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Abstract: To detect a desired underwater target quickly and precisely, a real-time sonar-based target
detection system mounted on an autonomous underwater helicopter (AUH) using an improved
convolutional neural network (CNN) is proposed in this paper. YOLOv5 is introduced as the basic
CNN network because of its strength, lightweight and fast speed. Due to the turbidity and weak
illumination of an undesirable underwater environment, some attention mechanisms are added, and
the structure of YOLOv5 is optimized to improve the performance of the detector for sonar images
with a 1–3% increment of mAP which can be up to 80.2% with an average speed of 0.025 s (40 FPS) in
the embedded device. It has been verified both in the school tank and outdoor open water that the
whole detection system mounted on AUH performs well and meets the requirements of real time
and light weight using limited hardware.

Keywords: underwater target detection; sonar images; CNN; improved YOLO

1. Introduction

Complex underwater environments have overwhelming characteristics, including
turbidity and weak illumination, that bring enormous challenges for general object de-
tectors based on common optical RGB images. A considerable amount of work toward
target detection algorithms has been put forward with the development of deep learning
and convolution neural networks(CNN), starting from LeNet5 [1] in 1990 based on the
invention of Neocognitron with Fukushima [2] and boosting from Alexnet [3]. Currently,
nearly all advanced detection models, especially for underwater target detection, use the
CNN framework, which has already replaced traditional methods such as the digital signal
processing based on sound waves [4], statistical features of images, and machine learning
such as SVM [5], decision tree [6] and BP neural network [7]. The reason for wide use is that
CNNs can produce, extract and fuse hierarchical features automatically instead of involv-
ing humans to capture information in varying scales across multiple layers, which allows
CNNs to generate robust and distinctive features for accurate detection. In general, there
are two types of CNN frameworks. One-stage networks represented by SSD [8] and YOLO
series [9–12] are end-to-end detectors with no requirements of a region proposal generation
step, while two-stage networks need to form a proposal network to first search for targets,
and then, they use a second network to fine-tune these proposals and finally output the
detection results represented by RCNN [13], Fast RCNN [14] and Faster RCNN [15], with
higher accuracy but slower inference speed. Based on the real-time and light-weighted
need of the project, YOLOv5 is chosen as the main framework, and the focus research forms
a whole, efficient and high-accuracy detection system mounted on AUH by improving it.

However, traditional CNN detection frameworks are mostly used for optical imagery,
and the performance of the underwater optical imaging systems is largely limited by
the special environmental conditions of being underwater. In deep or muddy water, we
could not obtain one clear image for training and detecting. Thus, we chose a detection
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method using acoustic means through sonar, due to it being independent of turbidity and
weak illumination and because it has the best ability of using sound waves to transmit
information in water. Sonar is more effective than cameras and radar when conducting
underwater detection tasks because it can provide more accurate and detailed information.
It has already been applied to target detection [16–18], detection based on sonar images has
the advantages of higher frequency, longer range, and stronger real time [19,20].

There has been a substantial amount of research within the past few years on under-
water target detection based on the improvement of YOLO that is worthy study.

Jing [21] proposed a YOLOv5s-ViT-BiFPN-based neural network to detect damaged
houses by introducing the vision transformer into the feature extraction network and by
applying BiFPN for multi-scale feature fusion, in which the model increased by 1.23%
mAP compared to YOLOv5s. Teerapong [22] developed the transformer-based YOLOX
with FPN, which uses ViT as the backbone and adds FPN into YOLOX. Finally, the model
surpassed YOLOv5L by 2.56% mAP. Xu [23] proposed the Attention-YOLO using an item-
wise attention mechanism, which embedded a channel and spatial attention mechanism in
the feature extraction network, in which the model improved at most by 2.5% mAP on the
COCO dataset compared with YOLOv3. Experiments by Zhang [24] have showed that the
FPN structure of YOLOv4 after using an attention module increased the mAP by 1.08%
on the PASCAL VOC dataset. After using depth-wise separable convolution, a multi-scale
channel attention module and a modified attentional feature fusion module in MobileNet-
YOLOv4, the model obtained a 0.94% increment in mAP and an average of 40FPS speed.
Kong [25] created dual-path network (DPN) module and a fusion transition module with
YOLOv3 and achieved an improvement of 1.9% mAP on the three-dimensional imaging
sonar data. Topple [26] designed a small detector MiNet inspired by YOLO, and MiNet
was successfully deployed onboard small autonomous underwater vehicles during a sea
trial to detect mines with side-scan sonar images.

