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Abstract: At present, 3D reconstruction technology is being gradually applied to underwater scenes
and has become a hot research direction that is vital to human ocean exploration and development.
Due to the rapid development of computer vision in recent years, optical image 3D reconstruction has
become the mainstream method. Therefore, this paper focuses on optical image 3D reconstruction
methods in the underwater environment. However, due to the wide application of sonar in underwa-
ter 3D reconstruction, this paper also introduces and summarizes the underwater 3D reconstruction
based on acoustic image and optical–acoustic image fusion methods. First, this paper uses the
Citespace software to visually analyze the existing literature of underwater images and intuitively
analyze the hotspots and key research directions in this field. Second, the particularity of underwater
environments compared with conventional systems is introduced. Two scientific problems are em-
phasized by engineering problems encountered in optical image reconstruction: underwater image
degradation and the calibration of underwater cameras. Then, in the main part of this paper, we
focus on the underwater 3D reconstruction methods based on optical images, acoustic images and
optical–acoustic image fusion, reviewing the literature and classifying the existing solutions. Finally,
potential advancements in this field in the future are considered.

Keywords: underwater 3D reconstruction; structure from motion; sonar; review

1. Introduction

At present, 3D data measurement and object reconstruction technologies are being
gradually applied to underwater scenes, which has become a hot research direction. They
can be used for biological investigation, archaeology and other research [1,2] and can also
facilitate people’s exploration and mapping of the seabed. These maps are usually made
up of three-dimensional data collected by one or more sensors and then processed with
3D reconstruction algorithms. Then, the collected 3D data are processed to obtain the
3D information of the actual scene and the target’s actual 3D structure is restored. This
workflow is called 3D reconstruction [3].

The development of 3D reconstruction has been a long process. Early 3D recon-
struction was mainly completed by manual drawing, which was time-consuming and
labor-intensive [4]. Nowadays, the main 3D reconstruction techniques can be divided
into image-based 3D reconstruction and laser-scanner-based 3D reconstruction, which use
different types of equipment (camera and laser scanner, respectively) to perform tasks [5].
Ying Lo et al. [6] studied the cost-effectiveness of the two methods based on their results
in terms of accuracy, cost, time efficiency and flexibility. According to the findings, the
laser scanning method’s accuracy is nearly on par with the image-based method’s accuracy.
However, methods based on laser scanning require expensive instruments and skilled
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operators to obtain accurate models. Image-based methods, which automatically process
data, are relatively inexpensive.

Therefore, image-based underwater 3D reconstruction is the focus of current research,
which can be divided into the optical and acoustic 3D reconstruction of underwater im-
ages according to different means. The optical method mainly uses optical sensors to
obtain three-dimensional information of underwater objects or scenes and reconstruct
them. Recently, progress has been made in 3D reconstruction technology based on un-
derwater optical images. However, it is frequently challenging to meet the demands of
actual applications because of the undersea environment’s diversity, complexity and quick
attenuation of the propagation energy of light waves. Therefore, researchers have also
proposed acoustic methods based on underwater images, which mainly use sonar sensors
to obtain underwater information. Due to the characteristics of sonar propagation in water,
such as low loss, strong penetration ability, long propagation distance and little influence
of water quality, sonar has become a good choice to study the underwater environment.

Regarding the carrier and imaging equipment, due to the continuous progress of
science and technology, underwater camera systems and customized systems in deep-
sea robots continue to improve. Crewed and driverless vehicles can slowly enter large
ocean areas and continuously shoot higher-quality images and videos underwater to
provide updated and more accurate data for underwater 3D reconstruction. Using sensors
to record the underwater scene, scientists can now obtain accurate two-dimensional or
three-dimensional data and use standard software to interact with them, which is helpful
for understanding the underwater environment in real time. Data acquisition can be
conducted using sensors deployed underwater (e.g., underwater tripods or stationary
devices), sensors operated by divers, remotely operated vehicles (ROVs) or autonomous
underwater vehicles (AUVs).

At present, there are few review papers in the field of underwater 3D reconstruction.
In 2015, Shortis M [7] reviewed different methods of underwater camera system calibration
from both theoretical and practical aspects and discussed the calibration of underwater
camera systems with respect to their accuracy, dependability, efficacy and stability. Massot-
Campos, M. and Oliver-Codina, G [3] reviewed the optical sensors and methods of 3D
reconstruction commonly used in underwater environments. In 2017, Qiao Xi et al. [8]
reviewed the development of the field of underwater machine vision and its potential un-
derwater applications and compared the existing research and the underwater 3D scanner
of commercial goods. In 2019, Miguel Castillón et al. [9] reviewed the research on optical
3D underwater scanners and the research progress of light-projection and light-sensing
technology. Finally, in 2019, Avilash Sahoo et al. [10] reviewed the field of underwater
robots, looked at future research directions and discussed in detail the current positioning
and navigation technology in autonomous underwater vehicles as well as different optimal
path planning and control methods.

The above review papers have made some contributions to the research on underwater
3D reconstruction. However, first, most of these contributions only focus on a certain
key direction of underwater reconstruction or offer a review of a certain reconstruction
method, such as underwater camera calibration, underwater 3D instrument, etc. There is no
comprehensive summary of the difficulties encountered in 3D reconstruction in underwater
environments and the current commonly used reconstruction methods for underwater
images. Second, since 2019, there has been no relevant review to summarize the research
results in this direction. Third, there is no discussion of the multi-sensor fusion issue that is
currently under development.

Therefore, it is necessary to conduct an all-around survey of the common underwater
3D reconstruction methods and the difficulties encountered in the underwater environment
to help researchers obtain an overview of this direction and continue to make efforts based
on the existing state of affairs. Therefore, the contributions of this paper are as follows:
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(1) Using the Citespace software to visually analyze the relevant papers in the direction
of underwater 3D reconstruction in the past two decades can more conveniently and
intuitively display the research content and research hotspots in this field.

(2) In the underwater environment, the challenges faced by image reconstruction and the
solutions proposed by current researchers are addressed.

(3) We systematically introduce the main optical methods for the 3D reconstruction of
underwater images that are currently widely used, including structure from motion,
structured light, photometric stereo, stereo vision and underwater photogrammetry,
and review the classic methods used by researchers to apply these methods. More-
over, because sonar is widely used in underwater 3D reconstruction, this paper also
introduces and summarizes underwater 3D reconstruction methods based on acoustic
image and optical–acoustic image fusion.

This paper is organized as follows: The first portion mainly introduces the significance
of underwater 3D reconstruction and the key research direction of this paper. Section 2
uses the Citespace software to perform a visual analysis of the area of underwater 3D
reconstruction based on the documents and analyzes the development status of this field.
Section 3 introduces the particularity of the underwater environment compared with
the conventional system and the difficulties and challenges to be faced in underwater
optical image 3D reconstruction. Section 4 introduces the underwater reconstruction
technology based on optics and summarizes the development of existing technologies
and the improvement of algorithms by researchers. Section 5 introduces underwater 3D
reconstruction methods based on sonar images and offers a review of the existing results; it
further summarizes 3D reconstruction with opto-acoustic fusion. Finally, in the sixth section,
the current development of image-based underwater 3D reconstruction is summarized
and prospected.

2. Development Status of Underwater 3D Reconstruction
Analysis of the Development of Underwater 3D Reconstruction Based on the Literature

The major research tool utilized for the literature analysis in this paper was the
Citespace software developed by Dr. Chen Chaomei [11]. Citespace can be used to measure
a collection of documents in a specific field to discover the key path of the evolution of
the subject field and to form a series of visual maps to obtain an overview of the subject’s
evolution and academic development [12–14]. A literature analysis based on Citespace can
more conveniently and intuitively display the research content and research hotspots in a
certain field.

We conducted an advanced retrieval on the Web of Science. By setting the keywords
as underwater 3D reconstruction and underwater camera calibration, the time from 2002 to
2022, and the search scope to exclude references, and a total of more than 1000 documents
was obtained. The subject of underwater camera calibration was the basis of optical image
3D reconstruction summarized in this paper, so we added underwater camera calibration
when setting keywords. The Citespace software was utilized for the visual analysis of
underwater 3D-reconstruction-related literature, and the exploration of underwater recon-
struction in the most recent 20 years was analyzed in terms of a keyword map and the
number of author contributions.

A keyword heat map was created using the retrieved documents, as shown in Figure 1.
The larger the circle, the more times the keyword appears. The different layers of the circle
represent different times from the inside to the outside. The connecting lines denote the
connections between different keywords. Among them, ‘reconstruction’, with the largest
circle, is the theme of this paper. The terms ‘camera calibration’, ‘structure from motion’,
‘stereo vision’, ‘underwater photogrammetry’ and ‘sonar’ in the larger circles are also
the focus of this article and the focus of current underwater 3D reconstruction research.
We can thus clearly see the current hotspots in this field and the key areas that need to
be studied.
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In addition, we also used the search result analysis function in Web of Science to
analyze the research field statistics of papers published on the theme of underwater 3D
reconstruction and the data cited by related articles. Figure 2 shows a line graph of the
frequency of citations of related papers on the theme of underwater 3D reconstruction.
The abscissa of the picture indicates the year and the ordinate indicates the number of
citations of related papers. The graph shows that the number of citations of papers related
to underwater 3D reconstruction rises rapidly as the years go on. Clearly, the area of
underwater 3D reconstruction has received more and more attention, so this review is of
great significance in combination with the current hotspots.

Figure 1. Hot words in the field of underwater 3D reconstruction.

YearCitations

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

C
ita

tio
n

s

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0

1400

1500

1600

C
ita

tio
n

s

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0

1400

1500

1600

YearCitations

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

C
ita

tio
n

s

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0

1400

1500

1600

Figure 2. Citations for Web of Science articles in recent years.
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Figure 3 shows a histogram of statistics on the research field of papers published on
the theme of underwater 3D reconstruction. The abscissa is the field of the retrieved paper
and the ordinate is the number of papers in the field. Considering the research fields that
retrieved relevant papers, underwater 3D reconstruction is a hot topic in engineering and
computer science. Therefore, when we explore the direction of underwater 3D reconstruc-
tion, we should pay special attention to engineering issues and computer-related issues.
From the above analysis, it is evident that the research on underwater 3D reconstruction
is a hot topic at present, and it has attracted more and more attention as time progresses,
mainly developing in the fields of computer science and engineering. Given the quick rise
of deep learning methods in various fields [15–23], the development of underwater 3D
reconstruction has also ushered in a period of rapid growth, which has greatly improved
the reconstruction effect.
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Figure 3. Research fields of papers found using Web of Science.

Figure 4 shows the top 16 keywords with high frequency from 2005 to 2022 made
using the Citespace software. Strength stands for the strength of the keyword, and the
greater the value, the more the keyword is cited. The line on the right is the timeline from
2005 to 2022. The ‘begin’ column indicates the time when the keyword first appeared.
‘Begin’ to ‘End’ indicates that the keyword is highly active during this year. The red line
indicates the years with high activity. It can be seen from the figure that words such as
‘sonar’, ‘underwater photogrammetry’, ‘underwater imaging’ and ‘underwater robotics’
are currently hot research topics within underwater three-dimensional reconstruction. The
keywords with high strength, such as ‘structure from motion’ and ‘camera calibration’,
clearly show the hot research topics in this field, and are also the focus of this article.

Considering the ongoing advancements in science and technology, the desire to ex-
plore the sea has become stronger and stronger, and some scholars and teams have made
significant contributions to underwater reconstruction. The contributions of numerous
academics and groups have aided in the improvement of the reconstruction process in the
special underwater environment and laid the foundation for a series of subsequent recon-
struction problems. We retrieved more than 1000 articles on underwater 3D reconstruction
from Web of Science and obtained the author contribution map shown in Figure 5. The
larger the font, the greater the attention the author received.
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Figure 4. Timing diagram of the appearance of high-frequency keywords.

Figure 5. Outstanding scholars in the area of underwater 3D reconstruction.

There are some representative research teams. Chris Beall et al. proposed a large-scale
sparse reconstruction technology for underwater structures [24]. Bruno F et al. proposed
the projection of structured lighting patterns based on a stereo vision system [25]. Bianco
et al. compared two underwater 3D imaging technologies based on active and passive
methods, as well as full-field acquisition [26]. Jordt A et al. used the geometric model of
image formation to consider refraction. Then, starting from camera calibration, a complete
and automatic 3D reconstruction system was proposed, which acquires image sequences
and generates 3D models [27]. Kang L et al. studied a common underwater imaging device
with two cameras, and then used a simplified refraction camera model to deal with the
refraction problem [28]. Chadebecq F et al. proposed a novel RSfM framework [29] for
a camera looking through a thin refractive interface to refine an initial estimate of the
relative camera pose estimated. Song H et al. presented a comprehensive underwater
visual reconstruction enhancement–registration–homogenization (ERH) paradigm [30].
Su Z et al. proposed a flexible and accurate stereo-DIC [31] based on the flat refractive
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geometry to measure the 3D shape and deformation of fluid-immersed objects. Table 1 lists
their main contributions.

Table 1. Some outstanding teams and their contributions.

References Contribution

Chris Beall [24] a large-scale sparse reconstruction technology

Bruno, F. [25] a projection of SL patterns based on SV system

Bianco [26] Authors integrated the 3D point cloud collected by active and passive
methods and made use of the advantages of each technology

Jordt, A. [27] Authors compensated for refraction through the geometric model
formed by the image

Kang, L. [28] a simplified refraction camera model

Chadebecq, F. [29] a novel RSfM framework

Song, H. [30] a comprehensive underwater visual reconstruction ERH paradigm

Su, Z. [31] a flexible and accurate stereo-DIC

This paper mainly used the Citespace software and Web of Science search and analysis
functions to analyze the current development status and hotspot directions of underwa-
ter 3D reconstruction so that researchers can quickly understand the hotspots and key
points in this field. In the next section, we analyze the uniqueness of the underwater
environment in contrast to the conventional environment; that is, we analyzed the chal-
lenges that need to be addressed when performing optical image 3D reconstruction in the
underwater environment.

