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Abstract: In the context of harvesting tidal stream energy, which is considered a promising source of
renewable energy due to its high energy density, stability, and predictability, this paper proposes a
review-based roadmap investigating the use of data-driven techniques, more specifically machine
learning-based approaches, to detect and estimate the extent of biofouling in tidal stream turbines.
An overview of biofouling and its impact on these turbines will be provided as well as a brief review
of current methodologies and techniques for detecting and estimating biofouling. Additionally,
recent developments and challenges in the field will be examined, while providing several promising
prospects for biofouling detection and estimation in tidal stream turbines.
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1. Introduction

The oceans contain vast amounts of energy that could be harnessed for significant
benefits. Ocean energy can help address climate change and promote sustainability, partic-
ularly for the 2.4 billion people living near coastlines. There are four main types of ocean
energy, as illustrated in Figure 1 [1].

Figure 1. Types of ocean renewable energies.

Over the past decade, significant advancements have been made in the areas of tidal
and wave energies, which are considered to be more reliable and consistent sources of
power compared to solar and wind energy that can be affected by unpredictable weather.
Tidal stream power, in particular, is an attractive option as it can be generated using sub-
merged turbines, which have a minimal visual impact on the environment [2–6]. Unlike
hydroelectric power plants, which rely on the flow of rivers, tidal energy harnesses the
energy from ocean currents. In this context, Table 1 compares various renewable energy
sources in terms of predictability, visual impact, environmental impact, and capital cost.
Tidal stream energy offers advantages such as being a clean, predictable, and low-impact
source of electricity. It does not produce greenhouse gases or toxic chemicals, it has low fluc-
tuations in power generation, and its turbine farms have a minimal environmental impact.
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Table 1. Comparison of various renewable energy sources [6].

Renewable Predictability Visual Environmental Capital
Source Impact Impact Cost

Wind No High Medium High

Solar No High Low High

Hydro Yes High Medium High

Wave No Medium Low High

Tidal range Yes High Medium High

Tidal current Yes Low Low High

In 1967, the first commercial tidal power plant was built in the La Rance Estuary in
Brittany, France. The plant had an installed capacity of 240 MW and was able to provide
more than 5% of the region’s domestic electricity demand. The plant’s barrage was 720 m
long and covered 22 km2, and it also served as a road with a lock for shipping to pass
through. The barrage featured 24 reversible 10 MW bulb turbines and a hydrostatic head
of 5 m, and it had an annual power generation capacity of 480 GWh [7]. The Annapolis
Royal Generating Station in Canada’s Bay of Fundy was the second-largest commercial
tidal power plant and was developed between 1980 and 1984. It has a capacity of 20 MW
and generates 30 GWh per year [8]. The Shihwa tidal power plant, completed in 2011 in
South Korea, is now the largest in the world [9].

The ocean power industry is expected to grow further in the future as many countries
aim to reach net -zero emissions. As a result, many new projects are planned to use this
technology for power generation [10]. Ocean energy is expected to become more widely
used in the future, with large-capacity expansion plans predicted. As of 2020, there are
wave and tidal stream projects in development with a combined capacity of 2.83 GW, as
shown in Figure 2. According to the International Renewable Energy Agency, 10 GW of
ocean energy may be commercially implemented by 2030 [11].

Figure 2. Active and projected tidal stream and wave capacity beyond 2020.

A significant challenge in the long-term use of Tidal Stream Turbines (TST) is their
reliability in a marine environment. Biofouling, the buildup of organisms such as algae,
mussels, and barnacles on surfaces, can negatively impact the performance of the turbine
by altering its shape and roughness [12]. While the use of appropriate materials can reduce
corrosion, controlling biofouling growth is more difficult. Biofouling on ship hulls has been
well studied [13–19] , but there is limited research on its effects on TSTs [12,20–22] . To
ensure optimal performance of the turbines, it is crucial to develop a specific biofouling
management plan that allows for regular assessment and adjustments to reach the desired
level of biofouling control. In other words, as TSTs performance degrades over time
due to biofouling, it is critical to determine when the effects of fouling are significant
enough to warrant removal. The purpose of this review-based study is to provide a
thorough examination of the scarce available literature on the impact of biofouling on
the performance of TSTs. It will also evaluate the pros and cons of various biofouling
detection and estimation techniques, including a comparison analysis. This paper will
identify areas of research that have yet to be explored and will suggest potential future
research directions.
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The remainder of this paper is organized as follows. Section 2 provides a brief overview
of biofouling and explores the relationship between TSTs and biofouling. Section 3 presents
the latest advances in biofouling detection and estimation in TSTs. Section 4 provides an
overview of the challenges and prospects in biofouling detection and estimation. Finally,
Section 5 concludes the paper.

2. Biofouling vs. Tidal Stream Turbines
2.1. Biofouling Briefly

Biofouling is defined as the buildup of undesirable materials on a solid surface, lead-
ing to its impaired function. Specifically, marine biofouling refers to the accumulation of
biological organisms on surfaces submerged in seawater. The process of biofouling begins
with macromolecular conditioning and bacterial colonization, followed by the formation of
a microfouling community composed of unicellular eukaryotes. This microfouling commu-
nity can rapidly cover the substrate, though the timing can vary based on environmental
factors. After a month of immersion, multicellular eukaryotes such as algal fragments and
meroplanktonic larvae start to settle, leading to the development of a macrofouling commu-
nity. These larger organisms eventually create a complex and advanced three-dimensional
community on the substrate, as depicted in Figure 3 [12,20,23].

