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Abstract: The development of artificial intelligence (AI) technologies, such as machine learning
algorithms, computer vision systems, and sensors, has allowed maritime autonomous surface ships
(MASS) to navigate, detect and avoid obstacles, and make real-time decisions based on their envi-
ronment. Despite the benefits of AI in MASS, its potential security threats must be considered. An
adversarial attack is a security threat that involves manipulating the training data of a model to
compromise its accuracy and reliability. This study focuses on security threats faced by a deep neural
network-based object classification algorithm, particularly you only look once version 5 (YOLOv5),
which is a model used for object classification. We performed transfer learning on YOLOv5 and
tested various adversarial attack methods. We conducted experiments using four types of adver-
sarial attack methods and parameter changes to determine the attacks that could be detrimental to
YOLOv5. Through this study, we aim to raise awareness of the vulnerability of AI algorithms for
object detection to adversarial attacks and emphasize the need for efforts to overcome them; these
efforts can contribute to safe navigation in MASS.

Keywords: adversarial attack; perturbed image; YOLO; object classification; MASS

1. Introduction

The impressive advancements made in object detection and classification algorithms
that use deep neural networks (DNNs) have significantly affected numerous industries, in-
cluding the maritime industry, particularly with the development of maritime autonomous
surface ships (MASS). By incorporating artificial intelligence (AI) technology, object de-
tection and classification algorithms can detect obstacles in real time, assist in human
decision-making during ship navigation [1], and ultimately enable autonomous navigation.
However, despite the advancements in object detection and classification algorithms, these
systems present vulnerabilities [2]. Adversarial attacks represent one of the most significant
security threats to AI systems. The attacks occur during the training phase of deep neural-
network algorithms using a training dataset. An attacker adds small and carefully crafted
perturbations to the input data that are difficult to detect by humans [3]. Consequently, the
model trained with the perturbed data will have significantly degraded performance in
its output.

The introduction of MASS has resulted in a new type of threat to the maritime industry
in the form of AI-related threats, such as adversarial attacks. As these attacks can compro-
mise the safe operation of MASS, awareness of, and interest in, these threats are crucial for
maritime industry stakeholders. In this study, we aimed to emphasize the vulnerability
of object detection and classification algorithms to adversarial attacks and the importance
of developing strategies to overcome them. To achieve this, we created perturbed images
by modifying the settings of four different types of adversarial attack methods. These
images were thereafter used as training data for you only look once version 5 (YOLOv5), an
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object detection and classification algorithm, to simulate adversarial attacks. By evaluating
the accuracy of the model trained on these perturbed images, we confirmed the potential
catastrophic impacts of adversarial attacks on object detection and classification algorithms.
Ultimately, our goal is to increase awareness of the vulnerability of AI algorithms for object
detection to adversarial attacks and develop strategies to mitigate their effects, thereby
contributing to safe navigation in MASS.

2. Background
2.1. DNN Algorithms for Object Classification

Object detection and classification are crucial tasks in computer vision that have
seen remarkable progress recently due to advancements in deep learning algorithms.
Several popular object detection algorithms have emerged, each with unique strengths and
limitations [4]. Recent object detection and classification algorithms, such as region-based
convolutional neural networks (R-CNN), mask R-CNN [5], you only look once (YOLO) [6],
and single shot detector (SSD) [7], have numerous characteristics in common. Accuracy is
among the most significant characteristics of any object detection or classification algorithm,
and recent algorithms aim for high accuracy in detecting and localizing objects within an
image or video stream. Speed and efficiency are crucial features, as many applications
require the real-time processing of considerable data. Algorithms such as YOLOv5 and
EfficientDet [8] have demonstrated high processing speeds and resource efficiency, without
compromising accuracy. Moreover, mask R-CNN and YOLOv5 use instance segmentation,
thus providing visualizations of detected objects with bounding boxes and confidence
scores. These can be used to manage occluded items and simplify the interpretation of
the output.