3. Challenges Posed by the Underwater Environment

The development of 3D reconstruction based on optical image has been relatively
mature. Compared with other methods, it has the benefits of being affordable and effective.
However, in the underwater environment, it has different characteristics from conventional
systems, mainly regarding the following aspects:

(1) The underwater environment is complex, and the underwater scenes that can be reached
are limited, so it is difficult to deploy the system and operate the equipment [32].

(2) Data collection is difficult, requiring divers or specific equipment, and the require-
ments for the collection personnel are high [33].

(3) The optical properties of the water body and insufficient light lead to dark and blurred
images [34]. Light absorption can cause the borders of an image to blur, similar to a
vignette effect.

(4) When capturing underwater images in the air, there is a refraction effect between the
sensor and the underwater object and between the air and the glass cover and the
water due to the difference in density, which alters the camera’s intrinsic parameters,
resulting in decreased algorithm performance while processing images [35]. Therefore,
a specific calibration is required [36].

(5) When photons propagate in an aqueous medium, they are affected by particles in the
water, which can scatter or completely absorb the photons, resulting in the attenuation
of the signal that finally reaches the image sensor [37]. The red, green and blue discrete
waves are attenuated at different rates, and their effects are immediately apparent in
the original underwater image, in which the red channel attenuates the most and the
blue channel attenuates the least, resulting in the blue-green image effect [38].

(6) Images taken in shallow-water areas (less than 10 m) may be severely affected by
sunlight scintillation, which causes intense light variations as a result of sunlight
refraction at the shifting air–water interface. This flickering can quickly change the
appearance of the scene, which makes feature extraction and matching for basic image
processing functions more difficult [39].
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These engineering problems will affect the performance of underwater reconstruction
systems. The algorithms of conventional systems used by researchers cannot often meet the
needs of underwater practical applications with ease. Therefore, algorithm improvements
are needed for 3D image reconstruction in underwater environments.

The 3D reconstruction of underwater images based on optics is greatly affected by
the engineering problems proposed above. Research has shown that they can be mainly
classified into two scientific problems, namely, the deterioration of underwater images and
the calibration of underwater cameras. Meanwhile, underwater 3D reconstruction based
on acoustic images is less affected by underwater environmental problems. Therefore,
this section mainly introduces the processing of underwater image degradation and the
improvement of underwater camera calibration for optical methods. They are the special
features of conventional systems in underwater environments and are also the key and
focus of underwater 3D reconstruction.

3.1. Underwater Image Degradation

The quality of the collected images is poor because of the unique underwater envi-
ronment, which degrades the 3D reconstruction effect. In this section, we first discuss
the caustic effect caused by light reflection or refraction in shallow water (water depth
less than 10 m) and the solutions proposed by researchers. Second, we discuss image
degradation caused by light absorption or scattering underwater and two common un-
derwater image-processing approaches, namely underwater image restoration and visual
image enhancement.

3.1.1. Reflection or Refraction Effects

Every depth in the underwater environment affects RGB images, but especially the
caustics in shallow water (water depth less than 10 m), that is, the complex physical
phenomenon of light reflected or refracted by a curved surface, which appears to be the
primary factor lowering the image quality of all passive optical sensors [39]. In abyssal-
sea photogrammetry methods, noon is usually the optimum period for data collection
because of the bright illumination; with regard to shallow waters, the subject needs strong
artificial lighting, or the image to be captured in shady conditions or on the horizon to avoid
reflections on the seabed [39]. If it cannot be avoided in the procurement stage, the image-
matching algorithm will be affected by caustics and lighting effects, with the final result
being that the generated texture is different from the orthophoto. Furthermore, caustic
effects destroy most image-matching algorithms, resulting in inaccurate matching [39].
Figure 6 shows pictures of different forms of caustic effects in underwater images.

Figure 6. Caustic effects of different shapes in underwater images.

Only a few literature contributions currently mention methods for optimizing images
by removing caustics from images and videos. For underwater sceneries that are constantly
changing, Trabes and Jordan proposed a method that requires altering a filter for sunlight
deflection [40]. Gracias et al. [41] presented a new strategy, where a mathematical solving
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scheme involved computing the median time between images within a sequence. Later
on, these authors expanded upon their work in [42] and proposed an online method for
removing sun glint that interprets caustics as a dynamic texture. However, as they note in
their research, this technique is only effective if the seabed or seafloor surface is level.

In [43], Schechner and Karpel proposed a method for analyzing several consecutive
frames based on a nonlinear algorithm to keep the composition of the image the same while
removing fluctuations. However, this method does not consider camera motion, which will
lead to inaccurate registration.

In order to avoid inaccurate registration, Swirski and Schechner [44] proposed a
method to remove caustics using stereo equipment. The stereo cameras provide the depth
maps, and then the depth maps can be registered together using the iterative nearest
point. This again makes a strong assumption about the rigidity of the scene, which rarely
happens underwater.

Despite the innovative and complex techniques described above, removing caustic
effects using a procedural approach requires strong assumptions on the various parameters
involved, such as the scene stiffness and camera motion.

Therefore, Forbes et al. [45] proposed a method without making such assumptions, a
new solution based on two convolutional neural networks (CNNs) [46–48]: SalienceNet
and DeepCaustics. The saliency graph is the caustic classification produced by the first
network when it is trained, and the content represents the likelihood of a pixel being
caustic. Caustic-free images are produced when the second network is trained. The
true fundamentals of caustic point generation are extremely difficult. They use synthetic
data for training and then enable the transfer of learning to real data. This is the first
time the challenging corrosion-removal problem has been reconstructed and approached
as a classification and learning problem among the few solutions that have been sug-
gested. Two compact, simple-to-train CNNs are the foundation of the unique solution that
Agrafiotis et al. [39] proposed and tested a novel solution based on two small, easily
trainable CNNs [49]. They showed how to train a network using a small set of synthetic
data and then transfer the learning to real data with robustness to within-class variation.
The solution results in caustic-free images that can be further used for other possible tasks.
They showed how to train a network using a small set of synthetic data and then transfer
the learning to real data with robustness to within-class variation. The solution results in
caustic-free images that can be further used for other possible tasks.

3.1.2. Absorption or Scattering Effects

Water absorbs and scatters light as it moves through it. Different wavelengths of light
are absorbed differently by different types of water. The underwater-imaging process is
shown in Figure 7. At a depth of around 5 m, red light diminishes and vanishes quickly.
Green and blue light both gradually fade away underwater, with blue light disappearing
at a depth of roughly 60 m. Light changes direction during transmission and disperses
unevenly because it is scattered by suspended matter and other media. The character-
istics of the medium, the light and the polarization all have an impact on the scattering
process [38]. Therefore, underwater video images are typically blue-green in color with
obvious fog effects. Figure 8 shows some low-quality underwater images. The image on
the left has obvious chromatic aberration, and the overall appearance is green. The image
on the right demonstrates fogging, which is common in underwater images.

Low-quality images can affect subsequent 3D-reconstruction vision-processing mis-
sions. In actual utilization, projects are greatly hampered by the poor quality of underwater
pictures, such as underwater archaeology, biological research and collection [50]. The un-
derwater environment violates the brightness-constancy constraint in terrestrial techniques,
so transferring reconstruction methods on land to the underwater domain remains chal-
lenging. The most advanced underwater 3D reconstruction approaches use the physical
model of light propagation underwater to consider the equidistant effects of scattering
and attenuation. However, these methods require careful calibration of the attenuation
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coefficients required for physical models or rely on rough estimates of these coefficients
from previous laboratory experiments.

water 

level

suspension

back 

scatteringforward 

scatter

direct 

irradiation

depth

beam

5m−

10m−
20m−
30m−

60m−

Figure 7. Underwater imaging model.

Figure 8. Typical underwater images.

The current main method for 3D reconstruction of underwater images is to enhance
the primordial underwater image before 3D reconstruction to restore the underwater image
and possibly raise the level of the 3D point cloud that is produced [51]. Therefore, how to
obtain as correct or real underwater color images as possible has become a very challenging
problem, and at the same time it has become a promising research field. Underwater color
images have affected image-based 3D-reconstruction and scene-mapping techniques [52].

To solve these problems, according to the description of underwater image processing
in the literature, two different underwater image-processing methods are implemented.
The first one is underwater image restoration. Its purpose is to reconstruct or restore
degraded images caused by unfavourable factors, such as camera and object relative
motion, underwater scattering, turbulence, distortion, spectral absorption and attenuation
in complex underwater environments [53]. This rigorous approach tries to restore the true
colors and corrects the image using an appropriate model. The second approach uses
qualitative criteria-based underwater image-enhancement techniques [54,55]. It processes
deteriorated underwater photographs using computer technology, turning the initial, low-
quality images into high-quality images [56]. The enhancement technique effectively solves
the issues with the primitive underwater video image, such as color bias, low contrast,
fogging, etc. [57]. The visual perception improves with the enhancement of video images,
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which in turn facilitates the following visual tasks. The image-production process is not
taken into account by image-enhancing techniques and does not require a priori knowledge
of environmental factors [52]. New and better methods for underwater image processing
have been made possible by recent developments in machine learning and deep learning in
both approaches [22,58–63]. With the development of underwater image color restoration
and enhancement technology, experts in the 3D reconstruction of underwater images are
faced with the challenge of how to apply it to the 3D reconstruction of underwater images.

3.2. Underwater Camera Calibration

In underwater photogrammetry, the first aspect to consider is camera calibration,
and while this is a trivial task in air conditions, it is not easy to implement underwater.
Underwater camera calibration experiences more uncertainties than in-air calibration due
to light attenuation through the housing ports and water medium, as well as tiny potential
changes in the refracted light’s route due to the modelling hypothesis or nonuniformity
of the medium error. Therefore, compared to identical calibrations in the air, underwater
calibrations typically have a lower accuracy and precision. Due to these influences, ex-
perience has demonstrated that underwater calibration is more inclined to result in scale
inaccuracies in the measurements [64].

Malte Pedersen et al. [65] compared three methods for the 3D reconstruction of under-
water objects: a method relying only on aerial camera calibration, an underwater camera
calibration method and a method based on Snell’s law with ray tracing. The aerial camera
calibration display is the least accurate since it does not consider refraction. Therefore, the
underwater camera needs to be calibrated.

As mentioned in the particularity of the underwater environment, the refraction of
the air–glass–water interface will cause a large distortion of the image, which should be
considered when calibrating the camera [66]. The differential in densities between the two
mediums is what causes this refraction. The incoming beam of light is modified as it travels
through the two mediums, as seen in Figure 9, altering the optical path.

WaterGlassAir

3 2

1

Apparent viewports
C

WaterGlassAir

3 2

1

Apparent viewports
C

Figure 9. Refraction caused by the air–glass (acrylic)–water interface.

Depending on their angle of incidence, refracted rays (shown by dashed lines) that
extend into the air intersect at several spots, each representing a different viewpoint. Due
to the influence of refraction, there is no collinearity between the object point in the water,
the projection center of the camera and the image point [67], making the imaged scene
appear wider than the actual scene. The distortion of the flat interface is affected by the
distance from the pixel in the center of the camera, and the distortion increases with the
distance. Variations in the pressure, temperature and salinity can change the refractive
index of water and even how the camera is processed, thereby altering the calibration
parameters [68]. Therefore, there is a mismatch between the object-plane coordinates and
the image-plane coordinates.

This issue is mainly solved using two different methods:
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(1) The development of new calibration methods with a refraction-correction capability.
Gu et al. [69] proposed an innovative and effective approach for medium-driven
underwater camera calibration that can precisely calibrate underwater camera param-
eters, such as the direction and location of the transparent glass. To better construct
the geometric restrictions and calculate the initial values of the underwater camera
parameters, the calibration data are obtained using the optical path variations created
by medium refraction between different mediums. At the same time, based on quater-
nions, they propose an underwater camera parameter-optimization method with the
aim of improving the calibration accuracy of underwater camera systems.

(2) The existing algorithm has been improved to reduce the refraction error. For example,
Du et al. [70] established an actual underwater camera calibration image dataset in
order to improve the accuracy of underwater camera calibration. The outcomes of
conventional calibration methods are optimized using the slime mold optimization
algorithm by combining the best neighborhood perturbation and reverse learning
techniques. The precision and effectiveness of the proposed algorithm are verified
using the seagull algorithm (SOA) and particle swarm optimization (PSO) algorithm
on the surface.

Other researchers have proposed different methods, such as modifying the collinear
equation. However, others have proposed that corrective lenses or circular holes can
eliminate refraction effects and use dome-ported pressure shells, thereby providing near-
perfect central projection underwater [71]. The entrance pupil of the camera lens and the
center of curvature of the corrective lens must line up for the corrective-lens method to
work. This presupposes that the camera is a perfect central projection. In general, to ensure
the accuracy of the final results, comprehensive calibration is essential. For cameras with
misaligned domes or flat ports, traditional methods of distortion-model adjustment are not
sufficient, and complete physical models must be used [72], taking the glass thickness into
account as in [67,73].

Other authors have considered refraction using the refraction camera model. As in [28],
a simplified refraction camera model was adopted.