Figure 3. Diagram illustrating the process of biofouling accumulation on objects submerged in the
sea. Reproduced from [23].

Organisms in a macrofouling community can be divided into two categories: hard and
soft biofouling. Hard biofouling species, including tubeworms, barnacles, mussels, and
tube-building amphipods, which construct either a protective shell or calcareous casing.
On the other hand, soft biofouling creatures such sponges, anemones, hydroids, and sea
squirts do not form shells or casings and often resemble jellyfish. It has been observed
that prolonged installations of TSTs often experience significant biofouling, as depicted in
Figure 4 which shows various fouling organisms attached to the turbine.
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Figure 4. The Clear Current Company tidal stream turbine: Immersed in September 2006 and
retrieved in October 2011 due to loss of performance. Reproduced from [20].

2.2. Biofouling vs. Turbine Technologies

Biofouling can impact the hydrodynamics of a TST, leading to an increase in drag
and decreased performance [20,24,25]. This occurs as the biofouling buildup increases
the resistance and creates recirculation loops and vortices near the blade surface, even if
only partial colonization takes place [24]. The rotor of the TST can also be damaged by
biofouling, which can have corrosive effects. Furthermore, the accumulation of marine
fouling can accelerate the corrosion of the thin protective layer on the turbine blade [26]
(Figure 5).

Figure 5. Illustration of the corrosion acceleration due to biofouling. Courtesy of Prof. Yusaku
Kyozuka [27].

Tidal stream energy is mainly captured using horizontal-axis turbines that employ
either geared or direct-drive systems, as shown in Figure 6 [28]. Both types of drivetrains
have their own pros and cons, and the industry has not yet reached a consensus on the
preferred technology [29]. In this context, the turbine technology, specifically its drivetrain
option, will be more or less impacted by biofouling [29]. For instance, full direct-drive TSTs,
due to their low-speed operation, often have large diameter generators and substantial
static components that promote the development of biofouling, as depicted in Figure 4. In
this case, the TST has been retrieved due to loss of performance. Figure 7 shows examples
of well-known TSTs undergoing biofouling.
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(a) SeaGen tidal stream turbine (geared turbine).

(b) OpenHydro tidal stream turbine (direct-drive turbine).

Figure 6. Horizontal-axis tidal stream turbines. Reproduced from [29].
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(a)

(b)

(c)

Figure 7. Biofouling accumulation illustrations. (a) The OpenHydro tidal stream case (turbine
retrieved after 3 months of immersion). Reproduced from [30]. (b) The AR1000 tidal stream turbine
case (ROV video monitoring). Reproduced from [31]. (c) The Sabella tidal stream case. Reproduced
from [20].
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There is currently limited operational experience in the marine renewable energy in-
dustry to make broad conclusions, but it is evident that submerged TSTs that are submerged
for extended periods can experience a substantial buildup of marine growth, ranging from
soft to hard, such as barnacles. This buildup is favored by the surface structure, with larger
surfaces leading to a more significant buildup. As a result, the main conclusion that can be
drawn regarding the TST drivetrain option is that a full direct-drive design (gearless) is
more likely to promote biofouling development.

3. Biofouling Detection and Estimation

Efficient cleaning techniques for biofouling prevention rely on a detection process, but
detecting biofouling is difficult due to its inherent unpredictability and related uncertainties,
making it challenging to accurately predict its impacts on the monitored structure.

Early detection of biofouling, while it can still be removed, using environmentally
friendly techniques that do not damage the paint or hull coating, is the most effective
strategy for reducing biofouling. Figure 8 shows the significant impact of biofouling that
can be avoided with an effective detection process.

(a) Biofouling inception.

(b) Highly impacting biofouling.

Figure 8. Illustration of highly impacting biofouling. Courtesy of Prof. Yusaku Kyozuka [27].



J. Mar. Sci. Eng. 2023, 11, 908 8 of 18

There are two main types of biofouling detection techniques in the literature: reporter-
based and physical detection [32,33]. Physical detection studies the surface and monitors
changes for early detection of biofilm growth (i.e., changes in transmembrane pressure or
permeate flow through the membrane). Several imaging technologies, including light
and epifluorescence microscopy techniques, electron microscopy, confocal laser scan-
ning microscopy, and optical coherence tomography, are the primary vehicles for this
strategy [34–37]. However, the monitored changes are only noticeable at the mature biofilm
stage, making it difficult to effectively treat biofouling and limiting the effectiveness of clean-
ing. Detecting bacterial activity prior to full biofilm development (as shown in Figure 9)
can help minimize the ongoing costs associated with biofouling and improve the efficiency
of the system under consideration (e.g., ship, TST, floating offshore wind turbine, etc.).
Reporter-based systems use cellular-level procedures to generate a measurable signal,
such as enzyme-based cleavage or receptor-specific binding, which indirectly measures
bacterial abundance with varying sensitivity. Extremely sensitive techniques such as flow
cytometry, fluorescence in situ hybridization, and polymerase chain reaction can be used to
count bacteria, but require extensive sample preparation, technical know-how, and lengthy
incubation times (4–6 h) [38–40].

Figure 9. Biofouling development in an aqueous environment. Reproduced from [33].

