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Abstract: Combination prediction models have gained great development in the area of information
science, and are widely applied in engineering fields. The underwater glider (UG) is a new type
of unmanned vehicle used in ocean observation for the advantages of long endurance, low noise,
etc. However, due to its lower speed relative to the ocean current, the surfacing positioning point
(SPP) of an UG often drifts greatly away from the preset waypoint. Therefore, this paper proposes a
new combination model for predicting the SPP at different time scales. First, the kinematic model
and working flow of the Petrel-L glider is analyzed. Then, this paper introduces the principles
of a newly proposed combination model which integrates single prediction models with optimal
weight. Afterwards, to make an accurate prediction, ocean current data are interpolated and averaged
according to the diving depth of UGs as an external influencing factor. Meanwhile, with sea trial data
collected in the northern South China Sea by Petrel-L, which had a total range of 4230.5 km, SPPs are
predicted using single prediction models at different time scales, and the combination weights are
derived with a novel simulated annealing optimized Frank–Wolfe method. Finally, the evaluated
results demonstrate that the MAE and MSE are 966 m and 969 m, which proves that the single models
achieved good performance under specified situations, and the combination model performed better
at full scale because it integrates the advantages of the single models. Furthermore, the predicted
SPPs will be helpful in the dead reckoning of the UG, and the proposed new combination method
could extend into other fields for prediction.

Keywords: underwater glider (UG); surfacing positioning point (SPP); combination prediction model;
oceanic depth-averaged current

1. Introduction

The ocean, spanning over 70% of the earth’s surface area, contains rich dynamic
processes and mineral resources waiting to be explored. The underwater glider (UG) is
a new type of unmanned underwater vehicle first proposed by Henry Stommel in 1989,
which can carry various kinds of sensors to measure different ocean phenomena, such as
mesoscale eddies, internal waves, hurricanes, etc. [1–4]. However, due to the relatively low
speed of the underwater glider compared with the ocean current, its working trajectory
underwater is greatly affected, resulting in a large deviation from the preset surfacing
positioning point (SPP). To acquire high-quality data, it is indispensable to predict the SPP
at different time scales to plan the observation path accurately. Furthermore, formation
control also has higher requirements for the accuracy of SPPs.
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A great deal of research has focused on predicting the position or trajectory of auto-
mated vehicles. The dynamic and kinematic models, fused with information from multiple
sensors, are commonly used to estimate the position of aircraft [5,6]. Xie et al. [7] predicted
vehicle trajectory by integrating physics- and maneuver-based approaches using multiple
interactive models. Quan et al. [8] adopted the long short-term memory method to forecast
ship trajectory with historical data. Lin et al. [9] proposed a novel approach for plan–path
prediction based on the relative motion between positions by mining historical flight tra-
jectories. Peng et al. [10] presented an improved particle swarm optimization algorithm
applied to a long short-term memory neural network for the prediction of ship motion
attitude. Xiao et al. [11] developed a vehicle positioning approach by employing a support
vector machine for regression (SVR) to achieve accurate and reliable vehicle position and
trajectory prediction based on the GPS receiver and an on-board diagnostics reader. Gao
et al. [12] put forward a trajectory prediction method for cyclist based on the dynamic
Bayesian network and long short-term memory model at unsignalized intersections. Ngo
et al. [13,14] combined the training data from an onboard sensor and the wave parameter
forecasts from the WAVEWATCH III model. They adopted regression models to predict
wave glider speed to be used in various path planning applications. Furthermore, hybrid
approaches for position or location prediction have also been applied to control moving
robots. Anitha et al. [15] combined two techniques, a particle swarm optimization algo-
rithm (PSO) and a feed-forward back propagation Neural Network (FFBNN), to predict the
location of moving vehicles. Shen et al. [16] presented a hybrid forecasting model for the
velocity of a robotic fish with wind and wave data. Havyarimana et al. [17] introduced a
novel approach that aggregates the advantages of both a fuzzy inference system and sparse
random Gaussian models to predict the position of vehicles.

Although the above studies have already made great progress in the application of
prediction, most of them are only suited to predictions at equal temporal intervals. They
cannot reflect the changing trend of position or trajectory at different time scales. UGs
are driven by buoyancy and have weak maneuverability while working within a strong
ocean current. Furthermore, UGs cannot be positioned underwater because of their lack
of acoustic devices or inertial sensors, which results in the uncertainty of SPP within one
profile. Therefore, the development of a novel method for SPP prediction with various
time scales is essential for local or global path planning of UGs. Meanwhile, the long-term
prediction of SPPs is also contributing to mission planning and decision making, and
short-term prediction is useful for time-limited tasks.

