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Abstract: Coastal flooding exacerbated by climate change is recognised as a major global threat which
is expected to impact more than a quarter of all people currently residing in Pacific Island countries.
While most research in the last decade has focused on understanding the dynamics and impacts
of future coastal flooding from extreme sea levels, the effects of relative sea level rise (RSLR) on
exacerbating tsunami hazards are not well understood. Far-field or distant sourced tsunamis tend
to have relatively lower impacts in Pacific Island states compared with locally sourced events, but
there is limited understanding of how the impact of far-field tsunamis changes over time due to
RSLR. Using the hydrodynamics software BG-Flood, we modelled the Tōhoku-oki tsunami from
propagation to inundation in Samoa under incremental SLR to examine the effects that RSLR has
on changing the exposure of the built environment (e.g., buildings) to a far-field tsunami. Outputs
of maximum tsunami inundation and flow depth intensities which incorporate incremental SLR
were then combined with digital representations of buildings and depth-damage functions in the
RiskScape multi-hazard risk modelling software to assess the changes in building exposure over time.
Results suggest that the impacts of Tōhoku-oki-type far-field tsunamis become significant once RSLR
reaches 1 m above present levels. Present-day building exposure will increase by approx. 500% with
1 m RSLR by 2080–2130, and approx. 2350% with 2 m RSLR by as early as 2130–2140. These findings
provide useful insights for application to tsunami hazard risk assessments under changing sea level
conditions in analogous island environments.

Keywords: tsunami hazard; risk modelling; climate change; built-environment; damage impacts;
Tōhoku-oki tsunami; Samoa

1. Introduction

Coastal flooding exacerbated by climate change-driven sea level rise in the 21st century
(21C) is recognized as a major existential threat that will affect the livelihoods of more
than 1 billion people globally [1,2]. This includes between a quarter to more than half of
all people living in the Pacific Islands [3]. Indeed, projected losses in real gross domestic
product (real GDP) for major cities around the world are estimated to be significant within
the next 100 years [4], potentially costing the global economy USD trillions in losses by the
year 2100 under a business-as-usual climate change scenario [5–7].

While much focus within the last decade has been on understanding the dynamics
and impacts of coastal flooding due to tidal, relative sea level rise (RSLR), storm surges,
and extreme wave processes (e.g., Refs. [8–11]), concerns about the effects of sea level
rise on exacerbating tsunami inundation impacts have increased. For example, Li et al.
(2018) [12] demonstrated that sea level rise will increase both the frequency and intensity
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of tsunami-induced flooding by a factor of 1.5 to 4.7 in the city of Macau located along
the South China Sea. Similarly, Nagai et al. (2019) [13] used maximum credible tsunami
simulations in Tokyo Bay for different sea level rise scenarios to show that tsunami-induced
flood risk in the cities of Yokohama and Kawasaki gradually increases throughout the 21C,
with the risk to life in these cities significantly affected once sea levels reach +1.0 m higher
than at present.

More recently, Dura et al. (2021) [14] conducted an earthquake and tsunami modelling
analysis that combined local probabilistic RSLR projections to show the increased potential
for more frequent, relatively low magnitude earthquakes (Mw 8.0) originating at the Alaska-
Aleutian subduction zone, to produce distant-source tsunamis that exceed historically
observed maximum nearshore tsunami heights at Los Angeles and Long Beach Ports
in California. These observations are consistent with nearshore tsunami height changes
due to SLR presented by Koyano et al. (2022) [15] for the east coast of Japan, who also
suggested that the effects of SLR on expected tsunami heights at coast are non-linear and
vary according to location.

In the Pacific Islands region, far-field or distant sourced tsunamis which take up to
several hours from initiation to coastal impact are typically considered lower risk events
compared with locally sourced tsunamis (e.g., Refs. [16,17]). However, there is a dearth
of detailed hazard risk modelling studies which demonstrate the effects that SLR will
have on exacerbating tsunami inundation risk to far-field events in Pacific Island envi-
ronments. Furthermore, there is a scarcity of evidence on the temporal and critical SLR
height thresholds where life and livelihoods are threatened due to SLR-exacerbated far-field
tsunami inundation. In the light of evidence delineating the effects of SLR on increasing
tsunami inundation risk in coastal continental settings (e.g., Refs. [12–15]), there is a need
to investigate these processes in the Pacific Small Island Developing States (SIDSs), a region
that is highly vulnerable to the impacts of multiple geo-climatic hazards.