Currently, biofouling detection is primarily conducted through the use of remotely
operated vehicles or dive teams. The latter option requires working with a specific orga-
nization due to legal regulations to ensure safe diving practices, which results in longer
inspection times, more staff, and typically subpar images and films that are used to interpret
the overall condition of the monitored system. This method is also expensive, difficult to
plan, and requires professionals to analyze the data, resulting in a lengthy report gener-
ation process. Image localization is also challenging to identify during post-processing.
Alternatively, the use of a remotely operated underwater vehicle (ROV) is simpler in terms
of equipment but still suffers from lengthy inspection and report generation times, with
preparation taking around 3 h, inspection taking 6 h, and post-processing taking 10 h.
Additionally, not all ROVs have adequate stabilization systems or high-definition imaging
capabilities to ensure proper visibility and image quality [41,42]. A recent development
in this field involves the implementation of reconfigurable magnetic coupling thrusters in
the vectorial thrust of autonomous underwater vehicles. This technology offers improved
water-tightness and enhanced maneuvering capabilities, which are highly desirable features
in agile underwater vehicles used for visual inspection and maintenance of TSTs [43,44].
While the concept shows great promise, it is important to develop viable submersible
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prototypes that feature full waterproof mechanisms in order to effectively implement
the technology.

3.1. What Was Done for Biofouling Detection in Vessels Hull and Propeller?

The issue of biofouling in ships is being addressed with the goal of improving oper-
ational efficiency and saving fuel or energy [45,46]. The goal is to reduce the frequency
of costly cleaning, which can also lead to increased wear of the hull coating, resulting
in higher resistance and fuel consumption. If the performance of the ship in service can
be closely and accurately monitored, it may be possible to optimize the intervals for hull
and propeller maintenance. Nowadays, ships are equipped with a variety of sensors that
constantly record several variables, some of which reflect the hydrodynamic state of the
vessel. These recorded variables can be used to monitor the hydrodynamic performance of
the ship while in service [13,16,17].

In this regard, it has been proposed to use data-driven techniques, more specifically
machine learning-based approaches, to analyze the in-service data recorded on board a ship
and monitor its hydrodynamic performance over time [14,15,18]. Indeed, using data-driven
models, advanced statistical techniques can be used to develop models based on historical
data generated and stored by recording and monitoring equipment, without any prior
knowledge about the physical phenomena behind the data. These data can be used for
monitoring and fault detection purposes. In addition, data-driven models allow for the
incorporation of exogenous data, such as weather conditions, which may contain valuable
information that is difficult to represent by conventional methods [18].

A ship digital twin-based approach is a possible solution of choice to monitor biofoul-
ing development. In this context, authors in [19] developed a ship digital twin using the
extensive data collected by the ship sensors. The main objective was to estimate the speed
reduction caused by biofouling.

3.2. What about Tidal Stream Turbine Biofouling Detection?

Rotor blade failures in tidal turbines are of significant concern due to the effects of
biofouling and the denser, more corrosive nature of seawater. From this perspective, it can
be argued that biofouling may contribute to a type of turbine blade imbalance [47].

In this context, TST generator stator current-based analysis techniques are widely
used because they allow for non-intrusive condition-based monitoring, which is ideal
since it does not require additional sensors or data acquisition systems. These techniques
involve the use of stator current signals to identify and quantify abnormal frequency
excitations [48–55]. In [56], the authors have suggested the use of the stator voltage in the
restrictive case where the generator is not connected to the grid and is unloaded. One
shortcoming of signal-processing-based condition monitoring techniques is that they may
be best suited for analyzing fixed-speed generators, whereas actual tidal turbine operations
will typically involve variable speeds. In addition, imbalance faults typically result in
cyclic impulses in the stator current. However, conventional time-series analysis is often
inadequate in this case, as these impulses are often obscured by background noise or other
undesired frequency components. To address this challenge, advanced signal-processing
techniques are needed [49,51–55]. A critical analysis of TST biofouling blade unbalance
main signal processing-based monitoring approaches are summarized in Table 2.
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Table 2. Tidal stream turbine signal processing-based monitoring approaches critical analysis.

Ref. Proposed Approach Contributions Limitations

[48] Angular resampling
Proposes a method for detecting rotor
imbalance faults in TSTs, with improved
reliability and efficiency.

The process of resampling the sensor data at differ-
ent angular positions and analyzing the resulting
data can be computationally intensive, especially
for large TST systems.

[49] Variational mode decom-
position (VMD)

This paper proposes a novel method for
detecting rotor imbalance faults in TSTs
using VMD and denoising techniques
which improve the accuracy of the fault
detection method to improve the detec-
tion accuracy.

The paper does not provide an in-depth analysis
of the used denoising techniques. Further analy-
sis of denoising techniques could help identify the
optimal denoising method.

[50] Concordia transform
Proposing an advanced concordia trans-
form for blade imbalance fault detection
by using TST generator stator currents.

The proposed method lacks analysis of false posi-
tive rates, which may increase the operating costs
of the TST system due to unnecessary maintenance
and repairs.

[51] Wavelet threshold denois-
ing

This paper proposes a method to detect
imbalance faults in TSTs under different
flow velocity conditions.

The generalizability of the proposed method to dif-
ferent TST systems and operating conditions is not
clear, and further evaluation is needed to under-
stand the performance of the proposed method
under different scenarios.

[52] Continuous wavelet trans-
form

Extracting frequency-domain features
from the vibration signals generated by
the blades of marine hydrokinetic tur-
bines which can be used to accurately
classify the blades as healthy or faulty.

Does not provide a detailed comparison of
the proposed method with other existing
methods for detecting blade faults in marine
hydrokinetic turbines.

[53] Bispectrum analysis
This paper presents experimental results
that evaluate TSTs stator currents bispec-
trum analysis in detecting biofouling.