Unlike typical RGB images, object detection based on sonar images may cause nu-
merous problems. The first dilemma is the difficulties of capturing sonar images. There
is currently not a standard large sonar dataset such as ImageNet [27] and COCO [28] for
optical images. Therefore, AUH [29], designed by Zhejiang University, is useful. It is a kind
of subsea AUV and is suitable as a dataset because of the characteristics of long-term stable
hovering near the seabed and small-scale agile maneuverability. However, acquisition and
preprocessing of sonar images have still taken us a great deal of time and cost. Moreover,
the sonar images have their own characteristics that make it difficult to extract informa-
tion. These characteristics include not only low resolution owing to the various kinds of
noises and complex underwater sound field but also the ambiguity problem caused by
the principle of forming acoustic images that are expressed in two dimensions by project-
ing three-dimensional images horizontally. In addition, the sonar used in the proposed
detection system is cost-effective, has a smaller detection scope and shorter distance, and
the images formed have lower resolutions compared to some expansive sonars. Due to
the specialties of the sonar images, the design of traditional CNN detection networks may
not fit because they are based on and designed for optical images. Thus, the network has
to be improved and optimized to help it overcome the poor detection results caused by
the shortcomings of sonar images. Adding an attention mechanism is the first thing to
improve, and changing the neck and head for structural optimization to better fuse the
extracted features and to detect the targets is also verified in the work.

In conclusion, the purpose of this paper is to design a real-time detection system
mounted on AUH and to focus on further exploring, improving, and validating algo-
rithms and networks for use in detection underwater, especially seabed targets based on
forward-looking sonar images. Improving the detection accuracy and considering speed by
modifying YOLOv5 with some attention mechanisms and other structural optimizations,
such as BiFPN and decoupled heads, are also explored so that an efficient and effective
real-time target detector that is suitable to be mounted on AUH can be built.

In summary, the main contributions of this paper are:
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• Some improvements based on YOLOv5 are introduced, including attention mech-
anisms that add to the backbone, BiFPN that replaces the PANet as the neck, and
decoupled heads to separately classify and localize the targets.

• A system for underwater target detection based on sonar images is presented. From
training network improved-YOLOv5 to deploying it, to AUH, and then to obtaining
the detection results from the algorithm, the whole system to detect the desired
underwater targets has been designed.

• Several tank experiments and outdoor tests are implemented to validate the detection
system, and the superiority of the improved-YOLOv5 in target detecting is validated.

The remainder of this paper is organized as follows: The real-time underwater target
detection system based on sonar images mounted on AUH and its full process with an
emphasis on the construction of the improved-YOLOv5 detection model are introduced in
Section 2. Especially, the three key techniques, including attention mechanisms, BiFPN, and
decoupled heads architecture, are mainly introduced. The applied value of the proposed
method is verified by an abundance of experiments in different water environments in
Section 3. A comparison between improved YOLOv5 and the original was conducted to
prove the advancement of the method. The superiorities and limitations of the proposed
method are discussed in Section 4. Finally, the conclusions and the direction of research in
the future are drawn out in Section 5.

2. Methods

In order to facilitate the proposed design of the underwater target detection architec-
ture for sonar imagery, the overall workflow of the detection system is firstly described in
this section. A brief introduction of YOLOv5 is followed, and then,adding the attention
mechanisms, BiFPN and decoupled heads used to optimize the detector.

2.1. Target Detection System Design

The AUH-based underwater target detection system proposed in this paper is based on
a typical CNN network, YOLOv5. The network is pretrained with a large number of images
from the classical dataset, ImageNet and COCO. The weights and some parameters of this
trained network will transfer to the proposed network, which is by improved-YOLOv5
to input some prior information to accelerate the convergence and to make the training
process much easier. This process is called transfer learning [30].

Then, the sonar dataset including some common underwater targets, such as ship-
wreck, anchor, and bucket, collected by the forward-looking sonar in the designed ex-
periments, is used to train the detection model. In order to diminish the network’s poor
performance and low precision caused by the lack of sonar images, data augmentation
tricks such as random rotating, flipping and Mosaic [12] will selectively be used before train-
ing. Then, the well-trained model will be deployed through an embedded development
board that is loaded onto the AUV to fulfill the mission of real-time detection.

When the detection module obtains the command to begin the detection task, it will
continuously send the newest sonar image to the detection network, asking for the result
of the algorithm with the frequency of one image per second, and if the detector finds
that there is a target, it will return the concrete information of the target to the detection
module. The module will combine the information from the detection network and the
main controller of AUH to calculate the longitude and latitude of the target, which is called
having detected the target. The whole workflow is shown in Figure 1.
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Figure 1. The workflow of the whole AUH-based underwater target detection system.

2.2. Network Building

YOLO is the representation of the one-stage network with no requirements of a region
proposal generation step. It takes an input image and divides it into a grid of cells that are
responsible for generating multiple bounding boxes and probabilities of each class, and
each box comprises the information of object class including X-coordinate, Y-coordinate,
width w, and height h, and the confidence score for each object presented in the cell that
represents the confidence level of an object in the corresponding bounding box.