YOLOv5 is a powerful and versatile object detection algorithm that has garnered
significant attention recently, due to its high accuracy, real-time processing speed, and
computational efficiency [6,9]. The model is designed to utilize resources efficiently, and
hence is suitable for real-time processing on devices with limited computational resources.
It can manage object types, sizes, and orientations, and uses transfer learning to improve
generalization to new datasets. YOLOv5 can also visualize detected objects with bounding
boxes and confidence scores, making it easy to interpret and understand its output. Among
the studies using YOLOv5, Nader Al-Qubaydhi et al. proposed a method [10] for detecting
unauthorized unmanned aerial vehicles (UAVs) using YOLOv5 and transfer learning. Their
study employed transfer learning to adapt the YOLOv5 framework to the Kaggle drone
dataset. They fine-tuned the last three YOLOv5 and convolutional layers to match the
number of classes in the dataset and introduced data augmentation techniques to enhance
the dataset and improve training. The trained model was evaluated by constructing a
number-of-iterations-versus-mAP curve at different points, and the results demonstrated
high accuracy in detecting unauthorized UAVs.

2.2. AI-Specific Security Threats

AI systems are becoming increasingly popular across industries for their ability to
automate decision-making, improve efficiency, and drive innovation. However, because
of increased Internet connectivity and usage, these systems have recently become more
vulnerable to cybersecurity threats [11,12].

AI-specific security refers to the unique security risks and challenges that AI systems
encounter, and the specific security measures that organizations should implement to pro-
tect their systems against such threats. The ISO/IEC TR 24028 technical report [12] provides
guidelines for managing the security and privacy of AI systems, thus promoting their safe
and responsible use. The report highlights several AI-specific security threats, including
adversarial attacks, data poisoning, model stealing, and evasion, privacy, integrity, and
denial of service attacks.

Adversarial attacks involve intentionally modifying the input data of a machine-
learning model to cause the model to make incorrect predictions. These attacks may vary
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according to the target machine-learning application, including image classification, speech
recognition, and autonomous vehicles. Data poisoning involves deliberately inputting
misleading or inaccurate data into an AI system with to manipulate its output. Attackers
may introduce inaccurate or biased training data into an AI system to influence its decision-
making. Data poisoning can result in AI systems that make biased or discriminatory
decisions. Model stealing is a technique by which an attacker attempts to acquire an AI
model by analyzing its output and using reverse engineering techniques. This aspect can
enable the attacker to replicate the model and use it for malicious purposes, such as creating
deepfake images or videos. Evasion attacks are techniques used to evade detection by
security mechanisms, such as malware or intrusion detection systems. Privacy attacks
compromise the privacy of individuals and organizations by exploiting vulnerabilities
in AI systems. Attackers may use these vulnerabilities to access sensitive information or
to execute espionage and other malicious activities. Integrity attacks compromise data
integrity or AI models by modifying or deleting data. These attacks can result in AI
systems that produce inaccurate or unreliable results. Denial of service attacks disrupt the
availability of AI systems by overwhelming them with requests or other forms of traffic.
These attacks can result in significant disruptions to AI systems and financial losses.

Among security threats, adversarial attacks are particularly significant due to their
potential to compromise the accuracy and reliability of AI systems [13]. These attacks are
intentional modifications of input data designed to compromise the accuracy and reliability
of the output of the AI system. The primary objective of an adversarial attack is to add
the minimal perturbation to the input data that can result in the desired misclassification.
These attacks pose a severe security threat to critical systems such as those used for medical
diagnosis or in autonomous vehicles [14,15]. Adversarial attacks can be categorized into
different types based on the purpose of the attack and prior knowledge of the attacker. For
instance, based on our assumptions on the knowledge of the attacker, these can be classified
as white- or black-box attacks. In a white-box attack, the attacker has complete knowledge
and access to the model, including architecture, inputs, outputs, and weights [14]. In
contrast, in a black-box attack, the attacker only has access to the inputs and outputs of the
model and is unaware of the underlying architecture or weights [16].

The basic principle of an adversarial attack is to generate perturbed data by synthe-
sizing specific noise, indistinguishable from a conventional image [4,14], as depicted in
Figure 1. When these perturbed data are input into a trained learning model, they appear
as a ship to the human eye; however, the deep learning model will classify them as a
lighthouse. Therefore, the purpose of an adversarial attack is to lower the accuracy of the
model by causing misclassification.
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Figure 1. Principle of an adversarial attack.