A detailed comparison of the proposed method
with other existing methods for detecting biofoul-
ing in TSTs is not provided.

[54] Higher-order spectra

This paper proposes detecting blade
biofouling in a TST using higher-
order spectra analysis of the sta-
tor currents of its permanent magnet
synchronous generator.

The study focuses solely on the use of higher- or-
der spectral analysis to detect biofouling of TST
blades while other types of spectral analysis, such
as wavelet analysis, can improve its performance.

[55]
Data normalization and
empirical mode decompo-
sition (EMD)

The proposed method normalizes TST
generator stator current signals and then
applies EMD to identify the presence
and severity of imbalance faults includ-
ing wave and turbulence conditions.

The proposed fault detection methods assume the
model parameters are known. However, in prac-
tice, these parameters are generally unknown and
should be estimated. The potential benefits of us-
ing Ensemble EMD (EEMD) to improve detection
accuracy have not been investigated.

[56] Integration methodology

The proposed method integrates the fea-
tures of the TST generator stator voltage
signal to detect imbalance faults. The
detection process is based on two main
steps: data conversion using Hilbert
transform and extreme value search-
ing, and then the imbalance fault sig-
nature extraction using frequency se-
quences subtraction.

A detailed comparison of the proposed method
with other existing methods for detecting biofoul-
ing in TSTs is not provided. In addition, it is yet to
be demonstrated whether voltage can be effectively
used for detection, given that TSTs connected to the
distribution grid will an imposed voltage

Recent findings suggest that using machine learning algorithms to extract features
from signal processing and statistical-based fault detection approaches can significantly
improve their performance. Machine-learning-based approaches are particularly effective
in identifying important trends that may be hidden by frequency interference and low
signal-to-noise ratios in the TST generator acquired signals [57,58]. While in [57], authors
used a hybrid approach that combines a physics-based model of the TST blades with
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machine learning techniques to detect imbalances, in [58], the generator power signal was
used by the authors as a means of monitoring. Vibrations have also been investigated as
means for monitoring [59,60]. In this context, it is suggested that further investigations are
needed to fully evaluate the performance in real-world situations and to develop methods
for improving the accuracy.

The significance of visual inspection for TSTs to ensure their safe and efficient operation
has led to the proposal of using image processing as an effective alternative for monitoring
biofouling. To achieve this, researchers have recommended using machine learning to
extract features from processed images captured by an ROV [61–64]. However, several
challenges have arisen in this context, particularly with regard to diagnosing biofouling
types and estimating their thickness. Table 3 provides a critical analysis of machine learning-
based monitoring approaches.

Table 3. Tidal stream turbine machine learning-based monitoring approaches critical analysis.

Ref. Proposed Approach Contributions Limitations

[57] Hybrid approach
Combines two existing approaches:
physics-based modeling and data-based
methods.

The effectiveness of the proposed method depends
on the accuracy of the used physical model. If the
model fails to accurately describe the behavior of the
TST rotor blade under varying conditions, the fault
detection accuracy may be reduced.

[58] Continuous Morlet
wavelet transform

Analyzing the generator power signal
of the TST and using advanced signal-
processing techniques to identify fre-
quency components that correspond to
rotor blade imbalances.

Fault detection methods based on generator power
signal analysis may not be sensitive enough to de-
tect small imbalances or faults in the rotor blades,
especially in noisy environments or under varying
operating conditions.

[59] Sparse autoencoder and
softmax regression

Combining modified sparse autoen-
coder and softmax regression for image
processing to detect imbalance faults on
the blade of a TST.

Training data amounts being limited, this may com-
promise the imbalance blade faults detection accu-
racy. In addition, the training process suffers from a
significant computational load.

[60]
Bidirectional long short-
term memory (BiLSTM)
network

Proposing a BiLSTM network-based de-
sign for TST imbalance faults detection.
In addition, a high-fidelity turbine sim-
ulation platform based on the NREL
FAST code is developed for data collec-
tion and design testing.

The effectiveness of the proposed method may de-
pend on the TST specific characteristics and operat-
ing conditions.

[61] Coarse–fine semantic seg-
mentation network

The proposed method combines coarse
and fine branches using dynamic
weights to effectively detect attach-
ments, even under turbid conditions.

Evaluated on a relatively small dataset. However, it
is not clear whether it can be generalized to larger
and more diverse datasets.

[62] Sparse autoencoder and
softmax regression

Combining of sparse autoencoder and
softmax regression techniques to extract
and classify image features.

The proposed method relies on the availability of
labeled training data that may not be readily avail-
able or that may require significant manual effort
to obtain.

[63] ShuffleNet v2

Improved version of the ShuffleNet v2
deep convolutional neural network that
can accurately classify different types of
attachment faults in real time.

The study did not explore the impact of different
hyperparameters or training methods on the perfor-
mance of the proposed method. Further optimiza-
tion and development may be needed to improve
the detection performance.

[64]
Depthwise separable
convolutional neural
network (DSCNN)

Extensive collection of images depicting
different kinds of attachment faults in
TST blades used to train and assess a
DSCNN-driven detection approach.