This paper proposes a new combination model to predict the SPP of UGs at different
time scales. To predict the SPP more accurately, the ocean current data downloaded from
HYCOM (Hybrid Coordinate Ocean Model) [18] is also considered an influential factor.
At the same time, the ocean current is also interpolated by the IDW (Inverse Distance
Weight) method in order to be close to the SPP of the UG. Then the sea trial data collected
in the northern South China Sea (NSCS) are divided into various sizes according to their
time scales. Afterwards, the real distance and the real heading, from which the SPP is
deduced, are predicted by three types of models. Meanwhile, the combination weights
are derived with the Frank–Wolfe method according to the prediction results of single
models. Finally, indexes are introduced to assess the prediction results, demonstrating
that the data acquired at different time scales show various performances corresponding
to different prediction models. In contrast, the combination model is superior to other
models at different time scales because it integrates the advantages of single models. The
contributions of this paper are as follows: (1) the ocean current data extracted from HYCOM
are adaptively interpolated and averaged firstly according to the working depth of UGs for
more accurate prediction, which is called oceanic depth-averaged current (ODAC); (2) three
types of single models are used to predict SPPs under different sizes of sea trial data; (3) a
novel combination method, simulated annealing optimized Frank–Wolfe method (SAFW)
is proposed to calculate the optimal weight of single models, which could integrate the
advantages of different single models and achieve a better effect; and (4) the proposed
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combination model is verified by sea trial data and evaluated with various indexes, which
could also be extended to other fields for prediction.

2. Petrel-L Underwater Glider
2.1. Configuration and Working Flow of Petrel-L

The Petrel-L underwater glider developed by Tianjin University, China, as shown in
Figure 1a, comprises a pressure hull, a pair of wings, buoyancy engine, satellite antenna,
front nose, etc. [19,20]. The technical specifications of Petrel-L are described in Table 1.
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Figure 1. The Petrel-L underwater glider and its working flow. (a) The Petrel-L underwater glider
developed by Tianjin University, China. (b) The working flow of the Petrel-L underwater glider.

Table 1. Technical specifications of Petrel-L.

Technical Specification Value/Instrument

Size Diameter 240 mm, length 2600 mm, wingspan 1200 mm
Weight 93 kg
Depth 1000 m
Battery Lithium primary batteries
Range >3000 km

Navigation GPS, pressure sensor, altimeter and compass
Sensor CTD (conductivity, temperature, pressure)

When the Petrel-L starts working, it fixes itself by GPS and transmits the data to the
base station via satellite. Then the oil is pumped from the external bladder into the inner
oil box to adjust the buoyancy to dive. The wings will convert the vertical motion into
forwarding motion within one profile period. The Petrel-L can adjust its heading and
attitude underwater based on the pressure sensor and digital compass. When it reaches
the preset depth D, the battery pack will move back, and the oil will be pumped back to
the external bladder to achieve positive buoyancy for ascending. Afterwards, the Petrel-L
climbs to the sea surface and moves the battery pack forward to obtain a better attitude
for sending the data to and receiving commands from the base station via satellite. The
working flow of Petrel-L is illustrated in Figure 1b.

2.2. Kinematic Model of Petrel-L

To comprehensively understand the motion of Petrel-L, a kinematic model is estab-
lished, as shown in Figure 2. The kinematic parameters are crucial to the dead reckoning
underwater and thus analyzed in detail. The relationship between the angular velocity and
attitude of Petrel-L is described as follows:

.
ϕ = p + q tan θ sin ϕ + r tan θ cos ϕ
.
θ = q cos ϕ− r sin ϕ
.
ψ = 1

cos ϕ (q sin ϕ + r cos ϕ)

(1)
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where ψ is the yaw angle, θ is pitch angle, ϕ is roll angle, and p, q, and r denote the angular
velocity corresponding to three attitude angles, respectively.
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Furthermore, the velocities of Petrel-L along the X, Y, Z axes in the geographic coordi-
nate system are utilized to describe the following movement:

.
x0 = u cos θ cos ψ + v(cos ψ sin ϕ sin θ − sin ψ cos ϕ)
+w(sin ψ cos ϕ + cos ψ sin ϕ sin θ)
.
y0 = u sin ψ cos θ + v(cos ψ cos ϕ + sin ψ sin θ sin ϕ)
+w(sin ψ sin θ cos ϕ− cos ψ sin ϕ)
.
z0 = −u cos θ + v cos θ sin ϕ + w cos θ cos ϕ

(2)

where u, v, and w are the velocity components along the axes in the body coordinate system.
Furthermore, the angle of attack α and the side slip angle β are deduced separately

as follows: {
α = − tan−1( u

v )
β = tan−1( w√

u2+v2 )
(3)

3. Prediction Models
3.1. Regression Models

Regression is a technique used to model and analyze the relationship between UG
control parameters and output parameters. Five regression models are utilized in our study,
including linear regression, lasso regression, ridge regression, elastic net, and polynomial
regression [21–23].