2.3. Methods for Generating Adversarial Examples

An adversarial example indicates a perturbed data input specifically designed to in-
duce inaccurate classifications by DNN-based algorithms. Adversarial attacks are a critical
issue in machine learning security, and numerous methods are available for generating
adversarial examples.

Goodfellow et al. proposed the fast gradient sign method (FGSM) [13]. This is a
simple and efficient method in which the gradient of the input data loss function and a
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small amount of noise in the direction of the gradient are summed to generate perturbed
inputs that can be easily misclassified by the AI model. Even though the FGSM is easy to
implement, it may not produce the most robust adversarial examples.

Kurakin et al. introduced a powerful variant of the FGSM known as the iterative fast
gradient sign method (I-FGSM) [17]. This method applies the attack iteratively with a
smaller step size, resulting in more robust adversarial examples. However, the increased
complexity and number of iterations may make this method more computationally expen-
sive than the FGSM.

Dong et al. proposed the momentum iterative fast gradient sign method (MI-FGSM) [18]
as a further extension of the I-FGSM in which a momentum term was added to the per-
turbation update rule. This aspect can prevent oscillations and accelerate convergence.
However, the increased complexity and number of hyperparameters can make the tuning
process more challenging compared with the I-FGSM.

Madry et al. proposed the projected gradient descent (PGD) [19] algorithm as a variant
of the I-FGSM in which random perturbations are added to the input at each iteration.
This modification can prevent the attack from stabilizing around a local minimum, thus
improving the generalization of the adversarial examples. However, as in the previous
method, the tuning of the PGD requires more computational resources compared with the
I-FGSM.

2.3.1. Fast Gradient Sign Method

The FGSM [13] algorithm is a simple and effective method for generating adversarial
examples in deep learning models. By adding a minimal perturbation to the input data in
the direction of the gradient of the loss function of the input data, the algorithm can cause
the model to misclassify the data, even though the perturbed image may appear similar to
the original one to a human observer [20]. The algorithm of the FGSM is summarized in
Table 1.

Table 1. FGSM algorithm.

Input An input image x, a target class y, and the size of perturbation ε.

Output
An adversarial example x′, misclassified by the deep learning model,
with a perturbation size satisfying kx′ − k∞x ≤ ε, where k is a scalar
and k∞ is its L-infinity norm, and ε = kx′ − k∞x.

Algorithm

1. Calculate the gradient of the loss function J for the input image x:
gradient = ∇x J(θ, x, y),
where θ represents the parameters of the deep learning model.

2. Calculate the perturbation by scaling the sign of the gradient with a
small ε value:
perturbation = sign(gradient) * ε,
where sign() denotes the sign function, and * represents element-wise
multiplication.

3. Add the perturbation to the input image to obtain the
adversaria example:
x′ = x + perturbation.

4. Clip the pixel values of the adversarial example to ensure that they
remain within the valid range:
x′ = clip(x′, 0, 1).

5. Return the adversarial example x′.

2.3.2. Iterative FGSM

The I-FGSM [17] is an extension of the FGSM that generates adversarial examples by
applying multiple iterations of the FGSM at a small step size α. The algorithm clips the
perturbation at each iteration to ensure that its L∞ norm does not exceed the specified
size ε. The I-FGSM can generate more effective adversarial examples than those generated
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by the FGSM, particularly when combined with other techniques such as momentum or
randomization [20,21]. The algorithm of the I-FGSM is presented in Table 2.

Table 2. I-FGSM algorithm.

Input An input image x, a target class y, the size of perturbation ε, the number of
iterations T, and the step size α.

Output
An adversarial example x′, misclassified by the deep learning model, with a
perturbation size satisfying kx′ − k∞x ≤ ε, where k is a scalar and k∞ is its
L-infinity norm, and ε = kx′ − k∞x.