It is assumed that the TST operates in steady state
and does not consider the effects of transient condi-
tions or dynamic loads on the detection process.
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3.3. Biofouling Estimation

Accurate estimation of biofouling is essential to develop a reliable predictive mainte-
nance prognosis method for tidal turbines. In this context, several well-known methods
can be used to estimate the extent of biofouling [65]. These include: (1) Visual inspections
of the TST surfaces can provide a rough estimate of the extent of biofouling. However, this
method is subjective and can be time-consuming [66]; (2) Hydroacoustic uses sound waves
to create images of the TST surfaces. These images can be exploited to estimate the amount
of biofouling; (3) Laser scanning creates a 3D image of the TST surfaces. This method
can provide highly detailed information about the extent and distribution of biofouling.
This technique is typically costly and time-consuming; (4) Chemical analysis of the water
surrounding the TST can provide information about the types of organisms present and
their abundances. This method can be used to estimate the potential for biofouling. Unfor-
tunately, all these monitoring methods are both time-consuming and expensive, resulting
in a challenge for TSTs biofouling cost-effective and real-time monitoring.

In this context, performance monitoring of the TST can provide an indirect estimate of
the extent of biofouling [67]. If the turbine power output decreases over time, it may be
an indication of biofouling. The performance analysis involves measuring turbine power
output and comparing it to expected values, which can be affected by biofouling. Variations
in power output over time can indicate the extent and severity of biofouling, typically
on the turbine blades. Performance analysis could be used in combination with other
monitoring methods to provide a more complete picture of biofouling.

In a recent study [68], the development of an automated system for the assessment of
biofouling in images in ship hulls has been discussed. The authors applied deep learning
to automate the classification of images from in-water inspections to identify the presence
and severity of fouling. They compared the results of the deep learning-based approach
with those of three expert human assessors and found high levels of accuracy and preci-
sion. Furthermore, to address the methods issues of computational burden and related
equipment cost, authors in [69], explored the feasibility of a hyperspectral imaging system
for biofouling assessment. The system consists of a hyperspectral camera, a tunable light
source, and a custom-built sample holder. The camera captures the reflected light from
the surface, which is then analyzed using a wide neural network classifier to determine
the type and amount of biofouling on the surface. The tunable light source enables the
system to adjust the wavelength of the light to optimize the detection of different types of
biofouling. These studies have important implications for the management of biofouling
in TSTs, as an automated system could greatly improve the efficiency and accuracy of
biofouling assessment. It also demonstrates again, as above-mentioned in section B, the
potential of machine learning and image-processing techniques for biofouling monitoring
and management.

4. Challenges and Prospects

TST biofouling detection and estimation can be challenging due to several factors, including:
Underwater environment. Indeed, TSTs operate in harsh underwater environments

where visibility is limited and access for inspection and maintenance is difficult. This can
make it challenging to detect and estimate the extent of biofouling on turbine components.

Biofouling variation. The nature and extent of biofouling on TSTs can vary consider-
ably depending on factors such as water temperature, salinity, and flow rate. This makes
it challenging to develop a universal detection and estimation method that works under
all conditions.

Data processing. The data generated by sensors need to be processed and analyzed
to provide useful information about biofouling on TSTs. This requires advanced data-
processing techniques, including machine learning algorithms, to accurately detect and
estimate biofouling.

Sensor selection. Choosing the right sensors, including cameras, to detect and estimate
biofouling can be challenging. Different sensors have different sensitivities and resolutions,
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and the selection of the sensor needs to take into account factors such as the type and
location of the biofouling.

Cost. Implementing a system for biofouling detection and estimation on TSTs can be
expensive, requiring the installation of sensors and data processing infrastructure. The
cost of the system must be carefully weighed against the potential benefits of reducing the
impact of biofouling on turbine performance and lifespan.

In addition to these challenges, TSTs may face additional challenges related to their
specific operating conditions, such as high turbulence and the presence of marine life [70].
These factors can make biofouling detection and estimation more difficult and require
specialized sensors and data-processing techniques.

Despite these challenges, there are several promising prospects for detecting and
estimating biofouling in TSTs, including:

Development of advanced sensors. The development of advanced sensors or a combi-
nation of sensors that can detect and estimate biofouling is a promising area of research.
For example, sensors that use acoustic, optical, or electrical signals to detect biofouling are
being developed and tested.

Machine-learning-based techniques. Machine learning algorithms are being applied
to sensor-generated data to accurately detect and estimate biofouling. These techniques
can improve the accuracy of biofouling detection and estimation and reduce the need for
human intervention.

Regarding sensors development and combination, it has been already suggested that
using different types of sensors, including generator current and voltage sensors, vibration
sensors, and cameras, can provide a more complete and better picture of biofouling. In
this context, videos, which are constructed using a stream of image is expected to be an
interesting option for biofouling monitoring [68,71]. Indeed, the video format would offer
the possibility of incorporating information from previous and future images to improve
and smooth the biofouling estimates. One possible way to address the issue of limited
visibility leading to blurry images is to utilize advanced sensors [61–64]. For instance,
in [69], a solution was proposed using a combination of a hyperspectral camera, a tunable
light source, and a custom sample holder. However, this approach may be considered
impractical for TSTs and costly since poor image quality can be alternatively addressed
through machine learning-based image-processing techniques.

Regarding data processing, particularly for biofouling monitoring, it is widely agreed
that machine learning techniques are the most effective solution for addressing related
issues with signal and or image processing.