This section mainly introduces two main scientific problems arising from the spe-
cial engineering problems of the underwater environment, namely, underwater image
degradation and underwater camera calibration, and also introduces the existing solutions
to the two main problems. In the next section, we introduce optical methods for the 3D
reconstruction of underwater images. It uses optical sensors to obtain image information of
underwater objects or scenes for reconstruction.

4. Optical Methods

Optical sensing devices can be divided into active and passive according to their
interaction with media. Active sensor refers to sensors that can enhance or measure
the collected data according to environmental radiation and projection. Structured light
is an illustration of an active system, where a pattern is projected onto an object for
3D reconstruction [74]. The passive approach is to perceive the environment without
changing or altering the scene. Structure from motion, photometric stereo, stereo vision and
underwater photogrammetry acquire information by sensing the reality of the environment,
and are passive methods.

This section introduces and summarizes the sensing technology of 3D underwater
image reconstruction based on optical and related methods in detail and describes in detail
the application of structure from motion, structured light, photometric stereo, stereo vision
and underwater photogrammetry in underwater 3D reconstruction.

4.1. Structure from Motion

Structure from motion (SfM) is an efficient approach for 3D reconstruction using
multiple images. It started with the pioneering paper of Longuet Higgins [75]. SfM is a
method of triangulation that involves using a monocular camera to capture photographs
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of a subject or scene. To determine the relative camera motion and, thus, its 3D route,
picture features are extracted from these camera shots and matched [76] between successive
frames. First, suppose there is a calibrated camera in which the main point, calibration, lens
distortion and refraction elements are known to ensure the accuracy of the final results.

Given a images of b fixed 3D points, then a projection matrices Pi and b 3D points Xj
from the a·b correspondences of Xij can be estimated.

Xij = PiXj, i = 1, . . . , a, j = 1, . . . , b (1)

Hence, the projection of the scene points is unaffected if the entire scene is scaled by a
factor of m while also scaling the projection matrix by a factor of 1/m; the projection of the
scene points remains the same. Therefore, the scale is only unavailable with SfM.

x = PX = (
1
m

P)(mX) (2)

The group of solutions parametrized by λ is:

X(λ) = P+x + λn (3)

where P+ is the pseudo-inverse of P (i.e., PP+ = I) and n is its null vector, namely, the
camera center, defined by Pn = 0.

The SfM is the most economical method and easy to install on the robot, just needing
a camera or recorder that can capture still images or video and has enough storage to
hold the entire image. Essentially, SfM includes the automated tasks of feature-point
detection, description and matching. The most critical tasks in this process are feature
detection, description and matching, and then the required 3D model can be obtained.
There are many feature-detection techniques that are frequently employed, including
speeded-up robust features (SURF) [77], scale-invariant feature transform (SIFT) [78] and
Harris. These feature detectors have spatially invariant characteristics. Nevertheless, they
do not offer high-quality results when the images undergo significant modification, such as
in underwater images. In fact, suspended particles in the water, light absorption and light
refraction make the images blurred and add noise. To compare Harris and SIFT features,
Meline et al. [79] used a 1280 × 720 px camera in shallow-water areas to obtain matching
points robust enough to reconstruct 3D underwater archaeological objects. In this paper,
the authors reconstructed a bust, and they concluded that the Harris method could obtain
more robust points from the picture compared to SIFT, but the SIFT points could not be
ignored either. Compared to Harris, SIFT is weak against speckle noise. Additionally,
Harris presents better interior counts in diverse scenes.

SfM systems are a method for computing the camera pose and structure from a set
of images [80] and are mainly separated into two types, incremental SfM and global SfM.
Incremental SfM [81,82] uses SIFT to match the first two input images. These correspon-
dences are then employed to estimate the relative pose of the second relative to the first
camera. Once the poses of the two cameras are obtained, a sparse set of 3D points is
triangulated. Although the RANSAC framework is often employed to estimate the relative
poses, the outliers need to be found and eliminated once the points have been triangulated.
The dual-view scenario is then optimized by applying bundle adjustment [83]. After the
refactoring is initialized, other views are added in turn, that is, matching the corresponding
relationship between the last view in the refactoring and the new view.

As a result of the 3D points presented in the reconstructed last view, a pair of new
views with 2D–3D correspondences will be immediately generated. Therefore, the camera
pose of the new view is determined by the absolute pose. A sequential reconstruction
of scene models can be robust and accurate. However, with repeated registration and
triangulation processes, the accumulated error becomes larger and larger, which may lead
to scene drifts [84]. Additionally, repeatedly solving nonlinear bundle adjustments can
lead to run-time inefficiencies. To prevent this from happening, a global SfM emerged. In
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this method, all correspondences between input image pairs are computed, so the input
images do not need to be sorted [85]. Pipelines typically solve problems in three steps.
The first step solves for all pairs of relative rotations through the epipolar geometry and
constructs a view whose vertices represent the camera and whose edges represent the
epipolar geometric constraints. The second step involves rotation averaging [86] and
translation averaging [87], which address the camera orientation and motion, respectively.
The final step is bundle adjustment, which aims to minimize the reprojection errors and
optimize the scene structure and camera pose. Compared with incremental SfM, the global
method avoids cumulative errors and is more efficient. The disadvantage is that it is not
robust to outliers.

SfM has been shown to have good imaging conditions on land and is an effective
method for 3D reconstruction [88]. In the underwater surroundings, using the SfM ap-
proach for 3D reconstruction has the characteristics of fast speed, ease of use and strong
versatility, but there are also many limitations and deficiencies. In underwater media,
both feature detection and matching have problems such as diffusion, uneven lighting
and sun glints, making it more difficult to detect the same feature from different angles.
According to the distance between the camera and the 3D point, the components of ab-
sorption and scattering change, thus altering the color and clarity of specific features in the
picture. If the ocean is photographed from the air, there will be more difficulties, such as
camera refraction [89].

Therefore, underwater SfM must take special underwater imaging conditions into
consideration. Sedlazeck et al. [90], for the underwater imaging environment, proposed to
computationally segment underwater images so that erroneous 2D correspondences can
be segmented and eliminated. To eliminate the green or blue tint, they performed color
correction using a physics model of light transmission underwater. Then, features were
selected using an image-gradient-based Harris corner detector, and the outliers after feature
matching were filtered through the RANSAC [91] process. The algorithm is essentially
a classical incremental SfM method adapted to special imaging conditions. However,
incremental SfM may suffer from scene drift. Therefore, Pizarro et al. [92] used a local-to-
global SfM approach with the help of onboard navigation sensors to generate 3D submaps.
They adopted a modified Harris corner detector as a feature detector with descriptors as
generalized color moments and used RANSAC and the six-point algorithm that has been
presented to evaluate the fundamental matrix stably, after breaking it down into movement
parameters. Finally, the pose was optimized by minimizing all the reprojection errors that
are considered as inline matches.

With the development of underwater robots, some authors have used ROVs and
AUVs to capture underwater 3D objects from multiple angles and used continuous video
streams to reconstruct underwater 3D objects. Xu et al. [93] combined SfM with an
object-tracking strategy to try to explore a new model for underwater 3D object recon-
struction from continuous video streams. A brief flowchart of their SfM reconstruction
of underwater 3D objects is shown in Figure 10. First, the particle filter was used for
image filtering to enhance the image, so as to obtain a clearer image for target tracking.
They used SIFT and RANSAC to recognize and track features of objects. Based on this, a
method for 3D point-cloud reconstruction with the support of SfM-based and patch-based
multi-view stereo (PMVS) was proposed. This scheme achieves a consistent improvement
in performance over multi-view 3D object reconstruction from underwater video streams.
Chen et al. [94] proposed a clustering-based adaptive threshold keyframe-extraction al-
gorithm, which extracts keyframes from video streams as image sequences for SfM. The
keyframes are extracted from moving image sequences as features. They utilized the
global SfM to create the scene and proposed a quicker rotational averaging approach,
the least trimming square rotational average (LTS-RA) method, based on the least trim-
ming squares (LTS) and L1RA methods. This method can reduce the time by 19.97%,
and the dense point cloud reduces the transmission costs by around 70% in contrast to
video streaming.
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Figure 10. Flow chart of underwater 3D object reconstruction based on SfM.

In addition, because of the diverse densities of water, glass and air, the light entering
the camera housing causes refraction, and the light entering the camera is refracted twice.
In 3D reconstruction, refraction causes geometric deformation. Therefore, refraction must
be taken into account underwater. Sedlazeck and Koch [95] studied the calibration of
housing parameters for underwater stereo camera setups. A refraction structure was devel-
oped based on a motion algorithm, a system for calculating camera paths and 3D points
using a new pose-estimation method. In addition, they also introduced the Gauss–Helmert
model [96] for nonlinear optimization, especially bundle adjustment. Both iterative opti-
mization and nonlinear optimization are used within the framework of RANSAC. Using
their proposed refraction SfM optimized the results of general SfM with a perspective
camera model. A typical RSfM reconstruction system is shown in Figure 11, where j stands
for the number of images. First, features in the two images are detected and matched, and
then the relative pose of the second camera relative to the first camera is computed. Next,
triangulation is performed using 2D–2D correspondences and camera poses. This finds
the 2D–3D correspondence of the next image, so the absolute pose relative to the 3D point
can be calculated. After adding fresh images and triangulating fresh points, a nonlinear
optimization is used for the scene.
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Figure 11. Typical RSfM reconstruction system.

On the basis of Sedlazeck [90], Kang et al. [97] suggested two fresh ideasforof the
refraction camera model, namely, the ellipse of refraction (EoR) and the profundity of
refraction (RD) of scene points. Meanwhile, they proposed a new mixed majorization
framework for performing dual-view underwater SfM. Compared to Sedlazeck [90], the
algorithm they put forward permits more commonly used camera configurations and may
efficiently minimize reprojection errors in picture interspace. On this basis, they derived
two fresh expressions for the problem of undersea known rotating structures and motions
in [28]. One provides a whole-situation optimum solution and the other is robust to ab-
normal values. The known rotation restraint is further broadened by introducing a robust
known rotation SfM into a new mixed majorization framework. The means it can auto-
matically perform underwater camera calibration and 3D reestablishment simultaneously
without using any calibration objects or additional calibration devices, which significantly
improves the precision of reconstructed 3D structures and the precision of the underwater
application system parameters.

Jordt et al. [27] combined the refractive SfM routine and the refractive plane-sweep al-
gorithm methods into an unabridged system for refraction reestablishment in larger scenes
by improving nonlinear optimization. This study was the first to out forward, accomplish
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and assess an unabridged extensible 3D re-establishment system for deep-sea level port
cameras. Parvathi et al. [98] only considered that refraction across medium boundaries
could cause geometric changes that can result in incorrect correspondence matches be-
tween images. This method is only applicable to pictures acquired using a camera above
the water’s surface, not underwater camera pictures, barring probable refraction at the
glass–water interface. Therefore, they put forward a refraction re-establishment model to
make up for refraction errors, assuming that the deflection of light rays takes place at the
camera center. First, the correction parameters were modelled, and then the fundamental
matrix was estimated using the coordinates of the correction model to build a multi-view
geometric reconstruction.

Chadebecq et al. [99] derived a new four-view restraint formulation from refractive
geometry and simultaneously proposed a new RSfM pipeline. The method depends on
a refraction fundamental matrix derived from a generalized outer pole constraint, used
together with a refraction–reprojection constraint, to optimize the primal estimation of the
relative camera poses estimated using an adaptive pinhole model with lens distortion. On
this basis, they extended the previous work in [29]. By employing the refraction camera
model, a concise derivation and expression of the refraction basis matrix were given,
and based on this, the former theoretical derivation of the two-view geometry with fixed
refraction planes was further developed.

Qiao et al. [100] proposed a ray-tracing-based modelling approach for camera systems
considering refraction. This method includes camera system modeling, camera housing cal-
ibration, camera system pose estimation and geometric reconstruction. They also proposed
a camera housing calibration method on the basis of the back-projection error to accomplish
accurate modelling. Based on this, a camera system pose-estimation method based on the
modelled camera system was suggested for geometric reconstruction. Finally, the 3D recon-
struction result was acquired using triangulation. The use of traditional SfM methods can
lead to deformation of the reconstructed building, while their RSfM method can effectively
reduce refractive index distortion and improve the final reconstruction accuracy.

Ichimaru et al. [101] proposed a technique to estimate all unknown parameters of
the unified underwater SfM, such as the transformation of the camera and refraction
interface and the shape of the underwater scene, using the extended beam-adjustment
technique. Several types of constraints are used in optimization-based refactoring methods,
depending on the capture settings, and an initialization procedure. Furthermore, since most
techniques are performed under the assumption of planarity of the refraction interface,
they proposed a technique to relax this assumption using soft constraints in order to
apply this technique to natural water surfaces. Jeon and Lee [102] proposed the use of
visual simultaneous localization and mapping (SLAM) to handle the localization of vehicle
systems and the mapping of the surrounding environment. The orientation determined
using SLAM improves the quality of 3D reconstruction and the computational efficiency of
SfM, while increasing the number of point clouds and reducing the processing time.

In the underwater surroundings, the SfM method for 3D reconstruction is widely
used because of its fast speed, ease of use and strong versatility. Table 2 lists different SfM
solutions. In this paper, we mainly compared the feature points, matching methods and
main contributions.

4.2. Photometric Stereo

Photometric stereo [103] is a commonly used optical 3D reconstruction approach that
has the advantage of high-resolution and fine 3D reconstruction even in weakly textured
regions. Photometric stereo scene-reconstruction technology needs to acquire a few photos
taken in various lighting situations, and by shifting the location of the light source, 3D
information may be retrieved, while maintaining a stable position for the camera and the
objects. Currently, photometric stereo has been well-studied in air conditions and is capable
of generating high-quality geometric data with specifics, but its performance is significantly



J. Mar. Sci. Eng. 2023, 11, 949 18 of 50

degraded due to the particularities of underwater environments, including phenomena
such as light scattering, refraction and energy attenuation [104].