Linear regression (LR) attempts to model the relationship between dependent variables
and independent variables using a linear approach. To reduce the influence of collinearity
between the predicted variables, lasso regression (LAR) and ridge regression (RR) are
proposed with L1-norm and L2-norm of linear regression. Furthermore, elastic net (EN) is a
method that integrates the features of LAR and RR, which combines L1-norm and L2-norm
as its penalty term. Polynomial regression (PR) is a special case of LR, which models a
curvilinear relationship between two types of variables. However, PR is suited to deal with
nonlinear and separable data and could achieve better parameters with prior knowledge,
leading to overfitting.
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3.2. Classical Machine Learning Models

Six classical machine learning models are also introduced in the study. The support
vector regression (SVR) proposed by Harris in 1997 is an important branch of support
vector machine (SVM) [24], which is commonly used in many areas [25–27]. The schematic
of the SVR is shown in Figure 3a. The Gauss function is taken as the kernel function,
which has better performance in large and small data sizes and fewer parameters than the
polynomial kernel function. The back propagation neural network (BPNN) is the most
rudimentary neural network, and its outputs and errors adopt forward propagation and
back propagation, respectively [28]. The structure of BPNN is shown in Figure 3b, which
contains three types of layers: the input layer, hidden layer, and output layer. K-nearest
neighbor regression (KNNR) is a non-parametric statistical method for regression, and the
input contains k closest training samples from feature space [29].
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To address the problems of slow computation speed and low accuracy, the genetic
algorithm (GA) and particle swarm optimization (PSO) are adopted to optimize the initial-
ization for SVR and BPNN [30,31].

3.3. Tree-Based Models

In addition to the above prediction methods, tree-based models are also used for
prediction, which also belong to machine learning. A decision tree (DT) is a kind of tree
structure in which each internal node represents a judgment on an attribute. The random
forest (RF) algorithm is an ensemble technique that combines multiple decision trees [32].
The structure of the RF is shown in Figure 4a. Furthermore, the advantages of the RF are
that they are less sensitive to the outliers in the dataset and do not require much parameter
tuning. Bagging (BG) is also an ensemble meta-algorithm, which can improve the stability
and accuracy of machine learning algorithms [33]. In our study, we integrate bagging into
DT methods to reduce the variance of DTs. A gradient boosting tree (GDBT) is an algorithm
to classify or regress the data using an additive model such as the linear combination
of basis, which can reduce the residual generated in the training process [34]. Adaptive
boosting (Ada-Boost) uses the difference between the real value and predicted value of the
previous learner to train the next learner, the point of which is to train the weak classifier
iteratively and calculate their weight. The configuration of Ada-Boost is shown in Figure 4b.
Extreme gradient boosting (XGBT) comes from the framework of gradient boosting [35].
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3.4. Simulated Annealing Optimized Frank–Wolfe Combination Model

The combination model is widely used in various fields, such as civil engineering,
energy engineering, time series prediction, etc. [36–38]. To integrate the advantages of
various models, the weight of single models should be calculated according to the prediction
error. Then the sum of the square of the prediction error of a combination model is defined
as the objective function to obtain the optimal weight for combination.

Supposing there are n single prediction models, define as Yit (i = 1,2, . . . n, t = 1,2, . . .
N), Yt is tth observation value, then the common form of the combination model is

Yt =
n

∑
i=1

ωiYit + et (4)

where ωi is the weight of the ith single prediction model, and
n
∑

i=1
ωi = 1; et is the prediction

error of the combination model.
Define the prediction error of the ith model as eit = Yit −Yt, then

et = ∑n
i=1 ωi(Yit −Yt) = ∑n

i=1 ωieit = (ω1, ω2, · · · , ωn)(e1t, e2t, · · · , ent)
T , t = 1, 2, · · · , N (5)

So, the sum of the square of the prediction error of the combination model is

e2
t = (ω1, ω2, · · · , ωn)(e1t, e2t, · · · , ent)

T(e1t, e2t, · · · , ent)(ω1, ω2, · · · , ωn))
T = WtEtW (6)

where W = (ω1, ω2, · · · , ωn)
T .