In this context, to address the challenge of biofouling variation, typically identifying
species or groups of species, two machine learning-based approaches can be adopted. The
most challenging one is to consider local species by fine-tuning the developed model when
deploying it in areas where no training data were collected and the fouling communities on
the TST may be different to those in the training dataset [68]. This will likely improve the
detection and estimation algorithm. An alternative approach to studying biofouling is to
concentrate on categorizing the overall extent of biofouling coverage in an image, instead
of solely identifying the species that are present as suggested in [68]. Indeed, using this
approach eliminates the need for identifying individual species or species groups, which
would have necessitated a much larger image dataset to achieve comparable outcomes.
This approach should be most appropriate for monitoring biofouling of a tidal turbine, as
the primary objective is to estimate the extent of biofouling for maintenance prognosis.
Furthermore, the challenge of addressing the depth of biofouling through early maintenance
can only be met by using images captured by multiple cameras. In this context, authors
in [72] proposed a method for depth estimation from a single image, which uses additional
sparse depth samples. The adopted end-to-end network processes both single image and
sparse depth samples for estimating depth. The sparse depth samples are obtained using a
low-resolution depth sensor or visual simultaneous localization and mapping algorithms.
The proposed method, validated on various datasets and compared to other state-of-the-art
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methods, is a promising approach for estimating dense depth maps from a single RGB
image and sparse depth samples.

The use of the video format makes it possible to improve and refine the biofouling
estimates by incorporating data from previous and subsequent images. In particular, it
is suggested to learn the spatiotemporal representation of motion information. This is
however a difficult task that has been recently tackled in [73], where the authors proposed
a long-term motion descriptor. In this case, the descriptor stream was introduced in a
three-stream framework to identify the actions in a video sequence, therefore allowing a
simultaneous capture of static spatial features, short-term motion, and long-term motion in
the video.

Images and or videos could be useful and helpful for early maintenance purposes.
Indeed, experiments conducted on a model ship have shown that barnacle settlement
patterns can significantly affect ship resistance and powering, with some patterns resulting
in a greater increase in drag and thus requiring more power to maintain speed [74]. In this
case, these results can be used to inform the maintenance of TSTs, with particular attention
to preventing and managing barnacle settlement in areas of the turbine where it is likely to
cause the largest loss of performance (e.g., the blades).

With respect to the cost challenge, while focusing on categorizing the overall extent
of biofouling coverage on a TST, performance monitoring should be preferred using the
stator current of the turbine generator [53–55]. Such an approach will be more effective in
detecting biofouling initiation. To improve the performance and accuracy of the estimation,
image processing should be adopted as described above. In this context, data processing
(current and image) should be performed using machine learning-based approaches. To
enhance the accuracy and precision of detection and estimation, a data processing step
for both current and image is suggested to handle the acquired signals such as noise and
harmonics, as previously proposed for fault detection of electrical machines [75,76]. The
conventional approach of feature extraction by learning, without a signal processing step,
is widely adopted. However, it is not always clear how this method will perform with
respect to the monitored system and potential failures.

Prompted by the success of incorporating machine learning into signal process-
ing and statistical-based biofouling detection and estimation, it has been suggested to
improve machine learning methodologies by incorporating prior physical knowledge
through the incorporation of a physics-based loss function that mitigates inconsistent target
labelling [57]. However, the modeling complexity can be overcome by a pure machine
learning approach [77], although this remains a challenging task. In this context, in [78], it
was provided with the most important challenges faced by data-driven prognostics and
health management, including data availability, complexity, and drift to statistical het-
erogeneity, and system heterogeneity, while suggesting future directions to address these
challenges. These prospective directions will help improve the monitoring of biofouling in
TSTs, including their remaining useful life estimation [79].

The potential of digital twin technology with sensor-based techniques to improve
the maintenance and reliability of offshore systems with a clear potential of application
for TSTs condition monitoring [80–82] has recently been highlighted. Such a model-based
approach will allow addressing the cost challenge. Specifically, utilizing a monitoring
system based on digital twin technology offers a promising means of reducing costs while
simultaneously optimizing turbine operation and maintenance [83,84].

In terms of prognosis [78], while following the TST current state (biofouling detection),
the use of a digital twin will allow for predicting the future state (biofouling extent) during
the TST using a machine learning-based monitoring approach [81].

5. Conclusions

This paper proposed a roadmap for using machine-learning-based techniques to detect
and estimate biofouling in TSTs, which are a promising source of renewable energy due to
their high energy density, stability, and predictability.
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The proposed review covered various aspects, including the impact of biofouling on
turbines, current detection and estimation methods, recent developments, and challenges.
Furthermore, prospective advanced data-processing techniques, including machine learn-
ing algorithms, to detect and estimate biofouling in TSTs have been specifically discussed.
These techniques should improve the accuracy and precision of detection and estimation,
reducing the need for human intervention.
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21. Farkas, A.; Degiuli, N.; Martić, I.; Barbarić, M.; Guzović, Z. The impact of biofilm on marine current turbine performance. Renew.
Energy 2022, 190, 584–595. [CrossRef]

22. Walker, J.; Green, R.; Gillies, E.; Phillips, C. The effect of a barnacle-shaped excrescence on the hydrodynamic performance of a
tidal turbine blade section. Ocean Eng. 2020, 217, 107849. [CrossRef]

23. Chambers, L.; Stokes, K.; Walsh, F.; Wood, R. Modern approaches to marine antifouling coatings. Surf. Coat. Technol. 2006,
201, 3642–3652. [CrossRef]

24. Stringer, C.C.; Polagye, B.L. Implications of biofouling on cross-flow turbine performance. SN Appl. Sci. 2020, 2, 1–13. [CrossRef]
25. Walker, J.; Flack, K.; Lust, E.; Schultz, M.; Luznik, L. Experimental and numerical studies of blade roughness and fouling on

marine current turbine performance. Renew. Energy 2014, 66, 257–267. [CrossRef]
26. Soares, C.G.; Garbatov, Y.; Zayed, A.; Wang, G. Influence of environmental factors on corrosion of ship structures in marine

atmosphere. Corros. Sci. 2009, 51, 2014–2026. [CrossRef]
27. Kyozuka, Y. Observation of biofouling on two test plates with narrow gap in Hirado strait, Nagasaki. In Proceedings of the 2018

OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, 28–31 May 2018; pp. 1–6. [CrossRef]
28. Zhou, Z.; Benbouzid, M.E.H.; Charpentier, J.F.; Scuiller, F.; Tang, T. Developments in large marine current turbine technologies—A

review. Renew. Sustain. Energy Rev. 2017, 77, 852–858. [CrossRef]
29. Touimi, K.; Benbouzid, M.E.H.; Tavner, P. Tidal stream turbines: With or without a gearbox? Ocean Eng. 2018, 170, 74–88.