2.2.1. Basic Architecture

Basic YOLOv5 will be introduced in brief as shown in Figure 2, and the improved
parts compared with YOLOv4 will be the main focus.

Backbone

YOLOv5 uses improved CSPDarkNet53 [31], which consists of C3 blocks as the back-
bone to extract the image features. C3 with only three convolutions, which is shown
in Figure 3, is the evolution version of bottleneckCSP in YOLOv4, and it has fewer pa-
rameters and faster speed both in forward calculating and backward broadcasting than
bottleneckCSP with the same output. Furthermore, YOLOv5 uses Sigmoid Weighted Liner
Unit (SiLU) [32] as the activation function instead of Leaky ReLU [33] because it allows the
output range of the network to be between 0 and 1, which makes SiLU perform better than
Leaky ReLU in detection applications.

Furthermore, instead of SPP, SPPF is introduced to fuse the global and local features
and to obtain the desired size of output without resizing, and SPPF is twice as fast as SPP
with the same outcome.

Neck

The neck of YOLO is used for effectively combining the features at different scales.
At first, the feature pyramid network (FPN) [34] proposes a top–down pathway to fuse
multi-scale features. The strong semantic features of the upper level are passed down,
and the entire pyramid is enhanced, but it only enhances the semantic information and
ignores the positioning information. Then, PANet [35] adds an extra bottom–up path
aggregation network on top of FPN to transmit the positioning information in the lower
level. Eventually, the combination of FPN and PANet makes the feature maps of different
scales both contain semantic information and positioning information, which ensures the
accurate prediction of images of different sizes. The structure is shown in Figure 4, and the
different sizes of diamond frames represent the different scales of the feature maps.



J. Mar. Sci. Eng. 2023, 11, 989 5 of 23

Figure 2. Basic framework: YOLOv5s.

Figure 3. C3 in YOLOv5. The backbone uses C3 (true), and the neck uses C3 (false).
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Figure 4. Structure of FPN and PAN.

Detect Heads

Detect heads are employed for final bounding box classification and regression tasks.
YOLOv5 uses different scales of heads to separately focus on small, medium, and large
targets to make the detection fit for all different sizes of desired targets.

Furthermore, CIOU (Complete Intersection over Union)_Loss is used as the loss
function of the bounding box instead of DIOU (Distance–IoU)_Loss, which is given as:

CIOUloss = 1 − IOU +
ρ2
(B,Bgt)

c2 + αν (1)

where IOU (intersection over union) refers to the ratio of the intersection and union area
between the predicted and true bounding boxes, ρ(B,Bgt) represents the distance of the
central points of the predicted and true bounding boxes, and c represents the diagonal
length of the minimum enclosing rectangle covering the two boxes. α is a weight function,
and ν represents the similarity of the aspect ratio.

While DIOU_Loss and CIOU_Loss are both improvements over traditional IOU_Loss,
CIOU_Loss may be more effective and robust at handling differences in aspect ratio and
size variation and can lead to better localization accuracy because of the aspect ratio factor.

Attention Mechanisms

The goal of adding attention modules to the basic YOLOv5 is to enable the network to
selectively focus on the most relevant features within an image, while ignoring irrelevant
or redundant information.

The structures of CBAM, CA, and GAM are shown in Figure 5, and their ability to
enhance the attention to the specific area and target has been verified.

CBAM [36]

CBAM (convolutional block attention module) comprises two blocks, which are chan-
nel attention module (CAM) and spatial attention module (SAM). CAM focuses on feature
channel weights and adjusts them dynamically to emphasize the most informative chan-
nels, and SAM focuses on the spatial relationship of features and adaptively rescales them.
CBAM combines these two attention blocks by first applying CAM to the feature map and
by then applying SAM to the resulting output.
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Figure 5. Three attention mechanisms: CBAM, CA, GAM.

By selectively emphasizing both informative feature channels and spatial locations,
CBAM can improve the feature representation capabilities of a CNN, leading to better
accuracy on the target detection tasks.

CA [37]

Compared to the juxtaposition of spatial and channel feature maps in CBAM, CA
(coordinate attention) embeds the position information into the channel attention. CA
skillfully combines channel attention with spatial attention so that the remote dependency
can be captured along one spatial direction and so that accurate position information can
be preserved along the other spatial direction. The resulting feature maps are then encoded
separately into a pair of attention maps that are separately sensitive to direction and
position and that can be added to the original input feature map to enhance the network’s
ability to represent targets of interest within the images.