Et =


e2

1t e1te2t · · · e1tent
e2te1t e2

2t · · · e2tent
...

...
. . .

...
ente1t ente2t · · · e2

nt

 (7)

Let
J = ∑N

t=1 e2
t = WT∑N

t=1 EtW = WTEW (8)

where E is prediction error information matrix and expressed as

E =


∑N

t=1 e2
1t ∑N

t=1 e1te2t · · · ∑N
t=1 e1tent

∑N
t=1 e2te1t ∑N

t=1 e2
2t · · · ∑N

t=1 e2tent
...

...
. . .

...
∑N

t=1 ente1t ∑N
t=1 ente2t · · · ∑N

t=1 e2
nt

 (9)
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Therefore, the mathematical programming model of optimal weight is determined as
minJ = WTEW

WTRn = 1
W ≥ 0

(10)

where Rn = (1, 1, · · · , 1)T , denotes n dimensional matrix.
To solve the optimal weight of the combination model, the Frank–Wolfe method is

introduced because it is suitable to solve the nonlinear problem in this study. Furthermore,
to avoid falling into a local optimum while searching, the simulated annealing algorithm
was used to optimize the Frank–Wolfe method. Pseudo-code of the SAFW algorithm to
calculate the weight is shown in Algorithm 1.

Algorithm 1: SAFW algorithm

Input: historical data→ from glider flash
1: Divide the data into train set and test set
2: Import train data into single prediction model Yit (i = 1,2, . . . n, t = 1,2, . . . N)
3: Test the data with the evaluation index (MSE and MAE)
4: Output eit → the prediction error of ith model, eit = eMAE + eMSE
5: Calculate the error information matrix E

6: Define initial weight W(1) = (ω
(1)
1 , ω

(1)
2 , · · · , ω

(n)
1 )

T
and allowance error ε

7: Solve Equation (10), and obtain the optimal solution U(k)

8: if
∣∣∣∇J(W(k))

T
(U(k) −W(k))

∣∣∣ ≤ ε,

9: then stop the calculation and output W(k)

10: else Start from W(k), and call SA for search;
11: Add the variable ∆w to W(k) for search, then W(k+1) = ∆w + W(k)

12: if f (W(k+1)) < f (W(k))
13: then W = W(k)

14: else Calculate the accepting possibility p = exp(−∆f /(kT))
15: Reach the iteration times, then

16: Substitute in to
{

minJ(W(k) + λ(U(k) −W(k)))
s.t. 0 ≤ λ ≤ 1

,

Output: λk
Return minimal prediction error J

4. Experimental Results and Discussion

The experimental framework is shown in Figure 5 for a more specific description.
The ocean current data imported from HYCOM is processed to meet the requirement first,
which, together with the input parameters (preset heading, preset depth, preset buoyancy,
preset pitch) of the sea trial data, are taken as the input train data sets. The output
parameters (real heading, real distance) are taken as the output train data. Meanwhile, the
average running period is about 4–5 h over one profile, so the data sets are divided into
50, 100, 200, and 300 groups corresponding to the time scales of 10, 20, 40, and 60 days.
Afterwards, the data are trained by three types of prediction models, and 30 profiles are
utilized for evaluation. Then the best methods are selected for distance and heading
prediction with different data sizes, and all of them are integrated for a balanced and
complete prediction of SPP.

4.1. Data of Oceanic Depth-Averaged Current

To make the prediction more comprehensive and reliable, the ocean current data are
downloaded from HYCOM in APDRC (Asia-Pacific Data Research Center). The data are
updated every 24 h, and the resolution is 1/12◦, which is lower than the average distance
traveled by the UG during one profile. Therefore, the data should be processed to be close
to the SPP of the UG. Figure 6 shows the sample data of eastward current velocity and
northward current velocity in the sea trial area.
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where d is the layer number of the ocean current, N is the maximum layer number corre-
sponding to the actual working depth of the UG during one profile, UC is eastward ocean 
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Figure 6. The ocean current velocity in the sea trial area. (The sample data on 1 May 2019 were
downloaded for website: http://apdrc.soest.hawaii.edu/las/v6/dataset?catitem=11458).