[CrossRef]
30. Benbouzid, M.E.H. Quo Vadis Tidal Stream Turbines Drivetrain Technology Options? Keynote Speech at the 2022 In-

ternational Shanghai Maritime University Master Students Forum, Shanghai (China), November 2022. Available online:
https://www.researchgate.net/publication/365223190_Quo_Vadis_Tidal_Stream_Turbines_Drivetrain_Technology_Options (ac-
cessed on 15 February 2023).

31. Report, M. Lessons Learnt from the Design, Installation and Initial Operations Phases of the 6 MW 4-Turbine Tidal Array in
Scotland’s Pentland Firth. 2020. Available online: https://webassets.bv.com/2020-06/MeyGen20Lessons20Learnt20Executive2
0Summary_0.pdf (accessed on 15 February 2023).

32. Dreszer, C.; Flemming, H.C.; Zwijnenburg, A.; Kruithof, J.; Vrouwenvelder, J. Impact of biofilm accumulation on transmembrane
and feed channel pressure drop: Effects of crossflow velocity, feed spacer and biodegradable nutrient. Water Res. 2014, 50, 200–211.
[CrossRef]

33. Khan, B.K.; Fortunato, L.; Leiknes, T. Early biofouling detection using fluorescence-based extracellular enzyme activity. Enzym.
Microb. Technol. 2019, 120, 43–51. [CrossRef]

34. Wolf, G.; Crespo, J.G.; Reis, M.A. Optical and spectroscopic methods for biofilm examination and monitoring. Rev. Environ. Sci.
Biotechnol. 2002, 1, 227–251. [CrossRef]

35. Valladares Linares, R.; Fortunato, L.; Farhat, N.; Bucs, S.; Staal, M.; Fridjonsson, E.; Johns, M.; Vrouwenvelder, J.; Leiknes, T.
Mini-review: Novel non-destructive in situ biofilm characterization techniques in membrane systems. Desalin. Water Treat. 2016,
57, 22894–22901. [CrossRef]

36. Wagner, M.; Taherzadeh, D.; Haisch, C.; Horn, H. Investigation of the mesoscale structure and volumetric features of biofilms
using optical coherence tomography. Biotechnol. Bioeng. 2010, 107, 844–853. [CrossRef]

37. Li, W.; Liu, X.; Wang, Y.N.; Chong, T.H.; Tang, C.Y.; Fane, A.G. Analyzing the evolution of membrane fouling via a novel method
based on 3D optical coherence tomography imaging. Environ. Sci. Technol. 2016, 50, 6930–6939. [CrossRef]

38. Rompre, A.; Servais, P.; Baudart, J.; De-Roubin, M.R.; Laurent, P. Detection and enumeration of coliforms in drinking water:
Current methods and emerging approaches. J. Microbiol. Methods 2002, 49, 31–54. [CrossRef] [PubMed]

39. Virág, L.; Kerékgyártó, C.; Fachet, J. A simple, rapid and sensitive fluorimetric assay for the measurement of cell-mediated
cytotoxicity. J. Immunol. Methods 1995, 185, 199–208. [CrossRef] [PubMed]

40. Prest, E.; Hammes, F.; Kötzsch, S.; van Loosdrecht, M.; Vrouwenvelder, J. Monitoring microbiological changes in drinking water
systems using a fast and reproducible flow cytometric method. Water Res. 2013, 47, 7131–7142. [CrossRef] [PubMed]

41. Davidson, I.; Scianni, C.; Hewitt, C.; Everett, R.; Holm, E.; Tamburri, M.; Ruiz, G. Mini-review: Assessing the drivers of ship
biofouling management–aligning industry and biosecurity goals. Biofouling 2016, 32, 411–428. [CrossRef]

42. Hachicha, S.; Zaoui, C.; Dallagi, H.; Nejim, S.; Maalej, A. Innovative design of an underwater cleaning robot with a two arm
manipulator for hull cleaning. Ocean Eng. 2019, 181, 303–313. [CrossRef]

43. Gasparoto, H.F.; Chocron, O.; Benbouzid, M.E.H.; Meirelles, P.S. Advances in reconfigurable vectorial thrusters for adaptive
underwater robots. J. Mar. Sci. Eng. 2021, 9, 170. [CrossRef]

44. Gasparoto, H.F.; Chocron, O.; Benbouzid, M.E.H.; Meirelles, P.S.; Ferreira, L.O.S. Torques analysis of a flat reconfigurable magnetic
coupling thruster for marine renewable energy systems maintenance AUVs. Energies 2019, 12, 56. [CrossRef]

45. Shenkar, N.; Rosen, D. How will vessels be inspected to meet emerging biofouling regulations for the prevention of marine
invasions? Manag. Biol. Invasions 2018, 9, 195–208.

