed from a set of binary intensity
tests.

Step 5: ROI matching. Brute force (BF) descriptor matching assigns the closest de-
scriptor of the slave areas to the master areas. The power of BF matching lies in its ability
to retrieve the nearest neighbours with a high probability given enough hash tables.

The horizon line candidate regions can be obtained continuously after the above
five processing steps. As shown in Figure 3, the spatiotemporal similarity between the
upper and lower frames is used to dynamically locate the ROI.
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Figure 3. Dynamic ROI matching process.

4.4. Edge Extraction Based on Zernike Moments

After the dynamic ROI area has been extracted, the navigational scene needs to be
further processed to obtain the horizon line information. Considering the poor robustness
of the traditional Sobel and Canny operator edge detection algorithms against noise and
image rotation, this study uses Zernike moments to extract the image contour edge. Zernike
moments are a type of convolutional integration method that is highly resistant to noise
interference and is rotationally invariant.

First, the two-dimensional Zernike moments of the ROI region can be defined as:

Znm =
n + 1

π ∑
x

∑
y

f (x, y) ∗V∗nm(ρ, θ) (8)

where m and n are two integers, n ≥ 0, and the value of n− |m| is an even number. ρ is the
position of the edge of the image, while ρ =

√
(x2 + y2). θ is the angle between the X-axis

and ρ. f (x, y) means the ROI region. Vnm is a Zernike polynomial of order n, defined as a
function of ρ and θ in the polar coordinate system. V∗nm is the conjugate complex number
of Vnm.

Second, the paper directly refers to the classical 7× 7 template factor calculated in [35]
{M00, M11, M20, M31, M40}. Let the ROI region f (x, y) = 1, and note that the template of
Znm is Mnm; then, we have:

Mnm =
∫ ∫

x2+y2≤1
V∗nm(ρ, θ)dx dy (9)

Then, Equation (9) is utilized to calculate the templates and each pixel point of
the ROI region image for the convolution operation to obtain 7× 7 Zernike moments:
{Z00, Z11, Z20, Z31, Z40}.

Finally, using the rotational invariance principle of the Zernike moments and edge
points, the spatial greyscale model of edge points can be solved to find the pixel posi-
tions of the edge points in the ROI region. Figure 4 shows the results of different edge
extraction algorithms, where the ROI regions (Scene 1#, Scene 2#, Scene 3#, Scene 4#) come
from Figure 1.
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Figure 4. Comparison of the results of different edge extraction algorithms.

4.5. Lower Edge-Point Linear Regression Fitting

The ROI region can be roughly located using edge detection based on the Zernike
moments; however, further linear fitting is required to obtain a more accurate horizon line.
Due to the influence of water spots, obstacles, complex backgrounds, and foggy weather,
edge areas are often uneven and haphazard, which poses a great challenge for fitting the
horizon line directly. To this end, the analysis of many edge images shows that there is
usually a clear differentiation between the background area and the navigable water surface
area, i.e., edge noise is usually distributed in the background area, while there are no edge
points in the navigable area. Therefore, in this paper, by performing lower edge-point
tracking on the edge points in the background region and putting the tracked points into
the set Tm, we obtain the specific tracking process in Algorithm 1.

Algorithm 1 Lower edge-point tracking algorithm

Require: The binarized image Iedge after Zernike moments edge extraction
Require: The number of rows of the ROI region M
Require: The column number of the ROI region N
Ensure: The set of Tm = {(xm, yn)|, xm ∈ [0, M], yn ∈ [0, N]}

1: while i < N do \\ i denotes the number of columns currently searched
2: while j > 1 do \\ j denotes the number of rows currently searched
3: if Iedge(i, j) == 1 then
4: Put the point (i, j) into the set Tm
5: Break
6: end if
7: i = i− 1
8: end while
9: if Iedge(i, j) == 0 then \\ denotes that no edge points exist in this column

10: Put the point ( f ix(i/2), j) into the set Tm
11: end if
12: j = j + 1
13: end while
14: Return Tm



J. Mar. Sci. Eng. 2023, 11, 1130 9 of 15

The linear regression method is used to fit the traced lower edge points Tm. A fitted
linear equation y = kx + B is first constructed, and the fitted linear function f (x) is found
so that the sum of squares of the errors with the actual value is minimized, and the objective
function is:

J =
n

∑
i=1

wi[yi − f (xi)]
2 =

n

∑
i=1

wi[yi − (kxi + b)]2 (10)

where wi is the weight of the lower edge point, and the initial weight of each edge point is
1 in Equation (11).

Next, the weights of the edge points are updated according to the weight function,
and the residual value ri of the fitted line is calculated by fitting the equation of the line and
the distance from the edge point to the fitted line . The weights of the lower edge points
that deviate from the line should decrease as the residual ri increases, and at the same time,
the amount of weight function design computation is reduced, as follows:

wi =

{
1 |ri| = 0

1/ri |ri| 6= 0
(11)

where the reciprocal of the residual value is used as the weighted value of the lower edge
points when the residual value is not zero.