Table 2. Summary of SfM 3D reconstruction motion solutions.

References Feature Matching
Method Contribution

Sedlazeck [90] Corner KTL Tracker

The system can adjust the underwater
photography environment, including a specific
background and floating particle filtering,
allowing for a sparse set of 3D points and a
reliable estimation of camera postures.

Pizarro [92] Harris Affine invariant
region

The authors proposed a complete seabed 3D
reconstruction system for processing optical
images obtained from underwater vehicles.

Xu [93] SIFT SIFT and
RANSAC

For continuous video streams, the authors
created a novel underwater 3D object
reconstruction model.

Chen [94] Keyframes KNN-match
The authors proposed a faster rotation-averaging
method, LTS-RA method, based on the LTS and
L1RA methods.

Jordt-Sedlazeck
[95] — KLT Tracker

The authors proposed a novel error function that
can be calculated fast and even permits the
analytic derivation of the error function’s
required Jacobian matrices.

Kang [28,97] — —

In the case of known rotation, the authors
showed that optimal underwater SfM under
L∞-norm can probably be evaluated based on
two new concepts, including the EoR and RD of
a scene point.

Jordt [27] SIFT SIFT and
RANSAC

This work was the first to propose, build and
estimate a complete scalable 3D reconstruction
system that can be employed with deep-sea
flat-port cameras.

Parvathi [98] SIFT SIFT

The authors proposed a refractive reconstruction
model for underwater images taken from the
water surface. The system does not require the
use of professional underwater cameras.

Chadebecq
[29,99] SIFT SIFT

The authors formulated a new four-view
constraint-enforcing camera pose consistency
along a video that leads to a novel
RSfM framework.

Qiao [100] — —

The camera system modelling approach based on
ray tracing was proposed to model the camera
system. A new camera-housing calibration was
based on back-projection error, which was
proposed to achieve accurate modelling.

Ichimaru [101] SURF SURF

The authors provided unified reconstruction
methods for several situations, including a single
static camera and moving refractive interface, a
single moving camera and static refractive
interface, and a single moving camera and
moving refractive interface.

Jeon [102] SIFT SIFT

The authors proposed two Aqualoc datasets
using the results of cloud point count, SfM
processing time, number of matched images,
total images and average reprojection error
before suggesting the use of visual SLAM to
handle the localization of vehicle systems and
the mapping of the surrounding environment.

The improvement of underwater photometric stereo under scattering effects has
been widely discussed by researchers. In underwater environments, light is significantly
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attenuated due to scattering effects, resulting in an uneven illumination distribution in
background areas. This leads to gradient errors and exacerbates the gradient integration
in the photometric volume results in a buildup of height inaccuracies, which leads to
the deformation of the reconstructed surface. Therefore, Narasimhan and Nayar [105]
proposed a method for recovering the albedo, normal and depth maps from scattering
media, deriving a physical model of surfaces surrounded by a scattering medium. Based
on these models, they provide results on the conditions for detectability of objects in light
fringes and the number of light sources required for the photometric stereo. It turns out
that this method requires at least five images. Under special conditions, however, four
different lighting conditions are sufficient.

Wu L et al. [106] better addressed the 3D reconstruction problem through low-rank
matrix completion and restoration. They used scotoma, the shadow and blackness in the
water, to accommodate the distribution of dispersion effects, and then removed dispersion
from the graphics. The image was restored by eliminating minor noise, shadows, con-
taminants, and a few damaged points, due to the usage of backscatter compensating with
the robust principal component analysis method (RPCA). Finally, to acquire the surface
normal and finish the 3D reconstruction, they used the RPCA results and the least-squares
results. Figure 12 uses four lamps to illuminate the underwater scene. The same scene
is illuminated by different light sources to obtain an image for restoring 3D information.
The new technology could be employed to enhance almost all photometric stereo methods,
incorporating uncalibrated photometric stereo.

Figure 12. Photometric stereo installation: four lights are employed to illuminate the underwater
landscape. The same scene employed different light-source images to recover 3D information.

In [107], Tsiotsios et al. showed that only three lights are sufficient to calculate 3D
data using a linear formulation of photometric stereo by effectively compensating for the
backscattered component. They compensated for the backscattering component by fitting a
backscattering model to each pixel. Without any prior knowledge of the characteristics of
the medium or the scene, one can estimate the uneven backscatter directly from a single
image using the backscatter restitution method for point-sources. Numerous experimental
results have demonstrated that, even in the case of very significant scattering phenomena,
there is almost no decrease in the final quality compared to the effects of clear water.
However, just as in time-multiplexed structured-light technology, photometric stereo also
has the problem of long acquisition time. These methods are inappropriate for objects
that move and are only effective for close-range static objects in clear water. Inspired
by the method proposed by Tsiotsios, Wu Z et al. [108] presented a height-correction
technique for underwater photometric stereo reconstruction based on the backdrop area
height distribution. To accommodate the height mistake, subtract it from the reconstructed
height and provide a more accurate reconstructed surface, a two-dimensional quadratic
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function was applied. The experimental results show the effectiveness of the method in
water with different turbidity.

Murez et al. [109] proposed three contributions to address the key modes of light
propagation under the ordinary single-scattering assumption of diluted media. First, a
large number of simulations showed that a single scattered light from a light source can be
approximated by a point light source with a single direction. Then, the blur caused by light
scattering from objects was modeled. Finally, it was demonstrated that imaging fluorescence
emission, where available, removes the backscatter component and improves the signal-
to-noise ratio. They conducted experiments in water tanks with different concentrations
of scattering media. The results showed that the quality of 3D reconstruction generated
by deconvolution is higher than that of previous techniques, and when combined with
fluorescence, even for highly turbid media, similar results can be generated to those in
clean water.

Jiao et al. [110] proposed a high-resolution three-dimensional surface reconstruction
method for underwater targets based on a single RGBD image-fusion depth and multi-
spectral photometric stereo vision. First, they used a depth sensor to acquire an RGB image
of the object with depth information. Then, the backscattering was removed by fitting a
binary quadratic function, and a simple linear iterative clustering superpixel was applied to
segment the RGB image. Based on these superpixels, they used multispectral photometric
stereo to calculate the objects’ surface normal.

The above research focused on the scattering effect in underwater photometric vol-
umes. However, the effects of attenuation and refraction were rarely considered [111].
In underwater environments, cameras are usually designed in flat watertight housings.
The light reflected from underwater objects is refracted as it passes through the flat housing
glass in front of the camera, which can lead to inaccurate reconstructions. Refraction does
not affect the surface normal estimations, but it may distort the captured image and cause
height integration errors in the normal field when estimating the actual 3D position of the
target object. At the same time, light attenuation limits the detection range of photometric
stereo systems and reduces the accuracy. Researchers have proposed many methods to
solve this problem in the air, for example, close-range photometric stereo, which simulates
the light direction and attenuation per pixel [112,113]. However, these methods are not
suitable for underwater environments.

Fan et al. [114] proposed that, when the light source of the imaging device is uniformly
placed on a circle with the same tilt angle, the main components of low frequency and high
deformation in the near photometric stereo can be approximately described by a quadratic
function. At the same time, they proposed a practical method to fit and eliminate the height
deviation so as to obtain a better surface-restoration method than the existing methods. It
is also a valuable solution for underwater close-range photometric stereo. However, scale
bias may occur due to the unstable light sensitivity of the camera sensor, underwater light
attenuation and low-frequency noise cancellation [115].

In order to solve problems such as low-frequency distortion, scale deviation and
refraction effects, Fan et al. combined underwater photometric stereo measurement with
underwater laser triangulation in [116] to improve the performance of underwater pho-
tometric stereo measurement. Based on the underwater imaging model, an underwater
photometric stereo model was established, which uses the underwater camera refraction
model to remove the non-linear refraction distortion. At the same time, they also proposed
a photometric stereo compensation method for close-range ring light sources.

However, the lack of constraints between multiple disconnected patches, the frequent
presence of low-frequency distortions and some practical situations often lead to bias
during photometric stereo reconstruction using direct integration. Therefore, Li et al. [117]
proposed a fusion method to correct photometric stereo bias using the depth information
generated by an encoded structured light system. This method preserves high-precision
normal information, not only recovering high-frequency details, but also avoiding or at
least reducing low-frequency deviations. A summary of underwater 3D reconstruction
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methods based on photometric stereo is shown in Table 3, which mainly compares the main
considerations and their contributions.

Table 3. Summary of photometric stereo 3D reconstruction solutions.

References Major Problem Contribution

Narasimhan [105] Scattering Effects

The physical representation of the surface appearance submerged
in the scattering medium was derived, and it was also
determined how many light sources are necessary to give the
photometric stereo.

Wu L [106] Scattering Effects

A novel method for effectively resolving photometric stereo
puzzles was given by the authors. By simultaneously correcting
its incorrect and missing elements, the strategy takes advantage
of powerful convex optimization techniques that are guaranteed
to locate the proper low-rank matrix.

Tsiotsios [107] Backscattering
Effects

By effectively compensating for the backscattering component,
the authors established a linear formula of photometric stereo
that can restore an accurate normal map with only three lights.

Wu Z [108] Gradient Error

Based on the height distribution in the surrounding area, the
authors introduced a height-correction technique used in
underwater photometric stereo reconstruction. The height error
was fitted using a 2D quadratic function, and the error was
subtracted from the
rebuilt height.

Murez [109] Scattering Effects
The authors demonstrated through in-depth simulations that a
point light source with a single direction can simulate a
single-scattered light from a source.

Jiao [110] Backscattering
Effects

A new multispectral photometric stereo method was proposed.
This method used simple linear iterative clustering segmentation
to solve the problem of multi-color scene reconstruction.

Fan [114] Nonuniform
Illumination

The authors proposed a post-processing technique to fix the
divergence brought on by uneven lighting. The process uses
calibration data from the object or a flat plane to refine the
surface contour.

Fan [116] Refraction Effects

The combination of underwater photometric stereo and
underwater laser triangulation was proposed by the authors as a
novel approach. It was used to overcome the large
shape-recovery defects and enhance underwater photometric
stereo performance.

Li [117]

Lack of constraints
among multiple
disconnected
patches.

To rectify photometric stereo aberrations utilizing depth data
generated by encoded structured light systems, a hybrid
approach has been put forth. By recovering high-frequency
details as well as avoiding or at least decreasing low-frequency
biases, this approach maintains high-precision
normal information.

4.3. Structured Light

A structured light system consists of a color (or white light) projector and a camera.
Between these two components and projected objects, the triangulation concept is applied.
According to Figure 13, if both the plane and the camera ray are identifiable, the projector
projects a recognized pattern onto the scene, often a collection of light planes. It is possible
to compute the intersection between them using the following formula.

Mathematically, a straight line can be expressed in parametric form as:

r(t) =


x = v−cx

fx
t

y =
v−cy

fy
t

z = t

(4)

where ( fx, fy) is the focal length of the camera on the x and y axes, (cx, cy) is the center pixel
of the image and (u, v) is one of the pixels detected in the image. Assuming a calibrated
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camera and origin camera frame, the light plane can be expressed as shown in Equation (5).

πn = Ax + By + Cz + D (5)
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Figure 13. Triangulation geometry principle of the structured light system.

Equation (4) is substituted into Equation (5) to obtain intersection Equation (6).

t =
−D

A u−cx
fy

+ B v−cy
fy

+ C
(6)

Binary modes are the most commonly employed as they are the simplest to use and
implement with projectors. Only two states of the scene’s light streaks, typically white
light, are utilized in the binary mode. The pattern starts out with just one sort of partition
(black to white). Projections of the prior pattern’s subdivisions continue until the software
is unable to separate two consecutive stripes, as seen in Figure 14. The time-multiplexing
technique handles the related issue of continuous light planes. This method yields a fixed
number of light planes that are typically related to the projector’s resolution. The time-
multiplexing technique uses codewords generated by repeated pattern projections onto
an object’s surface. As a result, until all patterns are projected, the codewords connected
to specific spots in the image are not entirely created. According to a pattern of coarse
to fine, the initial projection mode typically correlates to the most important portion.
The number of projections directly affects the accuracy because each pattern introduces
a sharper resolution to the image. Moreover, the codeword base is smaller, providing a
higher noise immunity [118].

On the other hand, the phase-shift mode uses a sinusoidal projection to cover larger
grayscale values in the same working mode. By decomposing the phase values, different
light planes of a state can be obtained in the equivalent binary mode. A phase-shift
graph is also a time-multiplexed graph. Frequency-multiplexing methods provide dense
reconstructions of moving scenes, but are highly sensitive to camera nonlinearities, reducing
the accuracy and sensitivity to target surface details. These methods utilize multiple
projection modes to determine a distance. De Bruijn sequences can be reconstructed once
using a pseudorandom sequence of symbols in a circular string. These patterns are known
as m-arrays when this theory is applied to matrices rather than vectors (e.g., strings). They
can be constructed by following pseudorandom sequences [119]. Often, these patterns
utilize color to better distinguish the symbols of the alphabet. However, not all surface
treatments and colors accurately reflect the incident color spectrum back to the camera [120].
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Figure 14. Binary structured light pattern. The codeword for point p is created with successive
projections of the patterns.