Algorithm

1. Initialize the perturbation δ to zero.

2. For t = 1 to T:
a. Calculate the gradient of the loss function J for the input image x:
gradient = ∇x J(θ, x + δ, y),
where θ represents the parameters of the deep learning model.
b. Add a scaled version of the sign of the gradient to the perturbation:
δ← δ + α sign(gradient).
c. Clip the perturbation δ so that its L∞ norm is at most ε:
δ← clip(δ, −ε, ε).
d. Update the adversarial example by adding the perturbation to the input
image:
x′ ← x + δ.
e. Clip the pixel values of the adversarial example to ensure that they remain
within the valid range:
x′ ← clip(x′, 0, 1).

3. Return the adversarial example x′.

2.3.3. Momentum Iterative FGSM

The MI-FGSM [18] is an extension of the I-FGSM that generates adversarial examples
by adding a momentum term to the update rule. This term prevents oscillations, resulting
in a faster convergence to the adversarial example compared to the previous models. The
momentum term is computed using the average of the previous gradients; it is scaled by a
factor α to control its contribution to the update. The MI-FGSM algorithm can generate
more effective adversarial examples than the I-FGSM, particularly when combined with
other techniques such as randomization or ensemble methods [20,22]. The algorithm of the
MI-FGSM is summarized in Table 3.

Table 3. MI-FGSM algorithm.

Input An input image x, a target class y, the size of perturbation ε, the number of
iterations T, and the decay factor µ.

Output
An adversarial example x′, misclassified by the deep learning model, with a
perturbation size satisfying kx′ − k∞x ≤ ε, where k is a scalar and k∞ is its
L-infinity norm, and ε = kx′ − k∞x.

Algorithm

1. Initialize the perturbation δ to zero.

2. For t = 1 to T:
a. Calculate the gradient of the loss function J for the input image x:
gradient = ∇x J(θ, x + δ, y),
where θ represents the parameters of the deep learning model.
b. Add a scaled version of the sign of the gradient to the perturbation:
δ← µδ + (ε/T) sign(gradient).
c. Clip the perturbation δ so that its L∞ norm is at most ε:
δ← clip(δ, −ε, ε).
d. Update the adversarial example by adding the perturbation to the input
image:
x′ ← x + δ.
e. Clip the pixel values of the adversarial example to ensure that they remain
within the valid range:
x′ ← clip(x′, 0, 1).

3. Return the adversarial example x′.
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2.3.4. Projected Gradient Descent

The PGD [19] algorithm is a variant of the I-FGSM that generates adversarial examples
by adding random perturbations to the input at each iteration. These perturbations prevent
the model from converging to local optima, thus resulting in more diverse adversarial
examples. The PGD algorithm clips the perturbation at each iteration to ensure the L∞
norm does not exceed the specified size ε. The randomness factor δ controls the magnitude
of the random perturbations and can be adjusted to modify the exploration–exploitation
balance. The PGD algorithm can generate more robust adversarial examples than those
obtained using the I-FGSM, particularly when combined with other techniques such as
ensemble or regularization methods [21,22]. The algorithm of the PGD is presented in
Table 4.

Table 4. PGD algorithm.

Input An input image x, a target class y, the size of perturbation ε, the number of
iterations T, and the step size α.

Output
An adversarial example x′, misclassified by the deep learning model, with a
perturbation size satisfying kx′ − k∞x ≤ ε, where k is a scalar and k∞ is its
L-infinity norm, and ε = kx′ − k∞x.

Algorithm

1. Initialize the perturbation δ to zero.

2. For t = 1 to T:
a. Calculate the gradient of the loss function J concerning the input image x:
gradient = ∇x J(θ, x + δ, y),
where θ represents the parameters of the deep learning model.
b. Add a scaled version of the gradient to the perturbation:
δ← δ + α sign(gradient).
c. Project the perturbation onto the L∞ ball of radius ε:
δ← clip(δ, −ε, ε).
d. Update the adversarial example by adding the perturbation to the input
image:
x′ ← x + δ.
e. Clip the pixel values of the adversarial example to ensure that they remain
within the valid range:
x′ ← clip(x′, 0, 1).