In this paper, we investigate the impact that incremental RSLR has on far-field tsunami
inundation and exposure risk in Samoa (Figure 1), a Pacific SIDS where RSLR is further
exacerbated by rapid post-2009 Samoan earthquake subsidence [18]. Using the 2011 Tōhoku-
oki tsunami as a proxy for a far-field tsunami type that can impact the city of Apia in north
Upolu Island, we model the event from its source through to propagation across the Pacific
Ocean and inundation in Samoa under incremental SLR scenarios (up to 2 m). Results
of the inundation modelling are used along with digital representations of buildings to
quantify their exposure and damage to permanent tidal flooding caused by incremental
SLR, as well as to identify sea-level thresholds where exposure risk to far-field tsunami
inundation becomes critical. The implications of our findings on tsunami risk planning in
analogous Pacific Island contexts are discussed.
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Figure 1. (a) Samoan Islands. The inundation model bathymetry and mesh layout (transparent thin 
black boxes) are shown. Each black box represents a block of the adaptive mesh with each block 
representing 16 × 16 model cells. (b) Apia city and (c) Fagaloa Bay on the north of Upolu Island are 
directly exposed to far-field tsunamis generated from source regions along the northern Pacific Ring 
of Fire. 
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The northern coasts of the Samoan Islands are typically considered at lower threat 

from tsunami inundation compared with southern coasts which are exposed to the well-
known local tsunamigenic northern Tonga subduction zone [19]. The apparent absence of 
local tsunamigenic earthquake sources north of the island chain, and limited detailed in-
vestigations on potential volcanic or landslide tsunamigenic sources off the northern 
flanks of the island shelf [20], lead to a general impression that tsunami threats to the 
capital city of Apia are relatively low. Indeed, historical records of tsunami impacts in 
Apia suggest that the threats are lower [19], with the recent 2022 Hunga Tonga-Hunga 
Ha’apai volcanic eruption generating a tsunami that resulted in a 0.514 m wave height at 
the Apia tide gauge [21]. However, no damage or reports of injuries/losses due to strong 
currents were observed. Outside of Apia, local volcanic-related tsunami threats which can 
impact areas in northwest Upolu (e.g., the 1907 Mt Matavanu phreatomagmatic-generated 
tsunamis) [22], and far-field tsunamis that can impact Fagaloa Bay in northeast Upolu 
(e.g., 1960 Chile tsunami) [17], have been recorded, although no loss of life from any of 
these events were observed.  

A single building at the head of Fagaloa Bay is the only location in Samoa known to 
have experienced inundation following the 2011 Tōhoku-oki tsunami, whereby a tsunami 
wave of 0.7 m above normal water level was observed approx. 14 h after the event (Figure 
1). Long period waves associated with both local and distant sourced tsunamis are known 
to excite resonance frequencies in the characteristic V-shaped Fagaloa embayment which 

Figure 1. (a) Samoan Islands. The inundation model bathymetry and mesh layout (transparent thin
black boxes) are shown. Each black box represents a block of the adaptive mesh with each block
representing 16 × 16 model cells. (b) Apia city and (c) Fagaloa Bay on the north of Upolu Island are
directly exposed to far-field tsunamis generated from source regions along the northern Pacific Ring
of Fire.

2. Contextual Background

The northern coasts of the Samoan Islands are typically considered at lower threat
from tsunami inundation compared with southern coasts which are exposed to the well-
known local tsunamigenic northern Tonga subduction zone [19]. The apparent absence
of local tsunamigenic earthquake sources north of the island chain, and limited detailed
investigations on potential volcanic or landslide tsunamigenic sources off the northern
flanks of the island shelf [20], lead to a general impression that tsunami threats to the
capital city of Apia are relatively low. Indeed, historical records of tsunami impacts in
Apia suggest that the threats are lower [19], with the recent 2022 Hunga Tonga-Hunga
Ha’apai volcanic eruption generating a tsunami that resulted in a 0.514 m wave height at
the Apia tide gauge [21]. However, no damage or reports of injuries/losses due to strong
currents were observed. Outside of Apia, local volcanic-related tsunami threats which can
impact areas in northwest Upolu (e.g., the 1907 Mt Matavanu phreatomagmatic-generated
tsunamis) [22], and far-field tsunamis that can impact Fagaloa Bay in northeast Upolu (e.g.,
1960 Chile tsunami) [17], have been recorded, although no loss of life from any of these
events were observed.