GAM [38]

Although CBAM combines the information of channels and spatial locations, it ignores
the interaction of channels with space, thus losing cross-dimensional information. Thus,
GAM improves channel attention and spatial attention modules using 3D permutation
and MLP to reduce information diffusion and to strengthen global interactions. GAM can
emphasize important information and features in all three dimensions.

2.2.2. Other Tricks
BiFPN

BiFPN (bidirectional feature pyramid network) [39] introduces learnable weights to
learn the importance of different input features, which are used to build better feature
pyramids for object detection by fusing information across multiple resolutions and scales.
This is achieved through a series of repeated top–down and bottom–up pathways that
work together to generate a set of fused features.

Compared to PANet using a two-stage approach through the use of a top–down
and bottom–up pathway, each subsequent BiFPN layer fuses multi-scale feature maps to
produce refined representations. BiFPN is a more simple and efficient way to combine multi-
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scale features from different backbone levels with fewer parameters and computations and
can achieve better results, especially for small targets, as shown in Figure 6.

Figure 6. Structure of BiFPN.

Decoupled Heads

In YOLOv5 and other YOLO series, there is a single output layer that computes the
position and name of the target together. In contrast, decoupled head architecture [40]
separates the classifications into their own respective loss functions and the localization
tasks into their own independently trained heads, and then, mixes them together. This
separation allows for better optimization and tuning of each task. In general, decoupled
heads lead to better performance and faster convergence. Additionally, this architecture
is more flexible, allowing for the use of different encoders or backbones and decoders or
heads for different tasks.

The differences between coupled heads and decoupled heads that we inserted into
YOLOv5 is distinctly noted according to Figure 7.

Figure 7. Differences between traditional coupled heads and decoupled heads.
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3. Experiments

The experiments are described in detail, from network training and comparison of the
models, to the tank experiments and outdoor trials in practice, in this section.

3.1. Detector Training

1. Datasets
Four different datasets were collected in different water environments, including the
tank at Ocean College, Zhejiang University, and the lake in Zhoushan, and they were
divided into eight common underwater targets: anchor, basket, pillar, shipwreck,
human, aircraft, bucket, and uncertain target.
An anchor, a basket, and a pillar-shaped target were placed inside the school’s experi-
mental tank. Oculus BluePrint MD750d forward-looking sonar mounted on a ROV
was used for collection, named Dataset 1, and it includes 2239 images formed by the
software ViewPoint, which the sonar company provided. Dataset 2 is an open-source
dataset called the Sonar Common Target Detection Dataset (SCTD) [41], which has 357
images in total, including shipwrecks, humans, and aircraft. SCTD was composed of
forward-looking sonar (FLS) images, side-scan sonar (SSS) images and synthetic aper-
ture sonar (SAS) images. This dataset was used for training with the expectation that
the model can determine all the types of sonar images to prevent overfitting. Datasets
3 and 4 were collected using MD750d forward-looking sonar, but the experimental
site was moved outside. An anchor, a basket, and a group of buckets were place into
the lake, and AUH was used to collect data. The program was written by us to obtain
the original gray sonar images.
Figure 8 shows some examples of the datasets.

Figure 8. Examples of datasets. The photos in the first row were captured by us, including the anchor,
basket, and pillar, which are from Dataset 1. The second row is from SCTD, including shipwrecks,
humans and aircraft, which are from Dataset 1. The third row was captured from the lake, which is
from Datasets 3 and 4.
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2. Hardware Platform
The autonomous underwater helicopter (AUH) [29] is one of the newly developed
autonomous submersibles by Zhejiang University, with a disc-shaped design that
enables ultra-mobility movements underwater, including full-circle rotation, station-
ary hovering, and free take-off and landing. It possesses various features, such as
small-scale agile maneuverability, long-distance navigation, closed exterior, low op-
erational resistance, and high structural stability. It can cruise for a long time at a
fixed height close to the bottom of the water. Named as an underwater helicopter
due to its similarity to a land-based helicopter in terms of characteristics, it can be
employed as the ideal equipment for target detection or operation at a specific location
by performing flexible and agile movements. These specialties make it highly suitable
for solving the underwater target detection problem.
Thus, forward-looking sonar was assembled at the front of the AUH at 20 degrees
downward, as shown in Figure 9. The data were collected at a height of 5 m away
from the bottom of the water.

Figure 9. The hardware. (a) Forward-looking sonar used in the experiments, which is 4 km pressure-
resistant. (b) NVIDIA’s embedded processor toolkit carrying the detection network model. (c) AUH
carrying the sonar.

3. Software Platform
The computer configuration and coding environment for training the network are
shown in Table 1.

Table 1. Software Platform.