3. Return the adversarial example x′.

3. Materials and Methods
3.1. Problem Setup

In this study, we aimed to simulate adversarial attacks that manipulate the training
dataset to degrade the performance of object detection and classification models. A critical
aspect of training AI for industrial use is securing suitable datasets. Although datasets
for objects such as dogs and cats are common for object detection and classification, it is
difficult to obtain datasets suitable for the maritime industry, such as boats, ferries, and
buoys. Attackers take advantage of this and distribute perturbed images that are difficult
for humans to detect but contain feature information that causes misclassification. At first
glance, the perturbed image may appear to be slightly noisy, but this can be mistaken
for optical noise. However, the perturbed image contains feature information that causes
misclassification and cannot be removed by methods such as blurring, which are used
to remove optical noise. Therefore, the system developer (victim) unknowingly uses the
perturbed images as part of their training dataset because they appear normal to the
developer. This means that an attack can occur without the system developer even noticing
it. If the system developer attempts to remove noise from the training dataset, the feature
information that causes misclassification will remain, thus compromising the model’s
performance. Moreover, because of the plateaued performance, the system developer
may mistakenly assume that the model’s performance is optimal and use it in real-world
scenarios where failures to detect objects would cause misclassifications and precipitate
serious accidents.
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In AI, research into adversarial attack methods is ongoing, e.g., being investigated as a
significant threat to using AI for diagnosing disease [3]. In the maritime industry, such as
in the use of MASS, research is being conducted on systems that apply AI to detect and
classify objects. However, in the maritime industry, the potential risks are not well-known
because such adversarial attacks have not yet been experienced. To address this gap, we
conducted experiments to determine the adversarial attack methods that could be most
detrimental to object detection and classification models.

3.2. Experimental Scenario

In the experiments, we generated perturbed images using various adversarial attack
methods and parameter settings and evaluated the accuracy of the models that were trained
with these perturbed images. Thereby, we aimed to determine the most effective adversarial
attack methods and raise awareness of their potential risks in the maritime industry.

The experimental scenario is divided into four phases, as depicted in Figure 2. In the
first phase, the modified Singapore maritime dataset (SMD-Plus) proposed by Kim et al. [9]
is pre-processed such that images and annotations are suitable for the YOLOv5 model. In
the second phase, an attacker generates the perturbed images. This study assumed that the
attacker could generate perturbed images using various methods. Therefore, six pre-trained
DNN algorithms and four adversarial attack methods were used to generate the perturbed
dataset using Python’s PyTorch open-source framework. In the third phase, the system
developer collects data for model training and trains the YOLOv5 model [23,24]. During
this phase, the attacker deploys a perturbed dataset, and the system developer collects
and verifies the data. The slight noise in the perturbed image is considered to be optical
noise and passes the verification process. This assumption is fundamental to adversarial
attacks [12,13,17–19], and this is the reason for the development of new algorithms to
render it more difficult for detection by humans. Therefore, in this scenario, the perturbed
image is assumed to pass the verification process without any issues and is included in
the training dataset. The adversarial attack occurs during this phase without the explicit
intervention of the attacker. In the fourth phase, the trained model is tested on conventional
benchmark and perturbed datasets to examine the impact of adversarial attacks [23–27].
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4. Results: Experiment on Adversarial Attacks against YOLOv5
4.1. Dataset Preparation

In domain-specific DNN applications, obtaining a proper dataset for training can
be challenging, particularly for maritime environments, due to the scarcity of publicly
available datasets and the cost of collecting and annotating images. The SMD dataset
provides high-quality videos with labelled bounding boxes for ten types of objects in
marine environments. The SMD dataset consists of high-definition videos captured at a
resolution of 1920 × 1080 pixels. The dataset is divided into two parts: on-shore videos,
consisting of 40 video clips, and on-board videos, consisting of 11 video clips. Additionally,
each frame in the video dataset is labeled with bounding boxes and labels. However, this
dataset presents some label errors and imprecise bounding boxes; therefore, it is not ideal as
a benchmark dataset for object classification. To address this issue, the SMD-Plus dataset [9]
was developed to improve the accuracy of bounding box annotations for small maritime
objects. Moreover, in the SMD-Plus dataset, visually similar classes were merged to provide
more training data for object recognition. Table 5 presents the classification of the training
classes in the SMD-Plus dataset.

Table 5. Details of SMD-Plus dataset.