A single building at the head of Fagaloa Bay is the only location in Samoa known to
have experienced inundation following the 2011 Tōhoku-oki tsunami, whereby a tsunami
wave of 0.7 m above normal water level was observed approx. 14 h after the event (Figure 1).
Long period waves associated with both local and distant sourced tsunamis are known
to excite resonance frequencies in the characteristic V-shaped Fagaloa embayment which
can amplify wave flux effects (e.g., Ref. [23]). Resonance modes and periods in Samoa are
predominantly controlled by fringing reefs [24] and excite when constructive interference
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occurs between the tsunami oscillation periods and the natural periods of bathymetric
features. This phenomenon can result in more severe onshore inundation impacts than
might be expected (e.g., Refs. [23,24]. In far-field tsunamis, the largest wave amplitude tends
to occur following the first peak due to this resonance. For these types of events both the
regional and local bathymetry play a significant role in resonance amplification [25]. Hence,
the 2011 Tōhoku-oki tsunami inundation in this embayment is unsurprising, with the
observed wave providing a reference to corroborate our tsunami model and its application
in the incremental SLR inundation analysis.

3. Materials and Methods

To investigate the impact of a Tōhoku-oki-type far-field tsunami inundation on the
exposure of buildings in Samoa under incremental sea level rise, we (1) modelled the
tsunami from the earthquake source to inundation in the Samoan Islands, as described
in Sections 3.1 and 3.2, and (2) we modelled the built-environment exposure to tsunami
inundation impacts on buildings, as described in Section 3.3.

3.1. Tsunami Source and Propagation Modelling

Tsunami modelling from source to propagation and inundation was undertaken
using the shock-capturing hydrodynamics model BG-Flood (block-adaptive on graphics
processing unit flood model) [24,26] (Figure 1). Finite faulting characteristics for the 2011
Tōhoku-oki earthquake source developed by Yamazaki et al. (2018) [27], were used to
configure the tsunami generation in BG-Flood. The initial deformation of the water surface
was calculated using the deformation model of Okada (1985) [28] for each of the 60 segments
of the finite fault solution in [27]. The deformation of each of the 60 separate fault segments
was applied at the rupture time suggested in [28] (up to 2 min after the initial rupture).
Transpacific propagation of the wave to Samoa was simulated on a uniform spherical grid
with a resolution of 0.05 degrees (~5 km).

BG-Flood applies graphics processing units (GPUs) configured with an adaptive mesh
refinement (AMR)-type grid to simulate shallow water hydrodynamics used to model
propagation across the Pacific Ocean to inundation in Samoa. The Saint-Venant shallow
water equation (SWE) solver in Basilisk [29] provided the model governing equations,
with a Block Uniform Quadtree mesh used to enable efficient simulation on the GPUs [30].
The model uses an explicit solver where the timestep is automatically calculated based on
a courant (CFL) number of 0.5. The SWE engine validation and solver are described in
detail by Popinet (2012) [31]. The ability of BG-Flood to efficiently simulate many scenarios
efficiently [26] meant that it was well suited for modelling the range of 2011 Tōhoku-oki-
type tsunami inundation under benchmark and incremental SLR. BG-Flood was validated
using tide gauge and Deep-ocean Assessment and Reporting of Tsunamis (DART) buoy
data to show that it satisfactorily reproduced two historical events. The 11 March 2011
magnitude 9.1 Tōhoku-oki tsunami showed moderate to strong correlation with DART
buoys (DART-51425 and DART-51426), and the 29 September 2009 magnitude 8.1 Samoa
tsunami event showed strong correlation with the Apia tide gauge [32].