Items Version

CPU AMD Ryzen 7 5800 8-Core Processor
GPU NVIDIA GeForce RTX 3070 Ti

Video memory 8 GB
RAM 16 GB

CUDA CUDA v11.0 CuDNN v8.0.4
Python 3.7.11
Pytorch 1.7.0

Operating system Windows11
NVIDIA’s Embedded Processor Toolkit Jetson Xavier NX

4. Parameters
The parameter is the important factor influencing the results of the detection net-
work, and a better outcome will be obtained simply by tuning the parameters. Thus,
the standard and unified parameters shown in Table 2 are utilized to compare the
networks with equity.
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SGD and Adamw have been separately tried as the optimizer to train the models. The
outcome shows that Adamw is preferred over SGD due to its ability to converge faster
and to handle sparse gradients better. The learning rate is adjusted automatically
based on the historical gradients of the parameters and incorporates momentum
to help accelerate convergence when using Adamw; on the other hand, SGD only
uses a fixed learning rate for all parameters. Warm-up and cosine annealing are the
commonly used strategies that also work for adjusting the learning rate during the
training to let the model converge faster and better.

Table 2. Training settings.

Training Parameter Value

train:val:test 8:1:1
batch_size 8 for training and 4 for validating

epochs 300
input_size (640, 640)

momentum 0.937
weight_decay 0.0005

initial learning rate (lr0) 0.01 (SGD) 0.001 (Adamw)
cyclical learning rate (lr f ) 0.1 (Cosine annealing)

warmup_epochs 3
warmup_momentum 0.8

warmup_bias_lr 0.1
default anchor size [32, 31, 47, 46, 65, 60] [59, 75, 83, 75, 84, 87] [97, 98, 117, 114, 118, 144]

5. Training strategies
Some powerful training strategies in YOLOv5 are utilized to encourage the model to
learn more context, generalize better to unseen data, and improve model robustness
that can handle target variations across multiple scenarios.

• AutoAnchor:
The k-means clustering algorithm is used to self-adaptively generate prior an-
chors by using all detection frames in the dataset before each training to enable
the detection network to obtain more prior knowledge of the underwater target.

• Multi-scale training and distortion:
The input images are randomly resized to different scales during each iteration
of the training process. Multi-scale training is commonly used in conjunction
with data augmentation techniques such as random cropping, rotating, scaling,
flipping, translating, and shearing to geometrically distort the images. The
purpose is about exposing the model to objects at different sizes and resolutions
and to force it to learn spatial invariance and more robust features that can handle
object variations across multiple scales and different water environments.

• Letterbox resize:
Before training the images, all images need to be resized to fit into a fixed size
without stretching or distorting the shape so that they can be fed into the neural
network. Black bars are added to the top and bottom (or left and right) to fill
the empty space created by the new size by using the least amount of bars. This
strategy ensures that the relative scale and aspect ratio of objects within the
images are preserved and that it can improve the accuracy and accelerate the
training compared to the old version of YOLO because of the reduction of the
filled area, which is redundant information.

3.2. Detector Evaluation

Before presenting the results of the experiments, the metrics used to evaluate the
accuracy of the designed network need to be clarified. The correlated concepts are shown
in Table 3:
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Table 3. Confusion matrix.

Confusion Matrix
Results from Detection Network

Positive Negative

Ground Truth
Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

The concept in Table 1 is often used to define the detection evaluation indexes. To
understand, taking the detecting bucket as an example, TP and TN mean that the results
given by the detector are consistent with the ground truth, which is correct. FP means that
the network predicts the bucket but that it is actually not there, and FN represents that the
detector misses the bucket.

The equations of precision and recall are shown in Equation (5).

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(2)

Mean average precision (mAP) is an important metric that is the area under the P-R
curve, which is the mean value of AP of all classes under a fixed intersection over union
(IOU) threshold, which can be calculated by:

mAP =
∑n

i=1
∫ 1

0 P(R)dR
n

(3)

mAP_0.5:0.95 means calculating the average mAP from a mAP of 0.5 to 0.95 in intervals
of 0.5, where n is the number of total target classes.

Fβ also takes into account both precision and recall, which can reflect the relationship
between P and R by

1
Fβ

=
1

1 + β2 × (
1
P
+

β2

R
) (4)

β can be set to different values to balance the importance of precision and recall.
Setting it to 1 stands for the harmonic mean of precision and recall, which is

F1 =
2PR

P + R
(5)

In conclusion, precision, recall, mAP, parameters of the models, and inference time
are applied to quantitatively evaluate the object detection performance of the proposed
network based on YOLOv5 on the test set.

3.3. Results and Analysis
3.3.1. The Tank Experiments Stage

First, Dataset 1 from the school tank, which is shown in Figure 10, and Dataset 2 from
an open source were used to train the model.

Figure 11 shows an example of the progress of the placement of the target and detection
using AUH.