To guarantee ocean current data close to the ambient environment of the SPP, the IDW
method is utilized to interpolate the downloaded data [39]. The IDW is widely used in
various GIS analyses and adopts the distance weighted average of all local neighboring
data points as the interpolated point. Furthermore, this method combines the advantages
of both the Tyson polygon proximity method and the trend surface analysis method, thus
having a better performance than other interpolation methods.

The IDW takes the distance between the sample point and the interpolation point as
the weight, and the contribution of weight and distance is reversed. Consequently, the
closer the interpolation point is, the greater the weight given to the sample point. The
mathematical formula can be expressed as:

Z =
n

∑
i=1

1
(Di)

m Zi/
n

∑
i=1

1
(Di)

m (11)

where Z is the estimated value of the interpolation point, Zi is the ith actual value, n is
the number of samples involved in the interpolation, Di is the distance between interpo-
lation point and the ith sample point, and m is the power of distance, which affects the
interpolation results significantly. Generally, the default value of m is set to 2, considering
the two-dimensional interpolating problem.

http://apdrc.soest.hawaii.edu/las/v6/dataset?catitem=11458
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According to the working flow of Petrel-L, the single-layered ocean current cannot
reflect the full impact of the environment. The oceanic depth-averaged current (ODAC)
is adopted as a comprehensive ocean current related to the working depth of the UG, as
shown below:

UODAC =
d=N

∑
d=0

UC/N (12)

VODAC =
d=N

∑
d=0

VC/N (13)

where d is the layer number of the ocean current, N is the maximum layer number corre-
sponding to the actual working depth of the UG during one profile, UC is eastward ocean
current velocity, and VC is northward ocean current velocity.

4.2. Sea Trial Data

The sea trials were conducted from 27 July 2019 to 23 April 2020. During the experi-
ment, Petrel-L was equipped with a Glider Payload CTD sensor to acquire the salinity and
temperature parameters in the interest areas. The deployment and recovery information of
the UG is listed in Table 2. The sea trials lasted for 271 days without fault, 1051 profiles were
acquired in total, and the total range was 4230.5 km. Here, the biofouling affection for the
UG is ignored to simplify the data training process. The uncertainty of glider assembly and
GPS are also ignored. Profiles 78–436 are selected as the research data, the initial parameters
of the profiles are identical, which could avoid unnecessary influences from other sources.
The sea trial areas of Petrel-L (CHC15) in the NSCS are shown in Figure 7, which shows the
preset path and actual trajectory. The in-situ deployment and recovery pictures are also
displayed by inset (1) and (2), respectively, in the left upper corner.
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Table 2. The deployment and recovery information of the UG.

Information CHC15

Deployment time (UTC+8) 2019.07.27 10:30:20
Recovery time (UTC+8) 2020.04.23 09:02:47

Deployment point 111.7130◦ E/18.0208◦ N
Recovery point 112.6244◦ E/17.8330◦ N

Averaged depth (m) 931.2
Profile range in the study Profile 78 to profile 436

4.3. Data Analysis and Verification

According to the actual working parameters and information listed in Table 3, and
part of the experiment data listed in Table 4, the SPP can be deduced from the distance and
the heading relative to O and the last SPP. The real distance and heading data are shown in
Figure 8. Taking the schematic shown in Figure 9 as a case study, the calculation formulae
are given by:

Olon + L · sin H = SPPlon (14)

Olat + L · cos H = SPPlat (15)

where Olon and Olat are the longitude and latitude of the last SPP, respectively, L is the
distance during one profile, and H is the heading of O.

Table 3. The working parameters and information of the UG.

Input Parameters Preset Heading Preset Depth Preset Pitch Preset Buoyancy Ocean Current

Output parameters Real heading Real distance

Table 4. Part of the experimental data.

Profile
Num-

ber

Longitude
/◦

Latitude
/◦

Ocean
Current
Value
/(m/s)

Ocean
Current

Direction
/◦

Preset
Heading

/◦

Preset
Depth

/m

Preset
Pitch

/◦

Preset
Buoy-

ancy/%

Real
Distance

/m

Real
Heading

/◦

83 114.51 17.84 0.10 310 129.60 980 25 86 2823.26 91.19
84 114.53 17.82 0.10 310 83.90 980 25 86 2936.89 138.76
85 114.57 17.84 0.10 310 90.50 980 25 90 4925.67 64.67
86 114.61 17.85 0.11 310 96.10 980 25 87 3972.10 74.93
87 114.64 17.86 0.11 310 104.90 980 25 89 3260.14 73.70
88 114.67 17.87 0.10 310 119.60 980 26 88 3019.21 75.28
89 114.70 17.86 0.10 310 156.70 980 25 88 4064.44 93.32
90 114.71 17.84 0.11 310 141.30 980 26 90 2841.88 156.48
91 114.74 17.83 0.12 315 81.40 980 26 90 3335.64 120.00
92 114.77 17.85 0.12 310 89.20 980 26 87 4296.73 57.19
93 114.81 17.87 0.12 310 103.00 980 25 87 4169.03 52.88
94 114.85 17.88 0.13 310 119.70 980 26 89 4569.70 78.47