The digital elevation models (DEM) used in these simulations were derived from:
(1) the Generic Bathymetric Chart of the Oceans (GEBCO) at ~900 m resolution covering
the ocean expanse between the earthquake source and Samoa; (2) a multi-beam bathymetry
survey over the Samoan shelf slopes at a resolution of ~60 m [33], which was used in
the adaptive refinement of the propagating wave in the nearshore; (3) light detection
and ranging (LiDAR) topography and nearshore bathymetry (down to 30 m depth) at
a resolution of 5 m [34], for simulation of inundation on land at spatially variable grid
resolutions (e.g., 10 m on land and close to the shore and 160 m in the deep ocean).

3.2. Tsunami Inundation Modelling

Tsunami inundation modelling was undertaken in 0.2 m sea level rise increments,
ranging from 0 m SLR up to 2 m SLR. This was to account for a range of possible SLRs
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from present to beyond 2150 including, pessimistic carbon emission pathways leading to
severe ice sheet loss. These simulations were all modelled using BG-Flood with the tsunami
inundating at high tide, to simulate a worse-case scenario, despite the Tōhoku tsunami
reaching Samoa at low to medium tide. Additionally, the actual observed tsunami was
modelled for use in validation.

The tide on 11 March 2011 was also modelled in BG-Flood under the different sea level
rise increments. These results were then used in the exposure analysis to determine the
assets that would already be exposed to sea level rise even without the far-field tsunami.
There are no sea level records from the Apia Tide Gauge between 2 March 2011 at 0800
and 24 March 2011 at 0300 due to instrument faults, meaning that the relevant tide for the
tsunami had to be predicted. This was carried out by first calculating the tidal constituent
from the hourly tide gauge data from 1994 to 2021 using the UTide Matlab package. The
constituents were then used to predict the tide level for 11 March 2011 using the tide
prediction function of UTide.

The tsunami wave generated from the source and propagation modelling was added
to the predicted tide from the 11 March 2011 and the SLR increment to use as the boundary
forcing for the north boundary of the tsunami simulations. The tide and SLR increment
only was used as the boundary forcing for the other three sides of the tsunami simulation
domain, and all domain sides for the tide simulations.

A simplified roughness map forcing was used in all simulations. The map was
generated by applying a low roughness (0.0001 m) for elevations lower than −20 m (i.e.,
20 m below datum), and a value of 0.01 m was used for areas with elevations above the
−20 m threshold. The roughness map was used to represent the high roughness from
the fringing reefs, mangroves, and coastal vegetation in contrast to the relatively smooth
seafloor of the continental shelf and deep ocean. Outputs of this model were in the network
common data form (netCDF) file format, with the highest inundation extent extracted for
use in the subsequent exposure and damage analysis.

Validation of the model was limited due to the lack of Apia Tide Gauge data. Eyewit-
nesses from the 2011 tsunami event in Samoa observed the inundation of only one building
in Fagaloa Bay. As seen in Figure 2, the tide alone did not result in the inundation of this
building, yet when coupled with the tsunami, this building becomes inundated as expected,
which helps to validate our model.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 6 of 18 
 

 

 

Figure 2. Maximum inundation extent of modelled tsunami wave in Fagaloa Bay. The inundated 

building of interest used for validation is shown in red. 

3.3. Tsunami Damage Analysis 

Cumulative tsunami damages in response to RSLR were analysed using the multi-

hazard impact model framework supported by the RiskScape software [35]. RiskScape 

implements modeller-defined risk quantification workflows as model pipelines. Model 

pipeline steps and functions enable the analysis of hazard, exposure, and vulnerability 

data across different spatio-temporal domains using geoprocessing and spatial sampling 

operations. Pipelines configured to analyse direct physical damage to buildings in this 

study are presented in Figure 3, with building structures selected for damage analysis due 

to their socio-economic importance in tsunami preparedness, response, and recovery ac-

tivities. 

 

Figure 3. RiskScape framework showing the modelling workflow, data inputs, and outputs. 

In addition to the tsunami hazard scenarios presented in Section 3.2, exposure and 

vulnerability information provide model inputs to quantify the direct physical damage to 

Figure 2. Maximum inundation extent of modelled tsunami wave in Fagaloa Bay. The inundated
building of interest used for validation is shown in red.