The purpose of target detection is to predict a set of bounding boxes and category
labels for each desired target. The smallest version of YOLOv5 was chosen because of its
speed and applicability to real-time detection. The visualized result of YOLOv5s is shown
in Figure 12, and the shortcomings of YOLOv5s can be intuitively noted, which easily
miss the target. It missed the ship in the left corner when validating because of the lack of
ship samples.
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Figure 10. The experimental tank at Ocean College, Zhejiang University.

Figure 11. (a) A basket is placed into the tank. (b) AUH approaches the target to detect.

Figure 12. (a) Training process. The strategies of data augmentation mentioned before, such as
flipping and mosaic, are shown here. (b) Validation process, which is the outcome when the model
meets unseen images.

Thus, we tried to add the attention mechanisms, BiFPN, and decoupled head struc-
ture to the original YOLOv5s to improve accuracy. The qualitative results are shown in
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Table 4, which shows that CA achieved the best outcome, increasing mAP by 2.1% without
many parameters added, and it even had the least parameters and weights among these
three mechanisms.

Table 4. Qualitative comparison among baseline, CBAM, CA, and GAM.

Structure YOLOv5s YOLOv5s+ YOLOv5s+ YOLOv5s+
(Datasets 1 + 2) Baseline CBAM CA GAM

Backbone

C3 C3 C3 C3
C3 C3 C3 + CA C3
C3 C3 C3 + CA C3
C3 C3 + CBAM C3 + CA C3 + GAM

Neck

C3 C3 C3 C3
C3 C3 + CBAM C3 C3 + GAM
C3 C3 + CBAM C3 C3 + GAM
C3 C3 + CBAM C3 C3 + GAM

mAP(0.50:0.95) 0.769 0.77 (+0.1%) 0.79 (+2.1%) 0.788 (+1.9%)

Layers 213 257 237 257

Parameter (M) 7.02 7.10 7.06 11.05

Weights (MB) 13.7 13.9 13.8 21.4

The networks’ outcome before and after improvement through the curves can be
directly compared in Figure 13.

BiFPN and decoupled heads can both improve the accuracy significantly by 2.1% and
3.3% according to Table 5, which can be seen intuitively in Figure 14 and which can converge
faster than the original YOLOv5, as Figure 15 shows. Decoupled heads can boost mAP to
80.2%, which are the greatest detection results, but the structure also doubles the parameter
and has longer inference time, which is not beneficial for real-time detection. The detection
speed is another factor that needs to be considered cautiously besides accuracy. The balance
between these two factors decides the model’s feasibility in practical applications in an
open water area.

Table 5. Qualitative comparison among baseline, BiFPN, and decoupled heads.

Structure (Dataset 1 + 2) Baseline +BiFPN +Decoupled Heads

MAP (0.5:0.95) 0.769 0.79 (+2.1%) 0.802 (+3.3%)
Layers 213 229 267

Parameter 7.02 M 8.09 M 14.30 M
Inference Time (ms) 3.5 4.0 5.4

Weights (MB) 13.7 14.8 27.7

Intuitively, regardless if an attention mechanism, BiFPN or decoupled heads are added,
the ship can be detected with a relatively high confidence score, as shown in Figure 16.

3.3.2. The Lake Test Stage

The lake test, located in the west of Zhoushan Island, is named Golden Bay, and it has
an average water depth of 7 m. The test site and the offshore AUH deployment are shown
in Figure 17, which are near the coordinates (121.944◦ E, 18.174◦ N). Two lake tests were
conducted in June and November 2022 in Golden Bay for and Dataset 3, which includes
an anchor and basket, and for Dataset 4, which includes groups of buckets. In total, 2937
sonar images were collected. In addition, an uncertain class was added to annotate some
underwater objects that could not be recognized.
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Figure 13. Precision, recall, mAP (0.5) and mAP (0.50:0.95) among baseline, CBAM, CA, and GAM.

Figure 14. MAP (0.5) and mAP (0.50:0.95) among baseline, BiFPN, and decoupled heads.
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Figure 15. Loss comparison among baseline, BiFPN, and decoupled heads.

Figure 16. The ship was detected by improved YOLOv5.

Figure 17. The scenery of Golden Bay and AUH offshore deployment.
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First, Dataset 3 was added into training to prove the effectiveness of the proposed
attention mechanisms with no new targets joining. According to the results shown in
Table 6, GAM outperforms a little more than the other two blocks. Different datasets have
different optimized attention mechanisms, but they all can improve the mAP to some
degree while barely increasing the inference time.

Table 6. Comparison among baseline, CBAM, CA, and GAM.