In the air, shape, spatial-distribution and color-coding modes have been widely used.
However, little has been reported on these encoding strategies in underwater scenes.
Zhang et al. [121] proposed a grayscale fourth-order sinusoidal fringe. This mode employs
four separate modes as part of a time-multiplexing technique. They compared structured
light (SL) with stereo vision (SV), and SL showed better results on untextured items. Törn-
blom, in [122], projected 20 different gray-encoded patterns onto a pool and came up with
results that were similar. The system achieved an accuracy of 2% in the z-direction. Massot-
Campos et al. [123] also compared SL and SV in a common underwater environment of
known size and objects. The results showed that SV is most suitable for long-distance
and high-altitude measurements, depending on whether there is enough texture, and SL
reconstruction can be better applied to short-distance and low-altitude methods, because
accurate object or structure size is required.

Some authors combined the two methods of SL and SV to perform underwater 3D
reconstruction. Bruno et al. [25] projected gray-encoded patterns with a terminal codeshift
of four pixel broad bands. They used projectors to light the scene while gaining depth from
the stereo deck. Therefore, there is no need to conduct lens calibration of the projection
screen, and it is possible to utilize any projector that is offered for sale without sacrificing
measurement reliability. They demonstrated that the final 3D reconstruction works well
even with high haze values, despite substantial scattering and absorption effects. Similarly,
using this method of SL and SV technology fusion, Tang et al. [124] reconstructed a cubic
artificial reef (CTAR) in the underwater setting, proving that the 3D reconstruction quality
in the underwater environment can be used to estimate the size of the CTAR set.

In addition, Sarafraz et al. extended the structured-light technique for the particular
instance of a two-phase environment in which the camera is submerged and the projector is
above the water [125]. The authors employed dynamic pseudorandom patterns combined
with an algorithm to produce an array while maintaining the uniqueness of subwindows.
They used three colors (red, green and blue) to construct the pattern, as shown in Figure 15.
A projector placed above the water created a distinctive color pattern, and an underwater
camera captured the image. Only one shot was required with this distinct color mode in
order to rebuild both the seabed and the water’s surface. Therefore, it can be used in both
dynamic scenes and static scenes.



J. Mar. Sci. Eng. 2023, 11, 949 24 of 50

Figure 15. Generating patterns for 3 × 3 subwindows using three colors (R, G, B). (left) Stepwise
pattern generation for a 6 × 6 array; (right) example of a generated 50 × 50 pattern.

At present, underwater structured-light technology has received more and more
concentration, primarily to address the 3D reconstruction of items and structures with
poor textures and to circumvent the difficulty in employing conventional optical-imaging
systems in hazy waters. The majority of structured-light techniques presumptively assume
that light is neither dispersed nor absorbed and that the scene and light source are both
submerged in pure air. However, in recent years, structured lighting has become more and
more widely used in underwater imaging, and the scattering effect cannot be ignored.

Fox [126] originally proposed structured light using a single scanned light strip to
lessen backscatter and provide 3D underwater object reconstruction. In this case, the
basics of stereo-system calibration were applied to treat the projector as a reverse camera.
Narasimhan and Nayar [105] developed a physical model of the appearance of a surface
submerged in a scattering medium. In order to assess the media’s characteristics, the
models describe how structured light interacts with scenes and media. This outcome can
then be utilized to eliminate scattering effects and determine how the scene will appear.
Using a model of image formation from strips of light, they created a straightforward
algorithm to find items accurately. By reducing the illuminated area to the plane of the
light, the shape of distant objects can be picked up for triangulation.

Another crucial concern for raising the performance of 3D reconstruction analysis
based on the structured-light paradigm is the characterization of the projection patterns.
An experimental investigation that assessed the effectiveness of several projected patterns
and image-enhancement methods for detection under varied turbidity conditions revealed
that, with increasing turbidity, the contrast loss is greater for stripes than for dots [127].
Therefore, Wang et al. [128] proposed a non-single-view point (SVP) ray-tracing model for
calibrating projector camera systems for 3D reconstruction premised on the structured-light
paradigm, using dot patterns as a basis. The rough depth map was reconstructed from
the sparse point mode projection, and the gamut of surface points was used to texture
the denser-mode image to improve point detection so as to estimate the finer surface
reconstruction. Based on the medium, optical properties and projector camera geometry,
they estimated the backscattering size and adjusted for signal attenuation to remove the
picture for a specific projector pattern.

Massone et al. [129] proposed an approach that relies on the projection of light
patterns, using a simple cone-shaped diving lamp as the projector. Images were recovered
using closed 2D curves extracted by a light-profile-detection method they developed.
They also created a new calibration method to determine the cone geometry relative to
the camera. Thus, finding a match between the projection and recovery modes can be
achieved by obtaining a fixed projector–camera pair. Finally, the 3D data were recovered
by contextualizing the derived closed 2D curves and the camera conic relations.
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Table 4 lists the underwater SL 3D reconstruction methods, mainly comparing colors,
projector patterns and their main contributions.

Table 4. Summary of SL 3D reconstruction solutions.

References Color Pattern Contribution

Zhang [121] Grayscale Sinusoidal
Fringe

A useful technique for calculating the
three-dimensional geometry of an underwater
item was proposed, employing phase-tracking
and ray-tracing techniques.

Törnblom [122] White Binary pattern

The authors constructed and developed an
underwater 3D scanner based on structured light
and compared the scanner based on stereo
scanning and line-scanning laser.

Massot-Campos
[123] Green Lawn-moving

pattern

In a typical underwater setting with well-known
dimensions and items, SV and SL were
contrasted. The findings demonstrate that a
stereo-based reconstruction is best-suited for
long, high-altitude surveys, always reliant on
having sufficient texture and light, whereas a
structured-light reconstruction can be better
fitted in a short, close-distance approach where
precise dimensions of an object or structure
are required.

Bruno [25] White Binary pattern

The geometric shape of the water surface and the
geometric shape of items under the surface can
both be estimated concurrently using a new SL
approach for 3D imaging. The technique just
needs one image, making it possible to use it for
both static and dynamic scenarios.

Sarafraz [125] Red, Green, Blue Pseudorandom
pattern

A new structured-light method for 3D imaging
was developed that can simultaneously estimate
both the geometric shape of the water surface
and the geometric shape of underwater objects.
The method requires only a single image and
thus can be applied to dynamic as well as
static scenes.

Fox [126] White Light pattern
SL using a single scanning light strip was
originally proposed to combat backscatter and
enable 3D underwater object reconstruction.

Narasimhan
[105] White Light-plane

sweep

Two representative methods, namely, the
light-stripe distance-scanning method and
light-scattering stereo method, were
comprehensively analyzed. A physical model of
the surface appearance immersed in a scattering
medium was also derived.

Wang [128] multiple colors Colored dot
pattern

The calibration of their projector-camera model
based on the proposed non-SVP model to
represent the projection geometry. Additionally,
the authors provided a framework for
multiresolution object reconstruction that makes
use of projected dot patterns with various
spacings to provide pattern recognition under
various turbidity circumstances.

Massone [129] — Light pattern

The authors proposed a new structured-light
method, which was based on projecting light
patterns onto a scene taken by a camera. They
used a simple conical submersible lamp as a light
projector and created a specific calibration
method to estimate the cone geometry relative to
the camera.

4.4. Stereo Vision

Stereo imaging works in the same manner as SfM, using feature matching between
the stereo camera’s left and right frames to calculate 3D correspondences. After the stereo
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system has been calibrated, the relative position of one camera relative to the second camera
was determined, thus resolving the problem of scale blur. The earliest stereo-matching
technology was developed in the area of photogrammetry. Stereo matching has been
extensively investigated in computer vision [130] and remains one of the most active
study fields.

Suppose that there are two cameras CL and CR, and each camera image has two similar
features FL and FR, as shown in Figure 16. To calculate the 3D coordinates of the feature F
projected on CL as FL and projected on CR as FR, the line FR intersecting the FR focus and
FR and the line LR intersecting the CR focus and FR are traced. If the calibration of both
cameras is perfect, then F = LL ∩ LR. However, the least-squares method is typically used
to address the camera-calibration problem, so the result is not always accurate. Therefore,
an approximate solution is taken as the closest point between LL and LR [131].

. .
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Figure 16. Triangulation geometry principle of the stereo system.

After determining the relative position of the camera and the position of the same
feature in the two images, the 3D coordinates of the feature in the world can be calculated
through triangulation. In Figure 16, the image coordinate x = (uL, vL), and the 3D point
corresponding to x

′
= (uR, vR) is the point p = (xw, yw, zw), which can also be written as

x
′
Fx = 0, where F is the fundamental matrix [131].

Once the cameras are calibrated (the baseline, relative camera pose and undistorted
image are known), 3D imaging can be produced by computing the divergence of each pixel.
These 3D data are gathered, and other 3D registration techniques can be used to register
between successive frames and the iterative closest point (ICP) [132]. SIFT, SURF and the
sum of absolute differences (SAD) [133] are the most-commonly employed methods, and
SIFT or ICP can also be used for direct 3D matching.

Computer vision provides promising techniques for constructing 3D models of environ-
ments from 2D images, but underwater environments suffer from increased radial distortion
due to the refraction of light rays through multiple media. Therefore, the underwater camera-
calibration problem is very important in stereo vision systems. Rahman et al. [134] studied the
differences between terrestrial and underwater camera calibrations, quantitatively determin-
ing the necessity of in situ calibration for underwater environments. They used two calibration
algorithms, the Rahman–Krouglicof [135] and Heikkila [136] algorithms, to calibrate the un-
derwater SV system. The stereo capability of the two calibration algorithms was evaluated
from the perspective of the reconstruction error, and the experimental data confirmed that the
Rahman–Krouglicof algorithm could solve the characteristics of underwater 3D reconstruction
well. Oleari et al. [137] proposed a camera-calibration approach for SV systems without the
need for intricate underwater processes. It is a two-stage calibration method in which, in
the initial phase, an air standard calibration is carried out. In the following phase, utilizing
prior data on the size of the submerged cylindrical pipe, the camera’s settings are tuned.
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Deng et al. [138] proposed an aerial calibration method for binocular cameras for underwater
stereo matching. They investigated the camera’s imaging mechanism, deduced the connection
between the camera in the air and underwater and carried out underwater stereo-matching
experiments using the camera parameters calibrated in the air, and the results showed the
effectiveness of the method.

SLAM is the most accurate positioning method, using the data provided by the naviga-
tion sensors installed on the underwater vehicle [139]. To provide improved reconstructions,
rapid advances in stereo SLAM have also been applied underwater. These methods make
use of stereo cameras to produce depth maps that can be utilized to recreate environments
in great detail. Bonin-Font et al. [140] compared two different stereo-vision-based SLAM
methods, graph-SLAM and EKF SLAM, for the real-time localization of moving AUVs
in underwater ecosystems. Both methods utilize only 3D models. They conducted ex-
periments in a controllable water scene and the sea, and the results showed that, under
the same working and environmental conditions, the graph-SLAM method is superior to
the EKF counterpart method. SLAM pose estimation based on the globalized framework,
matching methods with small cumulative errors, was used to reconstruct a virtual 3D map
of the surrounding area from a combination of contiguous stereo-vision point clouds [141]
placed at the corresponding SLAM positions.

One of the main problems of underwater volumetric SLAM is the refractive interface
between the air inside the container and the water outside. If refraction is not taken
into account, it can severely distort both the individual camera images and the depth
that is calculated as a result of stereo correspondence. These mistakes might compound
and lead to more significant mistakes in the final design. Servos et al. [142] generated
dense, geometrically precise underwater environment reconstructions by correcting for
refraction-induced image distortions. They used the calibration images to compute the
camera and housing refraction models offline and generate nonlinear epipolar curves
for stereo matching. Using the SAD block-matching algorithm, a stereo disparity map
was created by executing this 1D optimization along the epipolar curve for each pixel
in the reference image. The junction of the left and right image rays was then located
utilizing pixel ray tracing through the refraction interface to ascertain the depth of each
corresponding pair of pixels. They used ICP to directly register the generated point clouds.
Finally, the depth map was employed to carry out dense SLAM and produce a 3D model of
the surroundings. The SLAM algorithm combines ray tracing with refraction correction to
enhance the map accuracy.

The underwater environment is more challenging than that on land, and directly
applying standard 3D reconstruction methods underwater will make the final effect un-
satisfactory. Therefore, underwater 3D reconstruction requires accurate and complete
camera trajectories as a foundation for detailed 3D reconstruction. High-precision sparse
3D reconstruction determines the effect of subsequent dense reconstruction algorithms.
Beall et al. [24] used stereo image pairs, detected salient features, calculated 3D locations
and predicted the camera pose’s trajectory. SURF features were extracted from the left and
right image pairs using synchronized high-definition video acquired with a wide-baseline
stereo setup. The trajectories were used together with 3D feature points as a preliminary
estimation and optimized with feedback to smoothing and mapping. After that, the mesh
was texture-mapped with the image after the 3D points were triangulated using Delaunay
triangulation. This device is being used to recreate coral reefs in the Bahamas.

Nurtantio et al. [143] used a camera system with multiple views to collect subsea
footage in linear transects. Following the manual extraction of image pairs from video clips,
the SIFT method automatically extracted related points from stereo pairs. Based on the
generated point cloud, a Delaunay triangulation algorithm was used to process the sum of
3D points to generate a surface reconstruction. The approach is robust, and the matching
accuracy of underwater images reached more than 87%. However, they manually extracted
image pairs from video clips and then preprocessed the images.
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Wu et al. [144] improved the dense disparity map, and their stereo-matching algorithm
included a disparity-value search, per-pixel cost calculation, difference cumulative integral
calculation, window statistics calculation and sub-pixel interpolation. In the fast stereo-
matching algorithm, biological vision consistency checks and uniqueness-verification
strategies were adopted to detect occlusion and unreliable matching and eliminate false
matching of the underwater vision system. At the same time, they constructed a disparity
map, that is, the relative profundity data of the ocean SV, to complete the three-dimensional
surface model. It was further adjusted with image quality enhancement combined with
homomorphic filtering and wavelet decomposition.