J. Mar. Sci. Eng. 2023, 11, 945 6 of 15

3.3. Tsunami Damage Analysis

Cumulative tsunami damages in response to RSLR were analysed using the multi-
hazard impact model framework supported by the RiskScape software [35]. RiskScape
implements modeller-defined risk quantification workflows as model pipelines. Model
pipeline steps and functions enable the analysis of hazard, exposure, and vulnerability
data across different spatio-temporal domains using geoprocessing and spatial sampling
operations. Pipelines configured to analyse direct physical damage to buildings in this study
are presented in Figure 3, with building structures selected for damage analysis due to their
socio-economic importance in tsunami preparedness, response, and recovery activities.

In addition to the tsunami hazard scenarios presented in Section 3.2, exposure and
vulnerability information provide model inputs to quantify the direct physical damage to
buildings. Buildings located within the maximum modelled tsunami run-up extent were
acquired from Sischka et al. (2022) [36]. Building outlines were represented as polygons
with construction frame attribute characteristics.

To model the damages to buildings exposed to tsunami inundation, we used fragility
curves which relate a tsunami hazard intensity measure (e.g., flow depth) to the conditional
probability of built structures reaching or exceeding a given damage state [37]. In this study,
direct physical damage is assessed using empirical fragility curves that represent surveyed
Samoan buildings damaged in the 2009 South Pacific Tsunami [38]. The curves denote
a lognormal cumulative density function (CDF) that estimates conditional probabilities
of buildings reaching specific damage states (DS) in response to maximum tsunami flow
depth (m) (Table 1), for ‘timber’, ‘masonry’, and ‘reinforced concrete’ construction frame
typologies. These construction frame typologies represent over 90% of buildings potentially
exposed to tsunami hazards in Samoa [39], thereby providing sufficient representation of
direct physical damage for buildings in the study area. Where µ (mean) and σ (standard
deviation) damage state coefficients are unavailable for timber and reinforced concrete
typologies (Table 1), or where construction frame attributes were absent and could not be
attributed to buildings, masonry fragility curves were applied to calculate the conditional
DS probabilities.
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A model pipeline was developed to quantify the direct tsunami exposure and physical
damage to buildings in RiskScape (Figure 3). Individual tsunami hazard and RSLR scenar-
ios consisted of two digital maps representing (1) tsunami flow depth, and (2) permanent
tide without tsunami inundation. Buildings exposed to tide inundation depths >0.05 m
were identified as permanently inundated and removed from the physical damage analysis.
A maximum flow depth for built structures episodically exposed to tsunami hazards was
then determined from spatial sampling of grids intersecting the buildings’ outline poly-
gons. Maximum flow depth was applied in object-specific building curves to calculate
the conditional probability of each DS, which were then weighted to estimate the damage
probability (0–1) for each building object.
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Table 1. Summary of tsunami fragility curve parameters for buildings applied in this study. Masonry
parameters for DS1 and DS2 were applied for timber and reinforced concrete building construc-
tion frames.

Damage State (DS) Damage Description

Construction Frame

Timber Masonry Reinforced
Concrete

µ σ µ σ µ σ

0 None - - - - - -
DS1 Light Non-structural damage only - - 0.29 0.46 - -
DS2 Minor Significant non-structural and minor structural damage - - 0.46 0.4 - -

DS3 Moderate Significant structural and non-structural damage 1.15 0.38 1.28 0.35 1.38 0.56
DS4 Severe Irreparable structural damage, will require demolition 1.26 0.4 1.86 0.41 3.45 0.54