Finally, the updated weight values are substituted into Equation (10) using the least
squares method to solve for the estimated horizon line information, and the specific effect
is shown in Figure 5. The ROIs in Figure 5 are derived from Figure 1, where the blue points
are the traced lower edge points and the yellow lines are the horizon lines.

(a) Setting sun ROI.

(b) Cluttered background ROI.

(c) Scene tilting ROI.

(d) Foggy weather ROI.

Figure 5. Linear fit results for different navigation scenarios.

5. Experiment and Results
5.1. Datasets and Evaluation Metric

To verify the effectiveness of the proposed method, experiments were conducted on the
SMD [18], MODD [19], and YRNSD datasets [6], of which the first two are classical datasets
and the third is a self-collected dataset. The SMD dataset was collected in Singapore waters
from July 2015 to May 2016 under various environmental conditions, such as before sunrise
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(40 min before sunrise), sunrise, midday, afternoon, evening, haze and rainfall, and after
sunset (2 h after sunset) . The MODD dataset was collected in Koper Bay, Slovenia, using a
camera fixed to an unmanned boat over a period of approximately 15 months, with the
camera capturing video at a given resolution at 10 frames per second. The self-collected
YRNSD dataset in this paper was captured in the Wuhan section of the Yangtze River basin
and consists of 64 videos, which cover a wide range of types of obstacles and meteorological
conditions. The experimental environment in this paper is an Intel Core i7-8700K CPU 3.70
GHz*12, NVIDIA GeForce GTX 1080Ti GPU, 32 GB RAM.

To quantitatively compare the performance of the methods, the ASM was employed
to evaluate the complexity of the scene. In general, we consider that a larger ASM value
represents a more complex navigational scene image and a greater difficulty in performing
horizon line detection. The calculation of the ASM value can be used as a basis for choosing
to use this method or a conventional edge detection before performing a specific horizon line
detection. Table 1 shows the distribution of ASM values corresponding to the three datasets.

Table 1. Datasets and the parametric ASM distributions.

Dataset SMD MODD YRNSD

No. of videos 11 28 64
No. of frames 4429 5084 14430

ASMmin 0.0604 0.0144 0.0672
ASMmax 0.0949 0.1180 0.1092
ASMS.D. 3.5028 × 10−4 7.0297 × 10−6 2.1278 × 10−5

The above ASM values are derived from random video sequences from the three datasets.

As seen from Table 1, the ASM value variation range for the same video scenes is small,
as reflected by the small maximum ASM value variation ranges and their small standard
deviation, indicating that the ASM values are relatively stable.

5.2. Impact of Different Complexity Levels

The complexity of the textures contained within each dataset also varies, so all the
scene images are classified into low, medium, and high complexities, and specified as
less than 25% (lower quartile), the 25% to 75% interval, and the greater than 75% (upper
quartile) respectively. Figure 6 shows 9 images derived from the 3 datasets.

(a) SMD (ASM = 0.0632). (b) SMD (ASM = 0.0835). (c) SMD (ASM = 0.0917).

(d) MODD (ASM = 0.0216). (e) MODD (ASM = 0.0461). (f) MODD (ASM = 0.0975).

(g) YRNSD (ASM = 0.0696). (h) YRNSD (ASM = 0.0813). (i) YRNSD (ASM = 0.0914).

Figure 6. The real horizon line detection results.
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To quantitatively verify the accuracy of the proposed method, we extracted the horizon
lines, point by point, for each of the 9 images in Figure 6 by using manual annotations and
used them as the real horizon line, and the extraction results are shown as the red straight
lines in Figure 6. Meanwhile, the horizon line information is obtained using the method in
this paper, and the effect is shown as a yellow straight line in Figure 7. Then, the average
error e between the detection result and the real result is calculated as Equation (12), and
the results are shown in Table 2.

e =
∑n

i=1|Le,i − Lt,i|
n

(12)

where Le,i denotes the longitudinal coordinate of the ith horizon line points detected by
the proposed algorithm. Lt,i denotes the real longitudinal coordinate of the ith horizon line
points. n denotes the number of horizon line points.

(a) SMD (ASM = 0.0632). (b) SMD (ASM = 0.0835). (c) SMD (ASM = 0.0917).

(d) MODD (ASM = 0.0216). (e) MODD (ASM = 0.0461). (f) MODD (ASM = 0.0975).

(g) YRNSD (ASM = 0.0696). (h) YRNSD (ASM = 0.0813). (i) YRNSD (ASM = 0.0914).

Figure 7. Horizon line detection results using our method.

Table 2. The error between our detection and the real results.