We divided the data into four groups as 50, 100, 200, and 300 profiles after the data
analysis and preprocessing. Due to sensor positioning errors and data drift, we prepro-
cessed the original data. Abnormal data were raised and missing data were filled in. Each
group corresponds to different time scales. Fifty profiles are roughly equivalent to 10-day
data, 100 profiles to 20-day data, and so on. Afterwards, three kinds of prediction models
were applied to each group of data for training, and 30 profiles were adopted as the test
data. The results are shown in Figures 10–13.
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Figure 13. Real distance and heading prediction with regression model (left), classical machine
learning model (middle), and tree-based model (right) for 300 groups of data.

As shown in Figure 10, the predicted distance shows no dramatic change. Because the
size of the 50-profile group data is relatively small, the regression model performs a little
better than the other two models. Furthermore, for the real heading prediction, the LR,
RR, LAR, and EN models take on more stable trends than the others. In Figure 11, when
the data size grows to 100, the classical machine learning model shows relatively better
performance in the heading prediction. However, there are some abnormal points in both
the regression model and the tree-based model. Similarly, abnormal points appear in the
regression model and machine learning model for distance prediction, and the tree-based
model shows better prediction than them. Furthermore, Figures 12 and 13 reveal that
the classical machine learning model and tree-based model have a distinct advantage in
predicting either heading or distance when the number of the data groups is over 200.

To make a specific evaluation of the prediction models, the MAE (mean absolute error),
MSE (mean square error), and R2 (R-squared) are introduced as assessment indexes. The
calculation formulae are shown as follows, respectively:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (16)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (17)

R2 = 1−
∑
i
(yi − ŷi)

2

∑
i
(yi − y)2 (18)

where yi is the real value, ŷi is the predicted value, and y is the average value of all the real
values. The evaluation results of the three models are shown in Figure 14 and Tables 5 and 6.
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Figure 14. Prediction error of real distance and heading prediction with three kinds of models.
(a) Prediction error of real distance. (b) Prediction error and correlation of real heading.
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Table 5. Evaluation results of real heading with three types of methods.

Profile
Nos. Index LR RR LAR EN PR DT RF BAG ADABT GDBT XGBT SVR GASVR KNNR BPNN GABPNN PSOBPNN

50
MAE

/◦

44.57 40.86 40.29 40.28 174.38 47.72 46.70 42.04 48.16 54.01 62.92 53.59 57.52 54.23 55.29 59.44 53.29
100 45.78 43.93 43.72 43.67 213.02 48.29 47.37 40.18 47.33 50.64 97.30 28.63 28.35 34.16 24.91 17.57 21.19
200 46.99 46.99 47.16 47.07 251.67 48.86 48.03 38.32 46.57 46.59 59.79 60.95 52.38 45.57 61.45 53.79 62.51
300 33.17 33.16 33.15 33.25 139.71 37.03 35.76 25.78 35.80 34.99 44.41 80.23 61.77 58.78 40.59 68.96 65.68

50
RMSE

/◦

49.38 47.93 47.20 47.05 100.54 43.83 44.31 47.56 53.04 57.75 62.04 40.60 44.18 44.37 40.83 45.01 43.08
100 131.92 206.54 131.92 131.92 316.33 62.24 56.70 42.49 49.00 52.57 65.90 34.16 31.87 36.05 33.77 26.86 31.17
200 45.36 45.36 45.04 44.88 103.74 37.27 36.60 41.44 43.69 43.88 56.25 41.08 39.87 37.86 48.37 37.06 40.43
300 32.77 32.69 32.75 32.63 51.86 27.87 26.75 26.52 33.92 33.66 50.17 47.66 38.90 34.38 36.11 38.57 40.39

50

R2

0.50 0.71 0.72 0.76 0.23 0.49 0.50 0.50 0.48 0.40 0.52 0.51 0.41 0.48 0.50 0.49 0.50
100 0.08 0.06 0.08 0.08 0.08 0.03 0.08 0.44 0.47 0.47 0.18 0.70 0.66 0.59 0.76 0.78 0.74
200 0.53 0.53 0.53 0.53 0.21 0.54 0.54 0.63 0.54 0.54 0.53 0.47 0.52 0.57 0.41 0.51 0.46
300 0.63 0.63 0.63 0.63 0.18 0.63 0.63 0.72 0.61 0.61 0.63 0.34 0.43 0.43 0.55 0.38 0.41

Table 6. Evaluation results of real distance with three types of methods.