Class Class Identifier Number of Objects

Boat 1 14,021
Vessel/Ship 2 125,872

Ferry 3 3431
Kayak 4 3798
Buoy 5 3657

Sailboat 6 1926
Others 7 24,993

Because the SMD-Plus dataset comprises videos and annotations, we split the videos
into frame-by-frame images to train YOLOv5. The provided annotations include object
classes and the locations of bounding boxes for each video frame. These annotations were
converted from the file format developed with the MATLAB ImageLabeler tool into an
annotation format suitable for YOLOv5 [9,23]. Notably, 80% of the samples were used as
the training dataset; the remaining 20% were used as the test dataset.

4.2. Generating Perturbed Images

Generating perturbed images requires both a DNN algorithm and an adversarial attack
method. To assess the effect of adversarial attack methods on deep learning models, we
developed perturbed datasets by implementing four different adversarial attack algorithms
using PyTorch open-source code and a test dataset as input for six pre-trained models,
namely, AlexNet, VGG16, GoogLeNet, ResNet50, InceptionNetv3, and EfficientNetv2s [28].
The objective of this experiment was to investigate the combinations of DNN algorithms,
adversarial attack methods, and changes in the ε value that are most detrimental to YOLOv5
by generating perturbed images for adversarial attacks. The DNN algorithm, adversarial
attack method, and hyperparameters (including the ε value) are determined by the attackers
at the moment they generate the perturbed image. As presented in Table 6, we considered ε

as the independent variable varying from 0.01 to 0.3; the other variables were kept constant
as control variables. We generated 120 perturbed datasets, one for each combination of the
pre-trained model and epsilon value.
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Table 6. Parameters of the methods used for the generation of adversarial examples.

FGSM I-FGSM MI-FGSM PGD

Hyperparameters ε = 0.01, 0.05, 0.1,
0.2, 0.3

ε = 0.01, 0.05, 0.1,
0.2, 0.3
T = 20
α = 0.01

ε = 0.01, 0.05, 0.1,
0.2, 0.3
T = 20

µ = 0.001

ε = 0.01, 0.05, 0.1,
0.2, 0.3
T = 20
α = 0.01

We used an AMD Ryzen 9 5950X processor with 64 GB of main memory and an
NVIDIA GeForce RTX 3080 Ti to generate the perturbed images. The runtime of the
different methods is reported in Table 7. The execution time was not affected by the ε value.

Table 7. Execution time of pre-trained DNN algorithms for the generation of perturbed image.

Execution Time (s)

FGSM I-FGSM MI-FGSM PGD

AlexNet 19 43 22 31
VGG16 27 291 132 190
GoogLeNet 21 132 97 128
ResNet50 21 187 102 137
InceptionNetv3 25 207 145 199
EfficientNetv2s 30 327 231 312

Figures 3 and 4 depict the images generated using the FGSM and PGD with AlexNet
with different ε values. When the ε value is small, changes made to the image are not
easily distinguishable. However, as the ε value increases, changes become more noticeable.
Nevertheless, it is challenging to distinguish whether this is caused by an adversarial attack
or simple optical noise.

The results of the changes in the ε value affect not only the addition of noise that can
be discerned by the human eye but also the performance degradation of the targeted model.
In the following section, we simulate the performance degradation of the targeted model
according to the ε value.
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4.3. Simulating an Adversarial Attack on a Deep Learning Model

We employed transfer learning using the YOLOv5s model as the base model to
improve the training speed and accuracy of the object detection and classification model.
The YOLOv5 model has four structures, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x,
according to speed and accuracy. We assumed that YOLOv5s would be more vulnerable to
adversarial attacks because of its low number of neural network layers and lower model
accuracy. Transfer learning is a common learning method that is used to improve the
performance of a model on relatively small datasets. The method uses a pre-trained model
trained on a large amount of data as the base model. We used the fine-tuning method,
which involves re-training the entire neural network, and adjusted the last convolutional
layers of YOLOv5 to match the number of classes in the dataset, increasing them from
3 to 8. We set the training parameters to 100 epochs, learning rate of 0.12, and a batch size
of 16 [10,19,22].

To evaluate the robustness of the YOLOv5-based deep learning model, we performed
a comprehensive analysis by inputting a single original test dataset and the 120 perturbed
datasets generated using various adversarial attack methods. By measuring the change
in accuracy under these different scenarios, we aimed to assess the ability of the model to
resist adversarial attacks and its overall performance in detecting objects in images.