Datasets SMD MODD YRNSD

ASM 0.0632 0.0835 0.0917 0.0216 0.0461 0.0975 0.0696 0.0813 0.0914
e 1.4005 1.5667 1.8161 1.2499 1.4036 1.3295 1.2996 1.2469 1.8167

As seen from the results in Table 2, the average algorithm error for scenes of different
complexity from the three different datasets is within 2 pixels, indicating that the horizon
line detection results of our method are very close to the real results, and the impact
of different complexity scenes on this method is small. This is because we detect the
region of interest in advance, and the complex background interference is already removed.
Moreover, except for the initial region, which needs to be calibrated the first time it is used,
all subsequent detection operations can be carried out automatically.

5.3. Comparative Analysis of Different Methods

To further verify the methods performance, we compared the same images using the
proposed method, the conventional edge detection and threshold segmentation methods
(EDTSM), and the semantic segmentation methods (SSM), and the results are shown
in Figure 8. Figure 8a,d,g,j show the horizon line detection results obtained using the
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proposed method; Figure 8b,e,h,k show the horizon line detection results obtained using
the conventional EDTSM; and Figure 8c,f,i,l show the horizon line detection obtained using
the SSM.

Figure 8. Qualitative comparison of our method with EDTSM and SSM. (a–c) represent the scenes of
setting sun. (d–f) represent the scenes of cluttered background. (g–i) represent the scene titling. (j–l)
represent the scenes of foggy weather.

From the above experimental results, it can be concluded that the proposed algorithm
is able to detect the horizon line relatively accurately, even under scenarios such as a
setting sun, cluttered background, scene tilting and foggy weather images. The horizon
line detected by traditional EDTSM-like methods often consists of multiple discontinuous
line segments, and horizon line detection will fail in scenarios with high background
complexities, cluttered edge information, and bad weather (e.g., foggy days). Although
the recent trend of semantic segmentation for extracting horizon lines is effective and has
a certain ability to improve the anti-interference capability compared to the EDTSM-like
methods, most of these methods need a large amount of manually labelled data, and it
takes a long time from training and testing to application deployment.

We employed our method on the R2018b Matlab platform to process a 2 min video
sequence (obtained from the YRNSD dataset). The horizon line detection time took approx-
imately 40 s, which also included the selection of initial frames of ROI that took about 10 s.
Excluding the manual interaction period, the average detection time per frame was roughly
0.213 s. On the other hand, EDTSM-like methods under similar conditions took about
15 s and an average processing time of 0.12 s per frame while providing subpar accuracy
in complex environments. The SSM-based method may be applied directly to process
the same video sequence without requiring prior training, which takes approximately
38 s of processing time. This translates to 0.317 s per frame image. However, similar to
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edge-based methods, the horizon information extracted via SSM may not be precise enough
in complex scenes.

In a comprehensive comparison, the proposed method is a coastline extraction al-
gorithm based on minimal manual interaction, which definitely used less computational
resources than the method based on SSM. Our method first performs an upfront calculation
of the complexity of the scene, in addition to extracting the initial ROI using manual anno-
tation and subsequent matching. These three steps are time-consuming but greatly reduce
the region to be searched in the specific edge extraction phase, which can save some time.
Moreover, for conventional EDTSM-like-method algorithms, which take the least amount
of time, our method is able to obtain more accurate edge information, which is of the
utmost importance. Therefore, for a USV with a long navigation time, the method in this
paper can help obtain relatively accurate information about the horizon line in real time.

6. Conclusions

We proposed a horizon line detection method based on minimal manual interaction,
which specifically includes evaluating the complexity of the navigation scene using the
ASM parameters of GLCM. For highly complex scenes, we use manual interactions to
dynamically extract the ROI in the initialization phase of the method, and then use key
feature points to match the ROI in the next image frame as a way to continuously exclude
the interference of the complex background environment. We then use Zernike moments to
extract the edge features of the current ROI, and finally use the method of least squares to
linearly fit all the lower edge feature points to the horizon line. To evaluate the effectiveness
of our method, comparative experiments were designed for navigation scenarios of different
complexities, also quantitative comparisons were conducted between this paper and the
conventional EDTSMs and SSMs. Our experiments show that this method has the potential
to be applied to the autonomous navigation and control of USVs.

Our method partially solves the problem of horizon extraction in complex environ-
ments but has some shortcomings. At present, the anti-interference and stability of our
approach are poor in some extreme or unexpected situations. For example, during the
long-term navigation of a USV, the front camera is frequently disturbed by water splashes,
resulting in unclear images and failure of the dynamic region-matching algorithm to con-
verge, leading to the failure of the horizon line extraction. In addition, as the endurance
mileage of USV becomes longer, errors in the horizon line extracted by the linear fitting
algorithm at the early stage may accumulate, requiring manual correction during the jour-
ney. The above two aspects are the main shortcomings of our method. In the future, we
will focus on improving the anti-interference and stability of our approach. Specifically,
we will concentrate on improving the hardware part of the image acquisition device to
address the problem of susceptibility to water splash disturbance, and explore new discrete
point-fitting methods to improve the long-term stability of the algorithm.
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