Profile
Nos. Index LR RR LAR EN PR DT RF BAG ADABT GDBT XGBT SVR GA-

SVR KNNR BPNN GA-
BPNN

PSO-
BPNN

50
MAE
/m

751.40 755.60 753.41 769.86 1750.90 819.42 785.61 974.62 706.25 762.99 771.85 1357.99 1060.60 1097.58 1038.14 1219.88 1274.62
100 1106.57 981.53 1101.08 1047.42 2130.29 955.07 1077.69 1009.94 1056.71 1120.31 1496.06 1480.52 1115.84 1223.84 1085.33 1293.05 1246.75
200 1180.34 1178.04 1179.22 1177.64 2323.60 1180.01 1163.06 1078.59 1162.95 1145.43 1194.10 1207.19 967.26 1085.22 988.93 1037.60 1113.69
300 775.59 775.60 775.59 776.00 561.33 792.84 785.94 433.35 789.61 786.54 774.00 723.91 255.19 380.22 471.77 354.71 413.08

50
RMSE

/m

872.98 887.27 878.54 903.14 1560.70 939.48 913.02 1044.72 862.41 903.75 900.08 1395.68 1089.49 1112.71 1079.10 1236.47 1280.94
100 1010.00 1131.00 1061.00 998.00 2343.00 1106.00 996.00 1050.00 1089.20 1129.40 1318.51 1333.23 1076.97 1178.29 1026.50 1185.60 1157.26
200 1164.46 1158.09 1161.40 1152.51 5830.42 1147.81 1132.27 1050.31 1168.15 1152.93 1175.38 1155.14 920.72 1058.68 1012.25 971.93 1005.94
300 764.41 764.37 764.41 765.22 669.17 762.86 750.90 605.98 802.22 788.50 762.40 751.08 440.54 537.54 650.24 562.80 584.61

50

R2

0.59 0.58 0.58 0.16 0.11 0.12 0.14 0.08 0.19 0.14 0.17 0.00 0.06 0.07 0.07 0.03 0.04
100 0.25 0.25 0.25 0.25 0.25 0.09 0.55 0.02 0.12 0.07 0.22 0.00 0.07 0.02 0.08 0.00 0.04
200 0.10 0.10 0.10 0.10 0.13 0.11 0.52 0.19 0.11 0.13 0.10 0.16 0.72 0.20 0.31 0.26 0.21
300 0.20 0.20 0.20 0.20 0.49 0.18 0.80 0.64 0.16 0.17 0.20 0.62 0.80 0.68 0.64 0.71 0.70
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As shown in Figure 14, Tables 6 and 7, when the number of data groups is 50, the
performance of the three models in distance prediction is not ideal. Among the regression
models, LR, RR, and LAR perform better, and their MAE and MSE are comparable. EN and
LAR perform well in heading prediction, and the MAE, MSE, and correlation coefficient of
EN are 40.28 m, 47.05 m, and 0.76, respectively.

Table 7. Weights of selected prediction models at different time scales.

Profile
Nos.

Distance Heading

LR RF GASVR EN GABPNN BAG

50 0.753 0.146 0.101 0.759 0.150 0.091

100 0.093 0.882 0.025 0.040 0.877 0.083

200 0.092 0.211 0.697 0.013 0.086 0.901

300 0.139 0.160 0.701 0.103 0.047 0.850

When the data size increases to 100, the RF behaves better in distance prediction, and
the GABPNN does well in heading prediction. Their prediction errors are smaller and take
on a strong correlation when compared to the other models. As the number of data groups
exceeds 200, the advantages of classical machine learning and tree-based model predictions
become obvious gradually, and the prediction error decreases correspondingly. The GASVR
outperforms the others in distance prediction, and the predicted correlation coefficients are
0.72 and 0.80, corresponding to 200 and 300 groups of data, respectively. Meanwhile, the
BAG achieves better heading prediction results, with correlation coefficients of 0.63 and
0.72, corresponding to 200 and 300 groups of data, respectively. In addition, the PR does
not perform well in the distance and heading prediction, especially when the amount of
data groups is 100 and 200. According to its mathematical principle, the PR is suited to
predictions with few variables, which is not suited to the multi-input single-output problem.