We used the original test dataset to perform object classification. The YOLOv5s model
trained using the SMD-Plus dataset achieved an accuracy of 0.896. The experiment also
tested the accuracy of the model for each of the six different pre-trained DNN algorithms
using the four adversarial attack methods and five ε values. The results are summarized in
Tables 8–13.

Table 8. Accuracy of transfer learned model of YOLOv5s for different ε values using AlexNet.

FGSM I-FGSM MI-FGSM PGD

ε = 0.01 0.873 0.861 0.841 0.831
ε = 0.05 0.810 0.791 0.837 0.776
ε = 0.1 0.612 0.740 0.768 0.681
ε = 0.2 0.417 0.681 0.633 0.631
ε = 0.3 0.132 0.671 0.491 0.614
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Table 9. Accuracy of transfer learned model of YOLOv5s for different ε values using VGG16.

FGSM I-FGSM MI-FGSM PGD

ε = 0.01 0.831 0.822 0.811 0.818
ε = 0.05 0.618 0.751 0.801 0.716
ε = 0.1 0.437 0.693 0.715 0.679
ε = 0.2 0.105 0.651 0.631 0.678
ε = 0.3 0.063 0.643 0.551 0.653

Table 10. Accuracy of transfer learned model of YOLOv5s for different ε values using GoogLeNet.

FGSM I-FGSM MI-FGSM PGD

ε = 0.01 0.827 0.858 0.841 0.829
ε = 0.05 0.766 0.765 0.818 0.771
ε = 0.1 0.551 0.750 0.761 0.728
ε = 0.2 0.266 0.721 0.731 0.731
ε = 0.3 0.115 0.711 0.565 0.710

Table 11. Accuracy of transfer learned model of YOLOv5s for different ε values using ResNet50.

FGSM I-FGSM MI-FGSM PGD

ε = 0.01 0.841 0.849 0.833 0.838
ε = 0.05 0.633 0.788 0.761 0.712
ε = 0.1 0.410 0.711 0.763 0.653
ε = 0.2 0.160 0.667 0.622 0.614
ε = 0.3 0.061 0.651 0.531 0.609

Table 12. Accuracy of transfer learned model of YOLOv5s for different ε values using InceptionNetv3.

FGSM I-FGSM MI-FGSM PGD

ε = 0.01 0.827 0.832 0.832 0.819
ε = 0.05 0.568 0.736 0.776 0.718
ε = 0.1 0.355 0.649 0.737 0.608
ε = 0.2 0.037 0.615 0.619 0.600
ε = 0.3 0.011 0.601 0.456 0.587

Table 13. Accuracy of YOLOv5s for different ε values using EfficientNetv2s.

FGSM I-FGSM MI-FGSM PGD

ε = 0.01 0.830 0.841 0.845 0.809
ε = 0.05 0.568 0.776 0.767 0.711
ε = 0.1 0.437 0.677 0.691 0.638
ε = 0.2 0.055 0.663 0.611 0.627
ε = 0.3 0.009 0.661 0.431 0.614

5. Discussion

The experiment performed in this study clarifies the vulnerability of object classifi-
cation algorithms, specifically those using deep neural networks, to adversarial attacks.
The results demonstrate that all algorithms and adversarial attack methods result in a
significant decrease in accuracy when the ε value exceeds 0.2. This outcome highlights the
significance of selecting a suitable ε value to develop effective defense strategies against
these attacks.

Although the FGSM has the advantages of a higher success rate and faster generation
time for perturbed images compared with other methods, the resulting image may contain a
large amount of noise. Additionally, our results indicated that AlexNet generates perturbed
images significantly faster than the other DNN algorithms, making it an ideal choice when
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reducing generation time is crucial. This may be because AlexNet has a simpler layer
configuration than other DNN algorithms.