Structure YOLOv5s YOLOv5s+ YOLOv5s+ YOLOv5s+
(Datasets 1 + 2 + 3) Baseline CBAM CA GAM

Backbone

C3 C3 C3 C3
C3 C3 C3 + CA C3
C3 C3 C3 + CA C3
C3 C3 + CBAM C3 + CA C3 + GAM

Neck

C3 C3 C3 C3
C3 C3 + CBAM C3 C3 + GAM
C3 C3 + CBAM C3 C3 + GAM
C3 C3 + CBAM C3 C3 + GAM

mAP (0.50:0.95) 0.763 0.783 (+2.0%) 0.773 (+1.0%) 0.784 (+2.1%)

Inference Time (ms) 3.5 3.7 4.3 6.1

Then, the network was trained to recognize the new target, the groups of the buckets.
Especially, the best training weight of Datasets 1 + 2 was used as the pretrained weight to
converge the new training faster and to improve the accuracy. The network was embedded
in the NVIDIA NX toolkit, and the speeds of different formats of weight files using one
NVIDIA 3070Ti were compared and are shown in Table 7. Finally, the fastest method,
which used the TensorRT framework to turn the weights into engines and then used the
Python file to accelerate the inference time, was chosen. The improved YOLOv5s with the
attention mechanisms in this acceleration method was finally used. Eventually, the model
can achieve an average speed of 0.025 s (40 FPS) in the embedded device and fulfill the
real-time requirements.

Table 7. Inference time comparison among different formats of weights.

Methods .pt .onnx .engine
(with C++)

.engine
(with Python)

Average Inference
Time (ms) 55 1311 30 21

Especially, this was the first time the proposed detection models, using improved-
YOLOv5 on AUH to form the detector and to fulfill the whole detection procedure, were
tested. AUH executed an area of 100 × 100 m scanning task centered around the targets’
coordinates at a fixed height of 5 m with an average speed of 1.0 kn. The aim of the
experiments was to detect groups of buckets placed in the lake.

The results shown in Figure 18 given by the real-time detection network are correct
and have proven that the CNN-based detection model proposed in this paper can detect
the underwater bucket target well.

In addition, some uncertain objects were detected, as shown in Figure 19, which might
have been the rock or mud pile at the bottom of the lake.

The main controller of AUH sent a command to the detection module using TCP to
open the sonar and to begin the detection task, and then, the module sent the newest sonar
image to the algorithm to ask for the result. If the algorithm recognizes the bucket, it will
send back the category of the detected target, confidence score, and the XY coordinate
values. The detection module will combine the target’s information from the algorithm
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and the information of the AUH, such as the angle of pitching, rolling and yawing, the
height from the bottom of the water, and the longitude and latitude to calculate the concrete
location of the buckets.

Figure 18. Detection results of the target (bucket).

Figure 19. Uncertain detection results.

Figure 20 shows the format of information that the detection module delivered to the
main controller of the AUH, which mainly consists of the longitude and latitude of the
recognized target and AUH and the category of the target. Then, four recognized targets
were pictured in the map using ArcGIS software and were compared to the real locations
of the buckets, which were similar to the coordinates marked before.

The results have proven the feasibility and accuracy of the real-time detection system
mounted on the AUH and based on the forward-looking sonar imagery. The key techniques
of the design of the network are effective, which will have great guiding significance
in practice.
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Figure 20. An example of the target message sent to the main controller and a map of the geographical
locations of the targets. b0-b3 are the coordinates of the targets given by the detector.

4. Discussion
4.1. Significance of the Proposed Method

1. Theoretically
The theory of the proposed improved-YOLOv5 is based on many previous works
that have received validation. The principles of the attention mechanism have been
carefully studied across the literature and have proven that CBAM, CA and GAM
are all applicable to sonar-imagery detection and that they can improve the accuracy
of most detection models to an extent of about 1–2% on our datasets. Therefore,
attention mechanisms can force the models to focus on specific areas of which we
want. Furthermore, BiFPN and decoupled heads can boost the mAP by 2–3% on our
dataset in a relatively simple way and can achieve a 80.2% high mAP.
In the meantime, we performed some comparison experiments with other SOTA
models, including one-stage and two-stage CNN methods, to prove the advancements
of the proposed improved-YOLOv5s. We fed dataset 1 + 2 into the different models
and kept the training parameters as similar as possible.
According to the results shown in Table 8, when attention mechanisms, BiFPN and
decoupled heads are added into YOLOv5s, most of them can achieve better results
than the other SOTA models—one-stage or two-stage.

2. Systematically
From the installation of forward-looking sonar to the deployment of the detection
model, from the training of an improved network to the validation of efficiency of the
detector, and from the communication between the main controller and the detection
module to the conversion of the target’s location, the research was covered. This
real-time AUH-based underwater target detection system using sonar images was
designed and test and achieved some significant achievements.