Zheng et al. [145] proposed an underwater binocular SV system under non-uniform
illumination based on Zhang’s camera-calibration method [146]. For stereo matching,
according to the research on SIFT’s image-matching technology, they adopted a new
matching method that combines characteristic matching and district matching as well
as margin features and nook features. This method can decrease the matching time and
enhance the matching accuracy. The three-dimensional coordinate projection transforma-
tion matrix solved using the least-squares method was used to accurately calculate the
three-dimensional coordinates of each point in the underwater scene.

Huo et al. [147] ameliorated the semi-global stereo-matching method through severely
constraining the matching process within the effective region of the object. First, denoising
and color restoration were carried out on the image sequence that was obtained by the
system vision, and the submerged object was separated into segments and retrieved in
accordance with the saliency of the image using the superpixel segmentation method. The
base disparity map within each superpixel region was then optimized using a least-squares
fitting interpolation method to decrease the mismatch. Finally, on the basis of the post-
optimized disparity map, the 3D data of the target were calculated using the principle of
triangulation. The laboratory finding showed that, for underwater targets of a specific size,
the system could obtain a high measuring precision and good 3D reconstruction result
within an appropriate distance.

Wang et al. [148] developed an underwater stereo-vision system for underwater 3D
reconstruction using state-of-the-art hardware. Using Zhang’s checkerboard calibration
method, the inherent parameters of the camera were limited by corner features and the
simplex matrix. Then, a three-primary-color calibration method was adopted to correct and
recover the color information of the image. The laboratory finding proved that the system
corrects the underwater distortion of stereo vision and can effectively carry out underwater
three-dimensional reconstruction. Table 5 lists the underwater SV 3D reconstruction meth-
ods, mainly comparing the features, feature-matching methods and main contributions
of the articles.

4.5. Underwater Photogrammetry

From the use of cameras in underwater environments, the sub-discipline of underwa-
ter photogrammetry has emerged. Photogrammetry is identified as a competitive and agile
underwater 3D measurement and modelling method, which may produce unforgettable
and valuable results at various depths and in far-ranging application areas. In general, any
actual 3D reconstruction method that uses photographs (such as imaging-based methods)
to obtain measurement data is a photogrammetry method. Photogrammetry includes
image measurement and interpretation methods often shared with other scientific fields
to reach the shape and position of an object or target from a suite of photographs. There-
fore, techniques such as structure from motion and stereo vision pertain to the field of
photogrammetry and computer vision.

Photogrammetry is flexible in underwater environments. In shallow waters, divers use
photogrammetry systems to map arched geological sites, monitor fauna populations and
investigate shipwrecks. In deep water, ROVs with a variable quantity of cameras increase
the depth scope of underwater inspections. The collection of photographs that depict the
real condition of the position and objects is an important added value of photogrammetry
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compared to other measurement methods. In photogrammetry, a camera is typically placed
in a large field of view to observe a remote calibration target whose precise location was
pre-calculated using the measuring instrument. Based on the camera position and object
distance, photogrammetry applications can be divided into various categories. For instance,
aerial photogrammetry is usually measured at an altitude of 300 m [149].

Table 5. Summary of SV 3D reconstruction solutions.

References Feature Matching
Method Contribution

Rahman [134] — —
The authors studied the difference between terrestrial
and underwater camera calibration and proposed a
calibration method for underwater stereo vision systems.

Oleari [137] — SAD

This paper outlined the hardware configuration of an
underwater SV system for the detection and localization
of objects floating on the seafloor to make cooperative
object transportation assignments.

Bonin-Font
[140] — SLAM

The authors compared the performance of two classical
visual SLAM technologies employed in mobile robots:
one based on EKF and the other on graph optimization
using bundle adjustment.

Servos [142] — ICP

This paper presented a method for underwater stereo
positioning and mapping. The method produces precise
reconstructions of underwater environments by
correcting the refraction-related visual distortion.

Beall [24] SURF SURF and
SAM

A method was put forth for the large-scale sparse
reconstruction of underwater structures. The brand-new
method uses stereo image pairings to recognize
prominent features, compute 3D points and estimate the
camera pose trajectory.

Nurtantio
[143] SIFT SIFT

A low-cost multi-view camera system with a stereo
camera was proposed in this paper. A pair of stereo
images was obtained from the
stereo camera.

Wu [144] — —

The authors developed the underwater 3D reconstruction
model and enhanced the quality of the environment
understanding in the
SV system.

Zheng [145] Edge and
corners SIFT

The authors proposed a method for placing underwater
3D targets using inhomogeneous illumination based on
binocular SV. The inhomogeneous light field’s
backscattering may be effectively reduced, and the
system can measure both the precise target distance
and breadth.

Huo [147] — SGM

An underwater object-identification and 3D
reconstruction system based on binocular vision was
proposed. Two optical sensors were used for the vision of
the system.

Wang [148] Corners SLAM
The primary contribution of this paper is the creation of a
new underwater stereo-vision system for AUV SLAM,
manipulation, surveying and other ocean applications.

The topic of image quality is crucial to photogrammetry. Camera calibration is one
of the key themes covered by this topic. If perfect metric precision is necessary, the
aforementioned pre-calibrated camera technique must be used, with ground control points
to reconstruct [150]. Abdo et al. [151] argued that a photogrammetric system for complex
biological items that may be used underwater must (1) be capable of working in confined
areas; (2) provide easy access to data efficiently in situ; and (3) offer a survey procedure
that is simple to implement, accurate and can be finished in a fair amount of time.

Menna et al. [152] proposed a method for the 3D measurement of floating and semi-
submerged underwater targets (as shown in Figure 17) by performing photogrammetry
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twice below and above sea level, and that can be compared directly within the same
coordinate system. During the measurements, they attached special devices to the objects,
with two plates, one above and one below sea level. The photogrammetry was carried
out twice in each medium, one for the underwater portion, the other for the surface of
the water. Then, a digital 3D model was achieved through an intensive image-matching
procedure. Moreover, in [153], the authors presented for the first time the evaluation of
vision-based SLAM algorithms using high-precision ground-truthing of the underwater
surroundings and a verified photogrammetry-based imaging system in the specific context
of underwater metrology surveys. An accuracy evaluation was carried out using the
completed underwater photogrammetric system ORUS 3D®. The system uses the certified
3D underwater reference test field in COMEX facilities, and its coordinate accuracy can
reach the submillimeter level.

Floating barrier

Sea

Rock ledge

Figure 17. Sectional view of an underwater semi-floating object.

Zhukovsky et al. [154] presented an example of the use of archaeological photogram-
metric methods for site documentation during the underwater excavation of a Phanagorian
shipwreck. The benefits and potential underwater limitations of the adopted automatic
point-cloud-extraction method were discussed. At the same time, they offered a comprehen-
sive introduction to the actual workflow of photogrammetry applied in the dig site: photo
acquisition process and control point survey. Finally, a 3D model of the shipwreck was
provided, and the development prospect of automatic point-cloud-extraction algorithms
for archaeological records was summarized.

Nornes et al. [155] proposed an ROV-based underwater photogrammetric system,
showing that a precise 3D model can be generated with a geographical reference only
with a low-resolution canera (1.4 million pixels) and ROV navigation data, thus improving
exploration efficiency. Many pictures were underexposed and some were overexposed as a
result of the absence of automatic target-distance control. To make up for this, the automatic
white-balance function in GIMP 2.8, an open-source image manipulation program, was
used to color-correct the pictures. With the use of this command, an image’s color can be
automatically changed by individually expanding its red, green and blue channels. After
recording the time stamp and navigation data of the image, they used MATLAB to calculate
the camera position. The findings highlighted the future improvements that could be made
by eliminating the reliance on pilots, not only for the sake of data quality, but also in further
reducing the resources required for investigations.

Guo et al. [156] compared the accuracy of 3D point clouds generated from images
obtained by cameras with underwater shells and popular GoPro cameras. When they cali-
brated the cameras on-site, they found that the GoPro camera system had large variations
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whether in the air or underwater. Their 3D models were determined using Lumix cameras
in the air, and these models were compared (best possible values) as point clouds of in-
dividual objects underwater that were further used to check the precision of point-cloud
generation. An underwater photogrammetric scheme was provided to detect the growth of
coral reefs and record the changes of ecosystems in detail, with an accuracy of mm.

Balletti et al. [157] used the trilateral method (direct measurement method) and GPS
RTK survey to measure the terrain. According to the features, depth and distribution of
marble objects on the seabed, two 3D polygon texture models were utilized to analyze and
reconstruct different situations. In the article, they introduced all the steps of their design,
acquisition and preparation, as well as the final data processing.

5. Acoustic Image Methods

At present, the 3D reconstruction technology based on underwater optical images
is very mature. However, because of the complexity and diversity of the underwater
environment and the rapid attenuation of light-wave energy in underwater propagation,
underwater 3D reconstruction based on optical images often has difficulties in meeting
the application needs of the actual conditions. The propagation of sound waves in water
has the characteristics of low loss, strong diffraction ability, long propagation distance and
little influence of the water quality conditions. It has better imaging effects in complex
underwater environments and deep water without light sources. Therefore, underwater 3D
reconstruction based on sonar images has a good research prospect. However, sonar also
has the disadvantages of low resolution, difficult data extraction and inability to provide
accurate color information. Therefore, the combination of study data, taking advantage
of the complementarity of optical and sonar sensors, is a promising emerging field for
underwater 3D reconstruction. Therefore, this section reviews the sonar-based underwater
3D reconstruction techniques based on acoustics and optical–acoustic fusion.

5.1. Sonar

Sonar stands for sound navigation and ranging. Sonar is a good choice for studying
underwater environments because it does not take into account the environmental depen-
dence of brightness and disregards the turbidity of the water. There are two main categories
of sonar: active and passive. The sensors of passive sonar systems are not employed for 3D
reconstruction, so they will not be studied in this paper.

Active sonar produces sound pulses and then monitors the reflection of the pulses.
The frequency of the pulse can be either constant or chirp with variable frequency. If a
chirp is present, the receiver will correlate the reflected frequency with the well-known
signal. Generally speaking, long-range active sonar uses lower frequencies (hundreds
of kilohertz), while short-range high-resolution sonar uses higher frequencies (several
megahertz). Within the category of active sonar, multibeam sonar (MBS), single-beam sonar
(SBS) and side-scan sonar (SSS) are the three most significant types. If the cross-track angle
is very large, it is often referred to as imaging sonar (IS). Otherwise, they are defined as
profile sonars because they are primarily utilized to assemble bathymetric data. In addition,
these sonars can be mechanically operated for scanning and can be towed or mounted on a
vessel or underwater craft. Sound travels faster in water than in air, although its speed is
also dependent on the temperature and salinity of the water [158]. The long-range detection
capability of sonar depth sounding makes it an important underwater depth-measurement
technology that can collect depth data from watercraft on the surface and even at depths
of thousands of meters. At close ranges, the resolution can reach several centimeters.
However, at long ranges of several kilometers, the resolution is relatively low, typically on
the order of tens of centimeters to meters.

Bathymetric data collection is most commonly used with MBS. The sensor can be
associated with a color camera to obtain 3D information and color information. In this
situation, however, it is narrowed down to the visible range. The MBS can also be installed
on a tilting system for total 3D scanning. They are usually fitted on a tripod or ROV and
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need to be kept stationary during the scanning process. Pathak et al. [159] used Tritech
Eclipse sonar, an MBS with delayed beam forming and electronic beam steering, to generate
a final 3D map after 18 scans. On the basis of the region grown in distance image scanning,
the plane was extracted from the original point cloud. Least-squares estimation of the planar
parameters was then performed and the covariance of the planes parameters is calculated.
Planes were fitted to the sonar data and the subsequent registration method maximized
the entire geometric homogeneity in the search space to determine the correspondence
between the planes. Then, the plane registration method, namely, minimum uncertainty
maximum consistency (MUMC) [160], was used to determine the correspondence between
the planes.

SBS is a two-dimensional mechanical scanning sonar that can be scanned in 3D by
spinning its head, just like a one-dimensional ranging sensor mounted on the translation
and tilt head. The data retrieval is not as quick as MBS, but it is cheap and small. Guo
et al. [161] used single-beam sonar (SBS) to reconstruct the 3D underwater terrain of
an experimental pool. They used Blender, an open-source 3D modelling and animation
software, as their modelling platform. The sonar obtained 2D slices of the underwater
context along a straight line and then combined these 2D slices to create a 3D point cloud.
Then, a radius outlier removal filter, condition removal filter and voxel grid filter were used
to smooth the 3D point cloud. In the end, an underwater model was constructed using a
superposition method based on the processed 3D point cloud.

The profile analysis can also be completed with SSS, which is usually pulled or
installed on the AUV for grid measurement. SSS is able to understand differences in seabed
materials and texture types, making it an effective tool for detecting underwater objects.
To accurately differentiate between underwater targets, the concept of 3D imaging based
on SSS images has been proposed [162,163] and is becoming increasingly important in
activities such as wreck visualization, pipeline tracking and mine search. While the SSS
system does not provide direct 3D visualization, the images they generate can be converted
into 3D representations using echo intensity information contained in the grayscale images
through algorithms [164]. Whereas multibeam systems are expensive and require a robust
sensor platform, SSS systems are relatively cheap and easy to deploy and provide a wider
area coverage.