A crucial aspect of adversarial attacks is adding perturbations that are not easily
detectable by humans. Consequently, the FGSM may not be an effective adversarial attack
because it adds high-level noise to the image, thus making it more probable for humans
to detect the attack. On the contrary, the PGD method consistently demonstrated a high
success rate for attacks across all algorithms. Due to the FGSM adding noise of epsilon only
once to the original image, humans can easily detect the noise. However, PGD gradually
adds noise several times. Furthermore, perturbations generated with an ε value up to
0.1 were not easily detectable by humans for all DNN algorithms due to the difficulty
in distinguishing them from optical noise. Figure 5 depicts the accuracy of each DNN
algorithm, and the time required to generate perturbed images using the PGD method with
an ε value of 0.1. As the ε value increases, it becomes easier for humans to detect the noise.
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Based on our results, different approaches should be recommended depending on
the priority of the defense resource. For instance, if generation time is a critical factor, it
is more appropriate to use PGD with AlexNet and an ε value of 0.1. In contrast, if the
success rate represents a high priority, PGD with InceptionNetv3 and an ε value of 0.1 is a
more suitable strategy. Finally, if a compromise is necessary, the use of PGD with ResNet50
and an ε value of 0.1 is recommended. However, these recommendations should not be
generalized and applied indiscriminately. In fact, the performance of object classification
algorithms using YOLOv5 with transfer learning may vary for distinct datasets and adver-
sarial attack methods; thus, it is necessary to consider the specific context when designing
defense mechanisms against adversarial attacks. The experiment developed in this study
provides a substantial foundation for further research and development in this critical area
of cybersecurity.

6. Conclusions
6.1. Contributions

AI technologies are essential for enabling the operation of MASS. Object detection and
classification algorithms are critical for improving navigation and collision avoidance and
in optimizing the performance and efficiency of the vessels. However, the vulnerability of
AI systems to adversarial attacks is a significant concern, as these attacks can compromise
the accuracy and reliability of these systems and have real-world consequences. Despite the
lack of experience with adversarial attacks in the maritime industry, the potential risks of
such attacks are significant. Therefore, the SMD-Plus dataset, which includes classes such
as ferries, boats, and buoys that MASS may encounter during actual operation, was used to
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generate adversarial images in various ways. We thereafter performed adversarial attacks
on YOLOv5 with transfer learning, an object detection and classification algorithm. The
experimental results demonstrated that the time required for generating perturbed images
varied depending on the DNN algorithm and adversarial attack method. Moreover, we
found that changes in the ε value can affect the vulnerability of the system to adversarial
attacks. Experimentally, we determined the adversarial attack methods that are most
harmful to object detection and classification models.

In AI, the risk of adversarial attacks has long been recognized, and studies on adver-
sarial attacks and mitigation methods have been ongoing. However, the optimization of
these studies for the specific characteristics of each industry and the awareness of their
necessity is important. Recently, studies on these attacks have also been conducted in the
medical field. In the maritime industry, stakeholders are developing and studying systems
that apply AI models to realize MASS. However, they have not fully recognized the risks
of adversarial attacks or experienced them. Nevertheless, to ensure the safe operation
of MASS, recognizing the risks of adversarial attacks and developing measures for their
mitigation are crucial. By presenting a case of adversarial attacks using maritime datasets,
this study has contributed to raising awareness among stakeholders on cybersecurity in AI.
Moreover, our findings will be used to investigate experimental defense technologies to
mitigate vulnerability to adversarial attacks, ultimately contributing to the enhancement
of cybersecurity in MASS. The development of effective defense strategies could further
improve the security and safety of autonomous ships, rendering them a more reliable
transportation mode.

6.2. Limitations

Even though this study does not consider technical advancements in adversarial attack
methods, its aim is to provide information about security threats to object detection and
classification algorithms through adversarial attack methods. Therefore, we simplified our
experiments to help gain empathy for the risks of adversarial attacks. For this, we used
known adversarial attack algorithms and limited hyperparameters and assumed that the
attacks could not be detected when the perturbed images were acquired and validated.
Therefore, the results of this experiment cannot be generalized. In the future, we intend to
extend our research on the vulnerability of AI systems considering different object detec-
tion and classification algorithms in addition to YOLOv5 and various hyperparameters.
Furthermore, we will continue to research methods to identify and mitigate vulnerabilities
that could pose even more critical threats to the maritime industry.
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