DS5 Collapse Complete structural collapse 1.62 0.28 2.49 0.4 7.3 0.94

4. Results

Modelling results of the 2011 Tōhoku-oki-type tsunami in Samoa corroborate eye-
witness observations that the impacts of inundation were minimal and predominantly
confined to Fagaloa Bay in northeast Upolu. The tsunami arrival coincided with low tide
and resulted in the inundation of one building located on the coastline in Fagaloa Bay
(Figure 2). Under increasing SLR, the impacts of a similar magnitude event are more severe.
For example, Figures 4 and 5 show increases in wave amplification for a Tōhoku-oki-type
tsunami at the coast in Apia and Fagaloa Bay with increasing sea levels, with the extent of
tsunami flooding and expected damage in these locations becoming more widespread and
severe. This wave amplification is due to tsunami resonance in Fagaloa Bay and at the Apia
tide gauge, caused by boundary reflection and the bathymetry of these two locations [40].
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Additionally, more buildings become exposed to inundation as well as experience
greater severity of tsunami damage impacts with increasing sea level rise, as evident in the
higher probable damage states (Figures 6 and 7). This is explained by the greater tsunami
inundation extents and increases in flood depths above ground level at any given location
within the inundation exposure zone under corresponding incremental SLR. This results in
more buildings experiencing over a 50% probability of reaching or exceeding DS5, meaning
they are likely to be completely destroyed or washed away. For example, the scenario in
which the tsunami arrives at high tide with 2 m of SLR destroys 1142 buildings across the
entire country compared with 250 buildings for the scenario with 1 m of SLR.

Importantly, many of the buildings inundated by this characteristic tsunami type
under a 1 m SLR scenario are within the high tide inundation zone. This implies that
buildings in these locations will be subjected to permanent flooding, whereby habitability
will likely be compromised when the sea level reaches 1 m above its current level in
future (e.g., Figure 8). The difference between the tsunami and permanent tide inundation
extent increases dramatically after 0.6 m RSLR from 0.26 km2 to 1.14 km2 by 1.2 m RLSR
(Figure 9a). A similar trend is observed for tsunami-exposed buildings with the permanent
tide inundation removed. That is, 189 buildings are exposed with 0.6 m RSLR, but 838
are exposed with 1.2 m RSLR (Figure 9b). After 1.2 m RSLR, the combined tsunami and
permanent tide inundation extent and number of exposed buildings becomes more even.
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buildings exposed.

As demonstrated by Figure 10, as the RSLR increases, so does the area that is exposed
to the total inundation extent. From this these results clearly indicate that the number
of buildings exposed is proportional to the inundation extent, i.e., increasing as RSLR
increases (Figure 11). The maximum number of buildings exposed to tide is 9056, which
occurs with 2 m SLR, compared to 9860 exposed to the tsunami, a difference of 804. Based
on the Intergovernmental Panel on Climate Change (IPCC) shared socioeconomic pathway
(SSP) climate change scenarios, where SSP1-2.6 represents low greenhouse gas emission
scenarios, and SSP5-8.5 represents continuing high emissions of greenhouse gases [41],
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by the year 2100 the likely number of buildings exposed to the tide only could be as
low as 529 (SSP1-2.6, quantile 17), or as high as 4916 (SSP5-8.5, quantile 83). Likewise,
buildings exposed to the tsunami wave could be between 615 (SSP1-2.6, quantile 17) and
5707 (SSP5-8.5, quantile 83). With SSP1-2.6 (quantile 17), an extra 86 buildings are exposed
to the tsunami; however, for SSP5-8.5 (quantile 83), an additional 791 buildings are exposed.
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The number of buildings with an over 50% probability of reaching/exceeding DS5,
which are likely to be fully destroyed or washed away, also increases significantly as RSLR
increases (Figure 12). By 2100, it is likely that the tsunami and tide combined could result
in approx. 55 buildings (SSP1-2.6, quantile 17) to 430 buildings (SSP5-8.5, quantile 83)
reaching/exceeding DS5.
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5. Discussion

The 2011 Tōhoku-oki event represents one of the most destructive tsunamis to have
occurred in the 21st century in terms of losses and damage, with far-field effects experienced
in Fagaloa Bay, Samoa, approximately 7500 km southeast of the source. Whilst the impacts
of tsunami inundation from this event in Samoa were minimal, the results of our study
suggest that a similar far-field-type event occurring under a future SLR of 1 m and 2 m
could impact up to 2082 and 9440 more buildings, respectively, compared with present-
day exposure levels. When removing the buildings already exposed to permanent tide
inundation, if a similar event were to occur with 1 m and 2 m of SLR, it is likely to expose
570 and 774 more buildings, respectively. These increases in exposure are explained by the
greater tsunami inundation extents and corresponding flow depths above ground level
under the incremental SLR scenarios assessed.