Wang et al. [165] used SSS images to reconstruct the 3D shape of underwater objects.
They segmented the sonar image into three types of regions: echoes, shadows and back-
ground. They evaluated 2D intensity maps from the echoes and calculated 2D depth maps
from the shade data. A 2D intensity map was obtained by thresholding the original image,
denoising it and generating a pseudo-color image. Noise reduction uses order statistics
filter to remove salt-and-pepper noise. With regard to slightly larger points, they used
the bwareaopen function to delete all linked pixels smaller than the specified area size.
Histogram equalization was applied to distinguish the shadows and background, and then
the depth map was obtained from the shadow information.The geometric structure of SSS
is shown in Figure 18. Through plain geometric deduction, the height of the object above
the seabed can be reckoned by employing Equation (7):

Ht =
Ls · Hs

Ls + Lt +
√

Rs
2 − Hs

2
(7)

For areas followed by shadows, the height of these areas can be directly calculated
with Equation (8):

Ls = Xj − Xi (8)

Then, the model was transformed, and finally the 2D intensity map and 2D depth
map was reconstructed to generate a 3D point-cloud image of the underwater target for
3D reconstruction.
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Figure 18. Side-scan sonar geometry.

The above three sonars are rarely used in underwater 3D reconstruction, and IS is
currently the most-widely used. The difference between IS and MBS or SBS is that the beam
angle becomes wider (they capture an acoustic image of the seafloor rather than a thin
slice). Brahim et al. [166] reestablished the underwater environment utilizing two pictures
of the same scene obtained from different angles with an acoustic camera. They used the
DIDSON acoustic camera to provide a series of 2D images in which each pixel in the scene
contained backscattered energy located at the same distance and azimuth. They proposed
that by understanding the geometric shape of the rectangular grid observed on multiple
images obtained from different viewpoints, the image distortion can be deduced and the
geometric deviation of the acoustic camera can be compensated. This procedure depends
on minimizing the divergence between the ideal model (the mesh projected using the ideal
camera model) and its representation in the recorded image. Then the covariance matrix
adaptive evolutionary strategy algorithm was applied to reconstruct the 3D scene from the
missing estimation data of each matching point distilled from the pair of images.

Object shadows in acoustic images can also be made use of in restoring 3D data.
Song et al. [167] used 2D multibeam imaging sonar for the 3D reconstruction of underwater
structures. The acoustic pressure wave generated by the imaging sonar transmitter propa-
gated and reflected on the surface of the underwater system, and these reflected echoes
were collected by the 2D imaging sonar. Figure 19 is a collected sonar image where each
pixel shows the reflection intensity of a spot at the same distance without showing elevation
information. They found target shadow pairs in sequential sonar images by analyzing the
reflected sonar intensity patterns. Then, they used Lambert’s reflection law and the shadow
length to calculate the elevation information and elevation angle information. Based on this,
they proposed a 3D reconstruction algorithm in [168], which converts the two-dimensional
pixel coordinates of the sonar image into the corresponding three-dimensional space coor-
dinates of the scene surface by recovering the missing surface elevation in the sonar image,
so as to realize the three-dimensional visualization of the underwater scene, which can
be used for marine biological exploration using ROVs. The algorithm classifies the pixels
according to the intensity value of the seabed, divides the objects and shadows in the image
and then calculates the surface elevation of object pixels according to the intensity value to
obtain the elevation-correction agent. Finally, using the coordinate transformation from the
image plane to the seabed, the 3D coordinates of the scene surface were reconstructed using
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the recovered surface elevation values. The experimental results showed that the proposed
algorithm can reconstruct the surface of the reference target successfully, and the target size
error was less than 10%, which has a certain applicability in marine biological exploration.

Dark acoustic 
shadow

Bright reflections 
from target

Figure 19. Sonar image [167].

Mechanical scanning imaging sonar (MSIS) has been widely used to detect obstacles
and sense underwater environments by emitting ultrasonic pulses to scan the environment
and provide echo intensity profiles in the scanned range. However, few studies have used
MSIS for underwater mapping or scene reconstruction. Kwon et al. [169] generated a 3D
point cloud utilizing the MSIS beamforming model. They proposed a probabilistic model to
determine a point cloud’s occupied likelihood for a specific beam. However, MSIS results
are unreliable and chaotic. To overcome this restriction, a program that corrects the strength
was applied that increased the volume of echoes with distance. Specific thresholds were
then applied to specific ranges of the signal to eliminate artifacts, which are caused by the
interaction between the sensor housing and the released acoustic pulse. Finally, an octree-
based database schema was utilized to create maps efficiently. Justo et al. [170] obtained
point clouds representing scanned surfaces using MSIS sonar. They used cutoff filters and
adjustment filters to remove noise and outliers. Then, the point cloud was transformed onto
the surface using classical Delaunay triangulation, allowing for 3D surface reconstruction.
The method was intended to be applied to studies of submerged glacier melting.

The large spatial footprints of wide-aperture sensors makes it possible to image enor-
mous volumes of water in real time. However, wider apertures lead to blurring through
more complicated image models, decreasing the spatial resolution. To address this issue,
Guerneve et al. [171] proposed two reconstruction methods. They first proposed a magnificent
linear equation as the kernel for blind deconvolution with spatial variation. The next technique
is an easy approximated reconstruction algorithm with the aid of a nonlinear approximation
of the sculpting algorithm. Three-dimensional reconstructions can be performed immediately
from the large-aperture system’s data records using simple approximation algorithms. As
shown in Figure 20, the three primary steps of the sculpting algorithm’s online implementa-
tion are as follows: The sonar image’s circular extension from 2D to 3D is performed, whose
intensity is based on the scale of the beam arrangement. As fresh observations are made, the
3D map of the scene is subsequently updated, eventually covering the entire scene. In order
to build the final map, the final step manipulates the occlusion resolution while keeping only
the front surface of the scene that was viewed. Their proposed method effectively eliminates
the need to embed multiple acoustic sensors with different apertures.
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Figure 20. Flow chart of online carving algorithm based on imaging sonar.

Some authors have proposed the method of isomorphic fusion, that is, multi-sonar
fusion. The wide-aperture forward-looking multibeam imaging sonar provides a wide
range of views and the flexibility to collect images from a variety of angles. However,
imaging sonars are characterized by high signal-to-noise ratios and a limited number of
observations, giving a 2D image in flat form of the observed 3D region and resulting in a
lack of measurements of elevation angles that can affect the outcome of the 3D rebuilding.
McConnell et al. [172] proposed a sequential approach to extract 3D information utilizing
sensor fusion between two sonar systems to deal with the problem of elevation ambiguity
associated with forward-looking multibeam imaging sonar observations. Using a pair of
sonars with orthogonal uncertainty axes, they noticed the same point in the environment
independently from two distinct perspectives. The range, intensity and local average of
intensities were employed as feature descriptors. They took advantage of these concurrent
observations to create a dense, fully defined point cloud at each period. The point cloud was
then registered using ICP. Likewise, 3D reconstruction from forward-looking multibeam
sonar images results in a loss of pitch angle.

Joe et al. [173] used an additional sonar to reconstruct missing information by exploit-
ing the geometrical constraints and complementary properties between two installed sonar
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devices. Their proposed fusion method moves through three levels. The first step is to
create a likelihood map utilizing the two sonar installations’ geometrical restrictions. The
next step is to create workable elevation angles for the forward-looking multibeam sonar
(FLMS). The third stage corrects the FLMS data by calculating the weights of the generated
particles using a Monte Carlo stochastic approach. This technique can easily recreate the
3D information of the seafloor without the additional modification of the trajectory and
can be combined with the SLAM framework.

The imaging sonar approach for creating 3D point clouds has flaws, such as the frontal
surface’s unacceptable slope, sparse data, missing side and back information. To address
these issues, Kim et al. [174] proposed a multiple-view scanning approach to replace the
single-view scanning method. They applied the spotlight expansion impact to obtain the
3D data of the underwater target. Utilizing this situation, it is possible to reconstruct the
elevation angle details of a given area in a sonar image and generate a 3D point cloud. The
3D point cloud information is processed afterward to choose the appropriate following scan
processes, i.e., increasing the size of the beam reflection and its orthogonality to the prior path.

Standard mesh searching produces uncountable invalid triangle faces, and many
holes are developed. Therefore, Li et al. [175] used an adaptive threshold to search for
non-empty sonar information points, first in 2 × 2 grid blocks, and then searched for
3 × 3 grid blocks centered on the vacant locations to increase the sonar image holes. The
program then searched the sonar array for 3 × 2 horizontal grid blocks and 2 × 3 vertical
grid blocks to further improve the connectivity relationship by discovering semi-diagonal
interconnections. Subsequently, using the discovered sonar data point connections, triangle
connection and reconstruction were carried out.

In order to estimate the precise attitude of the acoustic camera and measure the three-
dimensional location of underwater target key elements in a similar manner,
Mai et al. [176] proposed a technique based on Extended Kalman Filter (EKF) , for which
an overview is shown in Figure 21. A conceptual diagram of the suggested approach
based on multiple acoustic viewpoints is shown in Figure 22. Regarding the input data,
the acoustic camera’s image sequence and camera motion input data were combined. The
EKF algorithm was used to estimate the three-dimensional location of the skeletal char-
acteristic elements of the underwater object and the pose of the six-degree-of-freedom
acoustic camera as output information. By using a probabilistic EKF-based approach, even
when there are ambiguities in the control inputs for camera motion, it is still possible to
reconstruct 3D models of underwater objects. However, this research was founded on basic
feature factors. For low-level features, the feature matching process often fails due to the
indistinguishability between features, resulting in a reduced precision of the 3D recreation.
For feature-point assemblage and excavation, it is dependent on prior awareness of the
identified features, followed by the manual sampling of acoustic-image features.

Therefore, to solve this problem, in [177], they used use line segments rather than
points as landmarks. An acoustic camera representing a sonar sensor was employed in
order to extract and track underwater object lines, which were utilized in image-processing
methods as visual features. When reconstructing a structured underwater environment,
line segments are superior to point features and can represent structural information more
effectively. While determining the posture of the acoustic camera, they continued to use
the EKF-based approach to obtain the 3D line features extracted from underwater objects.
They also developed an automatic line-feature extraction and corresponding matching
method. First, they selected the analysis scope according to the region of interest. Next, the
reliability of the line-feature extraction was improved using a bilateral filter to reduce noise.
By employing a bilateral filter, the smoothed image preserved the edges. Then, the sides of
the image were extracted using Canny edge detection. After edge detection was completed,
the probabilistic Hough transform [178] was used to extract the line segment endpoints to
improve the reliability.
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Figure 21. Overview of the Extended Kalman Filter algorithm.
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Figure 22. Observation of underwater objects using an acoustic camera from multiple viewpoints.

Acoustic waves are widely used in underwater 3D reconstruction due to their charac-
teristics of small losses, strong diffraction ability, long propagation distance little influence
of water quality on the water propagation and rapid development. Table 6 compares
the underwater 3D reconstruction using sonar, mainly listing the sonar types and main
contributions of the articles.

5.2. Optical–Acoustic Method Fusion

Optical methods for 3D reconstruction provide high resolution and object detail, but
a limited viewing range limits them. The disadvantages of underwater sonar include
a coarser resolution and more challenging data extraction, but it can function over a
wider range of vision and deliver three-dimensional information even in the presence of
water turbidity conditions. Therefore, the combination of optical and acoustic sensors
has been proposed for reconstruction. Technology advancements and improvements in
acoustic sensors have gradually made it possible to generate high-quality, high-resolution
data suitable for integration, enabling the pertinent design of new technologies for un-
derwater scene reconstruction despite the challenge of combining two modalities with
different resolutions [179].
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Table 6. Summary of 3D reconstruction sonar solutions.

References Sonar Type Contribution

Pathak [159] MBS A surface-patch-based 3D mapping in actual underwater scenery was
proposed. It is based on 6DOF registration of sonar data.

Guo [161] SBS

SBS was used by the authors to recreate the 3D underwater
topography of an experimental pool. Based on the 3D point cloud
that has been processed, a covering approach was devised to
construct an underwater model. This technique is based on the fact
that a plastic tablecloth will take the shape of the table when it is used
to cover a table.

Wang [165] SSS

The authors proposed an approach to reconstructing 3D features of
underwater objects from SSS images. The sonar images were divided
into three regions: echo, shadow and background. The 2D intensity
map was estimated according to the echo, and the depth map was
calculated according to the shadow information. Using the
transformation model, the two maps were combined to obtain 3D
point cloud images of
underwater objects.

Brahim [166] IS
This paper proposed a technique for reconstructing the underwater
environment using two acoustic camera photos of the same scene
taken from diverse perspectives.

Song [167,168] IS

An approach for 3D reconstruction of underwater structures using 2D
multibeam IS was proposed. The physical relationship between the
sonar image and the scene terrain was employed to locate elevation
information in order to address the issue of the absence of elevation
information in sonar images.

Kwon [169] IS

A system 3D reconstruction scheme using wide-beam IS was
proposed. An occupied grid graph of octree structure was used, and a
sensor model considering the sensing characteristics of IS was built
for reconstruction.

Justo [170] MSIS
The spatial variation of underwater surfaces can be estimated
through 3D reconstruction utilizing MSIS according to a system that
was provided.

Guerneve [171] IS

To achieve 3D reconstruction from IS of any aperture, two
reconstruction techniques were presented. The first offers an elegant
linear solution to the issue using blind deconvolution and spatially
variable kernels. The second method uses nonlinear formulas and a
straightforward algorithm to approximate reconstruction.

McConnell [172] IS
This paper presented a new method to solve the problem of height
ambiguity connected with forward multibeam IS observations, as
well as the difficulties it brings to the realization of 3D reconstruction.