3. Practically
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The whole workflow was validated through tank experiments and outdoor tests in
open water. A series of experiments give strong support for the facility and efficiency
of the designed detection system. The subsea AUH and some simple sensors can
achieve the detection goal and detect the desired targets. Moreover, the system
provides some thoughts for overcoming the difficulties of underwater target detection.
Even with the low-cost sensors and low-quality images, good results can still be
achieved by using the stable mounted platform and improved models.

Table 8. Accuracy comparison among different SOTA models.

Methods mAP (0.5:0.95)

YOLOseries

YOLOv3 0.605

YOLOv4 0.603

YOLOv5 0.769

Other One-stage Detectors
RetinaNet 0.753

SSD 0.780

Two-Stage Detector Faster-RCNN 0.617

Proposed Methods

+CBAM 0.77

+CA 0.79

+GAM 0.788

+BiFPN 0.79

+decoupled heads 0.802

4.2. Limitations of the Proposed Method

1. Theoretically
Although attention mechanisms can improve mAP, neither the connection between
the datasets nor the efficiency of the methods were found, for example, the reason that
CBAM only improves by 0.1% mAP when applied to Datasets 1 and 2 but improves
by 2% when joining Dataset 3 and why CA performs best in Datasets 1 and 2 but
GAM wins in Dataset 3. This information seems to be random, and the reasons that
explain these phenomena still need to be studied.
On the other hand, decoupled heads have introduced more parameters and time to
inference, which should be considered carefully, even though it is an efficient way to
boost the mAP.

2. Systematically
Because of the time and cost restrictions of the outdoor experiments, the ablation tests,
in reality used to verify the superiority of the improved-YOLOv5 network compared
to the raw one, are not finished. The conclusion is qualitative such that the improved
network is useful and efficient, but it is not quantitative. In the future, it needs to
be proven that in an open water area, when the AUH is on a fixed track and obtains
the same amount of sonar images, improved-YOLOv5 can recognize more targets
and detect them faster. How to convert longitude and latitude of the targets more
precisely through the coordinates of the bounding boxes is also a direction to revise
and improve.

3. Practically
Currently, the proposed method for detecting underwater targets is restricted by the
requirements of sonar images. The sonar images of the desired target for detection
should be acquired to train the models. However, sometimes it is hard and inconve-
nient to obtain the desired images; thus, using other techniques such as GAN [42]
and diffuse models to generate sonar images with the limited images that already
exist without using sonar is a topic that is worthy of discussion. The uncertain targets
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cannot be clarified. Thus, aligning other methods and devices to detect them together
will make the detection system more practical, for example, using cameras in clean
water or magnetometers to detect magnetic targets.

5. Conclusions

A real-time AUH-based underwater detection system, using sonar images, tank experi-
ments, and outdoor tests in open water, was proposed. The main framework of the detector
is centered on the improvements of YOLOv5. A series of experiments were conducted
and have proved that CBAM, CA, and GAM can improve accuracy by around 1–2% in
different datasets, barely gaining parameters and increasing inference time, which is of
great significance for future hardware implementation mounted onto AUHs. In addition,
by changing YOLO’s FPN and PAN neck to BiFPN and by changing the coupled heads
to decoupled heads, a 2–3% increment of mAP can be achieved and the models converge
faster and more easily.

As publicly known, the key to the widespread application of this real-time target
detection system is to improve accuracy while guaranteeing the inference speed and it
being lightweight. The proposed methods try to balance this problem well by adding
the attention mechanism and by changing FPN to BiFPN without increasing extra time.
However, there are still some useful structures such as decoupled heads that can cause
problems. Thus, research on model slimming, quantification and distilling should be put
forward to keep the system lightweight while improving accuracy.

In conclusion, the research in this paper has great guiding significance in the devel-
opment of how to solve issues in target detection in complex environments, especially
in underwater scenarios. The methods of using AUH and improved detection models
can compensate for the deficiencies that are caused by low-quality sonar images captured
by budget-friendly sonar and the confusing underwater sound fields. The next step will
be to continually adopt the methods mentioned in this paper and perform more online
real-time detection sea trials to validate and to compare the performance of different
improved models.

Furthermore, optimizing the network is key, for example, trying to introduce another
framework such as transformer, which includes another kind of attention mechanism
called self-attention to break through the CNN’s limitations in capturing global context
information. Transformers are more robust to severe occlusions, perturbations and domain
shifts compared to CNN frameworks, according to Muzammal [43]. Melting transformer
blocks to CNNs can create more context information in the network and can capture
more distinguishable feature representations. Some other networks such as GAN and the
diffused model will also be used to preprocess and generate more sonar images so as to
solve the long-standing problems of poor quality, low resolution and sparsity of datasets,
which plague the development of underwater target detection and deep learning.
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