Based on sea level rise projections for Samoa under a high emission, low mitiga-
tion, shared socioeconomic pathway scenario (SSP5-8.5) with medium confidence at the
17th–83rd quantile, 0.5 m SLR is likely to be reached/exceeded in Samoa between the
decades 2050–2080, 1 m SLR will likely be reached/exceeded by 2080–2130, and 2 m SLR
will likely be reached/exceeded as early as 2130–2140 in a worst-case scenario [41]. Further-
more, post-2009 South Pacific earthquake subsidence in Samoa is occurring at a particularly
fast rate of 8–16 mm/year [18], which exacerbates SLR and implies that a SLR of 1 m could
be reached/exceeded earlier than current projections for these islands.

Interestingly, our results indicate that one of the greatest risks to buildings was the SLR
itself rather than the characteristic far-field tsunami-type that we had assessed. While the
modelled inundation extents combining permanent tide and tsunami consistently showed
the tsunami extent being greater than the tide, the increase in sea level is what drives
the extension of inundation further inland and subsequent increase in building exposure
and damage. After approximately 0.6 m SLR, the tsunami and permanent tide extents
start to diverge more significantly, with this divergence highest after 1 m (Figure 11). This
indicates that an approx. 1 m SLR threshold is where far-field tsunamis, such as the 2011
Tōhoku-oki-type event, may become more problematic. These observations are consistent
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with similar findings by Nagai et al. (2020) [13], who showed that tsunami risk to life in the
cities of Yokohama and Kawasaki in Japan become significantly affected once sea levels
reach +1.0 m higher than at present.

While our results show compelling evidence for the effects of SLR on exacerbating
far-field tsunami inundation risk throughout the 21st century in Samoa, one of the main
problems with the modelling approach taken was the absence of Apia tide gauge data for
validation of the event at the time of its occurrence in 2011. This was due to the Apia tide
gauge being temporarily non-operational when the 2011 event occurred. Nevertheless,
eyewitness accounts of inundation collected by the Samoa Disaster Management Office
in Fagaloa Bay after the event provided a means to corroborate, in part, the modelled
runup in this study. The consistent modelled-to-observed results of the 2011 event in
Fagaloa Bay, along with modelling corroborations in [32], aid in substantiating its usage as
a characteristic-type far-field event in our incremental SLR scenario modelling.

Overall, our results indicate that far-field tsunami inundation in Samoa similar to a
2011 Tōhoku-oki-type event will be exacerbated throughout the 21st century with rising
sea levels, posing significant coastal resilience challenges once sea levels reach/exceed
+1.0 m. In contrast to high volcanic islands of the Pacific, such as Samoa, our findings have
major implications for tsunami inundation risk in low-lying atolls which typically have
summits of less than 5–10 m above sea level. These observations lead us to suggest that
incorporating the effects of SLR in tsunami hazard risk modelling assessments in Pacific
Island environments should be considered for use in longer-term coastal resilience and
adaptation planning.

Notwithstanding the focus of this study, the findings imply that SLR will compound the
impacts of near-field tsunamis which presently expose large quantities of assets (e.g., [36,42,43])
and can cause destructive damages and losses (e.g., [36,38]). Similar inferences could be made
for high-frequency, low-magnitude, coastal inundation hazards, such as king tides and cyclone-
related storm surges (e.g., [44]), whereby RSLR may compound present day exposure and
impact levels across the Pacific.

6. Conclusions

This study set out to assess the effects that rising sea level may have on far-field
tsunami inundation exposure and impacts to buildings in a Pacific Island context. Using
a characteristic 2011 Tōhoku-oki-type far-field tsunami scenario in Samoa, we show that
incremental SLR over the 21st century results in greater tsunami inundation extents and
corresponding flood depths above ground level. In turn, this exposes more buildings to
more severe damage with each progressive rise in SLR, with tsunami impacts becoming
significant once SLR reaches/exceeds +1.0 m. Based on a high-emissions, low-mitigation
SSP5-8.5 SLR scenario for Samoa, it is likely that this threshold will be reached by the
decades 2080–2130. This timing could be sooner depending on whether the current rates of
rapid land subsidence in Samoa continue, relative to any potential increases in the current
rate of SLR in the coming decades for this region under low mitigation scenarios. Overall,
our findings have planning implications for similar environmental settings in the Pacific
and point towards a need to incorporate the effects of SLR in future tsunami inundation
risk assessments.
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