With the single models that predicted well at specified time scales, the combination
model is derived based on the prediction error of selected single models. We adopted the
simulated annealing optimized Frank–Wolfe method to calculate the weight of selected
models. The detailed results are listed in Table 7, and the final prediction model for the SPP
is expressed in Equation (12).

Additionally, the evaluation results of the real data with a combination model are
shown in Figure 15 and Table 8. The MAEs and MSEs show a considerable level compared
with the selected optimal single prediction models in distance and heading. Furthermore,
the correlation coefficients of the combination model are better than the single prediction
models, and it is higher in heading prediction than distance.

LT=50 = 0.753 · LR + 0.146 · RF + 0.101 · GASVR
HT=50 = 0.759 · EN + 0.150 · GABP + 0.091 · BAG
LT=100 = 0.093 · LR + 0.882 · RF + 0.025 · GASVR

HT=100 = 0.040 · EN + 0.877 · GABP + 0.083 · BAG
LT=200 = 0.092 · LR + 0.211 · RF + 0.697 · GASVR

HT=200 = 0.013 · EN + 0.086 · GABP + 0.901 · BAG
LT=300 = 0.139 · LR + 0.160 · RF + 0.701 · GASVR

HT=300 = 0.103 · EN + 0.047 · GABP + 0.850 · BAG

(19)

Overall, the experimental results indicated that the three types of single prediction
models could show their advantages at different time scales with different data sizes. The
regression model is more suited to short term prediction, achieving better results with
less training data. As for a long-term prediction, the classical machine learning model is
superior to the other models with data accumulation because its essence is suited to a large
data size. Furthermore, the tree-based model can integrate the advantages of multiple
models to a certain extent and perform well. Consequently, the weights of selected single
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models were calculated according to their prediction errors and integrated into them as
a new combination model. After that, the prediction results of the combination model
demonstrated that it has a balanced performance for distance and heading prediction
at different time scales and outperforms other single models, because it integrated the
advantages of single models with optimal weight.
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Table 8. Evaluation results of the combination model.

Profile
Nos.

Distance Heading

MAE/m MSE/m R2 MAE/◦ MSE/◦ R2

50 747.11 866.54 0.75 40.12 43.66 0.67

100 945.02 907.74 0.69 17.57 26.46 0.73

200 966.87 969.50 0.81 37.33 36.11 0.78

300 254.36 445.02 0.78 25.60 25.32 0.71

5. Conclusions

In this paper, a new combination model was proposed to predict the SPP at different
time scales. To make the prediction more accurate, the ocean current data are introduced as
an ambient influence factor. Furthermore, the ocean current data are also interpolated and
averaged to be closer to the ambient environment of the SPP. To make the analysis closer to
reality, the sea trial data are then grouped into four sizes according to the different time
scales of 10, 20, 40, and 60 days. Afterward, seventeen prediction models are categorized
into regression models, classical machine learning models, and tree-based models for
SPP prediction with different data sizes. The regression model is suited to dealing with
linear problems and the machine learning model is good at processing big data problems.
Finally, the prediction results reveal that the regression model is more suited to short-term
predictions, whose MSE and RMSE are 751.40 m and 872.98 m in distance prediction,
acquiring better results with small data sizes. Furthermore, when the number of data
groups increases, the classical machine learning model performs better than other models.
Similarly, the tree-based model also performs well, because it can integrate the strengths
of multiple models to a certain degree in the long-term prediction. Furthermore, the
combined weight is calculated based on the prediction error of three types of prediction
models adopted by the simulated annealing optimized Frank–Wolfe method. Then various
prediction models are combined with optimal weight to construct a new model for the SPP
prediction of the UG, whose MSE and RMSE are 254.36 m and 445.02 m in distance. The
combination prediction model shows high accuracy and balanced performance at different
prediction time scales.



J. Mar. Sci. Eng. 2023, 11, 972 18 of 19

Further work will focus on the prediction of the underwater position of the UG with
the predicted SPP. By considering target detection and the low cost of the UG, we will carry
out the study of accurate dead reckoning of the UG without the inertial sensors. After that,
a swarm control algorithm will be studied for the applications of multiple UGs, such as in
ocean phenomenon reconstruction or regional marine environment detection.
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