Joe [173] FLMS

A sequential approach was proposed to extract 3D data for mapping
via sensor fusion with two sonar devices. This approach made use of
geometric constraints and complementary features between two
sonar devices, such as different angles of sound beam as well as data
acquisition ways.

Kim [174] IS

The authors proposed a multi-view scanning method that can select
the unit vector of the next path by maximizing the reflected area of
the beam and orthogonality with the previous path, so as to perform
multiple scanning efficiently and save time.

Li [175] IS

A new sonar image-reconstruction technique was proposed. In order
to effectively rebuild the surface of sonar objects, the method first
employs an adaptive threshold to perform a 2 × 2 grid block search
for non-empty sonar data points, and then searches for a 3 × 3 grid
block centered on the empty point to reduce acoustic noise.

Mai [176,177] IS

It was suggested to use a novel technique that can retrieve 3D data on
items that are submerged. In the suggested approach, lines of
underwater objects were extracted and tracked using acoustic
cameras, the next generation of sonar sensors, which serve as visual
features for image-processing algorithms.

Negahdaripour et al. [180] used a stereophonic system with IS and a camera. The
relevant polar geometry corresponding to optical and acoustic images was described by
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a cone section. They proposed a method for 3D reconstruction via maximum likelihood
estimation measured from noisy images. Furthermore, in [181], they recovered 3D data using
the SfM method from a collection of images taken with IS. They proposed that, for 2D optical
images, based on visual information similar to motion parallax, multiple target images at
nearby observation locations can be used for 3D shape reconstruction. The 3D reconstruction
was then matched using a linear algorithm in the two views, and some degenerate config-
urations were checked. In addition, Babaee and Negahdaripour [182] utilized multimodal
stereo imaging using fused optical and sonar cameras. The trajectory of the stereo rig was
computed using photoacoustic beam adjustments in order to transform the 3D object edges
into registered samples of the object’s surface in the reference coordinate system. The features
between the IS and camera images were matched manually for reconstruction.

Inglis and Roman [183] used MBS constrained stereo correspondence to limit the
frequently troublesome stereo correspondence search to small portions of the image corre-
sponding to the extent of epipolar estimates computed from co-registered MBS microbaths.
The sonar and optical data from the Hercules ROV were mapped into a common coordinate
system after the navigation, multibeam and stereo data had been preprocessed to minimize
errors. They also suggested a technique to limit sparse feature matching and dense stereo
disparity estimation utilizing local bathymetry information from the imaged area. A signif-
icant increase in the number of inner layers was obtained with this approach compared
to an unconstrained system. Then, the feature correspondences were 3D triangulated and
post-processed to smooth and texture-map the data.

Hurtos et al. [179] proposed an opto-acoustic system consisting of a single camera
and MBS. Acoustic sensors were used to obtain distance information to the seafloor, while
optical cameras were employed to collect characteristics such as the color or texture. The
system sensor was geometrically modeled utilizing a simple pinhole camera and a multi-
beam simplified model, which was simplified as several beams uniformly distributed along
the total aperture of the sonar. Then, the mapping relationship between the sound profile
and the optical image was established by using the rigid transformation matrix between
the two sensors. Furthermore, a simple method taking optimal calibration and navigational
information into consideration was employed to prove that a calibrated camera–sonar
system can be utilized to obtain a 3D model of the seabed. Then, the calibration proce-
dure proposed by Zhang and Pless [184] was adopted to calibrate the camera and the
stealth laser rangefinder. Kunz et al. [185] fused visual information from a single camera
with distance information from MBS. Thus, the images could be texture-mapped to MBS
bathymetry (from 3 m to 5 cm), obtaining 3D and color information. The system makes
use of pose graph optimization, square-root data smoothing and mapping frames to solve
simultaneously for the robot’s trajectory, map and camera position in the robot frame.
In the pose map, the matched visual elements were considered as representations of 3D
landmarks, and multibeam bathymetry submap matching was utilized to impose relative
pose restrictions that connected the robot pose to various dive trajectory lines.

Teague et al. [186] used a low-cost ROV as a platform, used acoustic transponders for real-
time tracking and positioning, and combined it with underwater photogrammetry to make
photogrammetric models geographically referenced, resulting in better three-dimensional
reconstruction results. Underwater positioning uses the short baseline (SBL) system. Because
the SBL system does not require subsea-mounted transponders, it can be used to track under-
water ROVs from moving platforms, like stationary. Mattei et al. [187] used a combination of
SSS and photogrammetry to map underwater landscapes and detailed 3D reconstruction of
all archaeological sites. Using fast static techniques, they performed GPS [188] topographic
surveys of three underwater ground-control points. Using the Chesapeake Sonar Web Pro 3.16
program, sonar images captured throughout the study were processed to produce GeoTIFF
mosaics and acquire a sonar coverage of the whole region. A 3D picture of the underwater
auditory landscape was obtained by constructing the mosaic in ArcGIS ArcScene. They
applied backscatter signal analysis to the sonograms to identify the acoustic signatures of
archaeological remains, rocky bottoms and sandy bottoms. The optical images use GPS
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fast static programs to determine the coordinates of labeled points on the column, thereby
extracting and georeferencing dense point clouds for each band. Then assembled the different
point clouds into a single cloud using the classical ICP program.

Kim et al. [189] integrated IS and optical simulators using the Robot Operating System
(ROS) environment. While the IS model detects the distance from the source to the object
and the degree of the returned ultrasound beam, the optical vision model simply finds
which object is the most closely located and records its color. The distance values between
the light source and object and between the object and optical camera can be used to
calculate the attenuation of light, but they are currently ignored in the model. The model is
based on the z-buffer method [190]. Each polygon of objects is projected onto the optical
camera window in this method. Then, every pixel of the window searches every point of
the polygons that are projected onto that pixel and stores the color of the closest point.

Rahman et al. [191] suggested a real-time SLAM technique for underwater objects that
needs the vision data from a stereo camera, the angular velocity and linear acceleration
data from an inertial measurement unit (IMU) and the distance data from mechanical
SSS. They employed a tightly coupled nonlinear optimization approach combining IMU
measurements with SV and sonar data and a nonlinear optimization-based visual–inertial
odometry (VIO) algorithm [192,193]. In order to fuse the sonar distance data into the
VIO framework, a visible patch around each sonar point was proposed, and additional
constraints were introduced in the attitude map utilizing the distance between the patch
and the sonar point. In addition, a keyframe-based method principle was adopted to make
the image sparse for real-time optimization. This enabled autonomous underwater vehicles
to navigate more robustly, detect obstacles using denser 3D point clouds and perform
higher-resolution reconstructions.

Table 7 compares underwater 3D reconstruction techniques using acoustic–optical
fusion methods, mainly listing the sonar types and the major contributions by the authors.

At present, sonar sensors are widely used in underwater environments. Sonar sensors
can obtain reliable information even in dim water. Therefore, it is the most suitable sensor
for underwater sensing. At the same time, the development of acoustic cameras makes the
information collection in the water environment more effective. However, the resolution
of the image data obtained using sonar is relatively rough. Optical methods provide high
resolution and target details, but they are limited by their limited visual range. Therefore,
data combination based on the complementarity of optical and acoustic sensors is the future
development trend of underwater 3D reconstruction. Although it is difficult to combine the
two modes of operation with different resolutions, the technological innovation and progress
of acoustic sensors have gradually allowed the generation of high-quality high-resolution data
suitable for integration, thus designing new technologies for underwater scene reconstruction.

Table 7. Summary of 3D reconstruction techniques using acoustic–optical fusion.

References Sonar Type Contribution

Negahdaripour
[180,181] IS

The authors investigated how to determine 3D point locations from
two photos taken from two randomly chosen camera positions.
Numerous linear closed-form solutions were put forth, investigated
and then compared for their accuracy and degeneracy.

Babaee [182] IS

A multimodal stereo imaging approach was proposed, using
coincident optical and sonar cameras. Furthermore, the issue of
creating intricate photoacoustic correspondence was avoided by
employing the 2D occluded contours of 3D object edge photos as
architectural features.

Inglis [183] MBS

A technique was created to constrain the frequently wrong
stereo-correspondence problem to a small part of the image, which
corresponds to the estimated distance along the polar line calculated
from the jointly registered MBS microtopography. This method can
be applied to stereo-correspondence techniques based on sparse
features and dense regions.
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Table 7. Cont.

References Sonar Type Contribution

Hurtos [179] MBS An efficient method for solving the calibration problem between MBS
and camera systems was proposed.

Kunz [185] MBS

In this paper, the abstract attitude map was used to solve the
difficulties of positioning and sensor calibration. The attitude map
captured the relationship between the estimated trajectory of the
robot moving in the water and the measurements made by the
navigation and map sensors in a flexible sparse map framework, thus
realizing the rapid optimization of the trajectory and map.

Teague [186] Acoustic
transponders

A reconstruction approach employing an existing low-cost ROV as
the platform was discussed. These platforms, which are the
foundation of underwater photogrammetry, offer speed and stability
in comparison to conventional divers.

Mattei [187] SSS

Geophysical and photogrammetric sensors were integrated into the
USV to enable precision mapping of seafloor morphology and a 3D
reconstruction of archaeological remains, allowing for the
reconstruction of underwater landscapes of high cultural value.

Kim [189] DIDSON

A dynamic model and sensor model for a virtual underwater
simulator were proposed. The proposed simulator was created using
an ROS interface so that it may be quickly linked with both current
and future ROS plug-ins.

Rahman [191] Acoustic sensor

The proposed method utilized the well-defined edges between
well-lit areas and darkness to provide additional features, resulting
into a denser 3D point cloud than the usual point clouds from a
visual odometry system.

6. Conclusions and Prospect
6.1. Conclusions

With the increasing number of ready-made underwater camera systems and cus-
tomized systems in the field of deep-sea robots, underwater images and video clips are
becoming increasingly available. These images are applied to a large number of scenes
to provide newer and more accurate data for underwater 3D reconstruction. This paper
mainly introduces the commonly used methods of underwater 3D reconstruction based on
optical images. However, due to the wide application of sonar in underwater 3D reconstruc-
tion, this paper also introduces and summarizes the acoustic and optical–acoustic fusion
methods. This paper addresses the particular problems of the underwater environment,
as well as two main problems of underwater camera calibration and underwater image
processing and their solutions for optical image 3D reconstruction. The underwater shell
interface was calibrated, and the correct scene scale can be obtained theoretically, but when
there is noise in the communication, the correct scene scale may not be obtained, and further
algorithm improvement is required. Using the Citespace software to visually analyze the
relevant papers on the direction of underwater 3D reconstruction in the past two decades,
this review intuitively shows the research content and hotspots in this field. This article
systematically introduces the widely used optical image methods, including structure from
motion, structural light, photometric stereo, stereo vision and underwater photogrammetry,
and reviews the traditional papers and improvements of researchers using these methods.
At the same time, this paper also introduces and summarizes the sonar acoustic methods
and the fusion of acoustic and optical methods.

Clearly, image-based underwater 3D reconstruction is extremely cost-effective [194].
It is inexpensive, simple and quick, while providing essential visual information. How-
ever, because it depends so much on sight, this approach is impractical in murky waters.
Furthermore, a single optical imaging device cannot cover all the ranges and resolutions
required for 3D reconstruction. Therefore, in order to avoid the limits of each kind of sensor,
practical reconstruction methods usually fuse various sensors with the same or different
nature. The paper also introduced the multi-optical sensor-fusion system with the optical
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method introduced in the fourth section and focused on the optical–acoustic sensor-fusion
system in the fifth section.

6.2. Prospect

At present, the 3D reconstruction technology of underwater images has achieved
good results. However, owing to the intricacy of the underwater environment, their
applicability is not wide enough. Therefore, the development of image-based underwater
3D reconstruction technology can be further enhanced from the following directions:

(1) Improving reconstruction accuracy and efficiency. Currently, image-based underwa-
ter 3D reconstruction technology can achieve a high reconstruction accuracy, but the
efficiency and accuracy in large-scale underwater scenes still need to be improved.
Future research can be achieved through optimizing algorithms, improving sen-
sor technology and increasing computing speed. For example, improving sensor
resolution, sensitivity and frequency can improve sensor technology. Using high-
performance computing platforms, optimization algorithms and other aspects can
accelerate the computing speed, thereby improving the efficiency of underwater
three-dimensional reconstruction.

(2) Solving the multimodal fusion problem. Currently, image-based underwater 3D
reconstruction has achieved good results, but due to the special underwater environ-
ment, a single imaging system cannot meet all underwater 3D reconstruction needs,
covering different ranges and resolutions. Although researchers have now applied
homogeneous or heterogeneous sensor fusion in underwater three-dimensional re-
construction, the degree and effect of fusion has not yet reached an ideal state, and
further research is needed in the field of fusion.

(3) Improving real-time reconstruction. Real-time underwater three-dimensional recon-
struction is an important direction for future research. Due to the high computational
complexity of image-based 3D reconstruction, it is difficult to complete real-time
3D reconstruction. It is hoped that in future research, the computational complex-
ity can be reduced and image-based 3D reconstruction can be applied to real-time
reconstruction. Real-time underwater 3D reconstruction can provide more real-time
and accurate data support for applications such as underwater robots, underwater
detection and underwater search and rescue and has important application value.

(4) Developing algorithms for evaluation indicators. Currently, there are not many algo-
rithms for evaluating reconstruction work. Their development is relatively slow, and
the overall research is not mature enough. Future research on evaluation algorithms
should pay more attention to the combination of overall and local, as well as the com-
bination of visual accuracy and geometric accuracy, in order to more comprehensively
evaluate the effects of 3D reconstruction.
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