46. Valchev, I.; Coraddu, A.; Kalikatzarakis, M.; Geertsma, R.; Oneto, L. Numerical methods for monitoring and evaluating the
biofouling state and effects on vessels’ hull and propeller performance: A review. Ocean Eng. 2022, 251, 110883. [CrossRef]

http://dx.doi.org/10.15866/irecon.v5i3.12749
http://dx.doi.org/10.1016/j.renene.2022.03.134
http://dx.doi.org/10.1016/j.oceaneng.2020.107849
http://dx.doi.org/10.1016/j.surfcoat.2006.08.129
http://dx.doi.org/10.1007/s42452-020-2286-2
http://dx.doi.org/10.1016/j.renene.2013.12.012
http://dx.doi.org/10.1016/j.corsci.2009.05.028
http://dx.doi.org/10.1109/OCEANSKOBE.2018.8559219
http://dx.doi.org/10.1016/j.rser.2016.12.113
http://dx.doi.org/10.1016/j.oceaneng.2018.10.013
https://www.researchgate.net/publication/365223190_Quo_Vadis_Tidal_Stream_Turbines_Drivetrain_Technology_Options
https://webassets.bv.com/2020-06/MeyGen 20Lessons 20Learnt 20Executive 20Summary_0.pdf 
https://webassets.bv.com/2020-06/MeyGen 20Lessons 20Learnt 20Executive 20Summary_0.pdf 
http://dx.doi.org/10.1016/j.watres.2013.11.024
http://dx.doi.org/10.1016/j.enzmictec.2018.10.001
http://dx.doi.org/10.1023/A:1021238630092
http://dx.doi.org/10.1080/19443994.2016.1180483
http://dx.doi.org/10.1002/bit.22864
http://dx.doi.org/10.1021/acs.est.6b00418
http://dx.doi.org/10.1016/S0167-7012(01)00351-7
http://www.ncbi.nlm.nih.gov/pubmed/11777581
http://dx.doi.org/10.1016/0022-1759(95)00115-Q
http://www.ncbi.nlm.nih.gov/pubmed/7561130
http://dx.doi.org/10.1016/j.watres.2013.07.051
http://www.ncbi.nlm.nih.gov/pubmed/24183559
http://dx.doi.org/10.1080/08927014.2016.1149572
http://dx.doi.org/10.1016/j.oceaneng.2019.03.044
http://dx.doi.org/10.3390/jmse9020170
http://dx.doi.org/10.3390/en12010056
http://dx.doi.org/10.1016/j.oceaneng.2022.110883


J. Mar. Sci. Eng. 2023, 11, 908 17 of 18

47. Xie, T.; Wang, T.; He, Q.; Diallo, D.; Claramunt, C. A review of current issues of marine current turbine blade fault detection.
Ocean Eng. 2020, 218, 108194. [CrossRef]

48. Xie, T.; Wang, T.; Diallo, D. Marine Current Turbine Imbalance Fault Detection Method Based on Angular Resampling. IFAC-
PapersOnLine 2020, 53, 12074–12079. [CrossRef]

49. Wei, J.; Xie, T.; Wang, T. A VMD Denoising-based Imbalance Fault Detection Method for Marine Current Turbine. In Proceedings of
the IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–20 May 2020; pp. 2813–2818.
[CrossRef]

50. Xie, T.; Wang, T. An Imbalance Fault Detection Approach based on Differential Concordia Transform for Marine Current
Turbine. In Proceedings of the 2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS), Liuzhou, China,
20–22 November 2020; pp. 134–139. [CrossRef]

51. Li, Z.; Wang, T.; Wang, Y.; Amirat, Y.; Benbouzid, M.E.H.; Diallo, D. A wavelet threshold denoising-based imbalance fault
detection method for marine current turbines. IEEE Access 2020, 8, 29815–29825. [CrossRef]

52. Freeman, B.; Tang, Y.; VanZwieten, J. Marine hydrokinetic turbine blade fault signature analysis using continuous wavelet
transform. In Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 June 2019;
pp. 1–5. [CrossRef]

53. Saidi, L.; Benbouzid, M.; Diallo, D.; Amirat, Y.; Elbouchikhi, E.; Wang, T. PMSG-based Tidal Current Turbine Biofouling Diagnosis
using Stator Current Bispectrum Analysis. In Proceedings of the IECON 2019-45th Annual Conference of the IEEE Industrial
Electronics Society, Lisbon, Portugal, 14–17 October 2019; pp. 6998–7003. [CrossRef]

54. Saidi, L.; Benbouzid, M.E.H.; Diallo, D.; Amirat, Y.; Elbouchikhi, E.; Wang, T. Higher-order spectra analysis-based diagnosis
method of blades biofouling in a PMSG driven tidal stream turbine. Energies 2020, 13, 2888. [CrossRef]

55. Zhang, M.; Wang, T.; Tang, T.; Benbouzid, M.E.H.; Diallo, D. An imbalance fault detection method based on data normalization
and EMD for marine current turbines. ISA Trans. 2017, 68, 302–312. [CrossRef]

56. Xie, T.; Li, Z.; Wang, T.; Shi, M.; Wang, Y. An integration fault detection method using stator voltage for marine current turbines.
Ocean Eng. 2021, 226, 108808. [CrossRef]

57. Freeman, B.; Tang, Y.; Huang, Y.; VanZwieten, J. Physics-informed turbulence intensity infusion: A new hybrid approach for
marine current turbine rotor blade fault detection. Ocean Eng. 2022, 254, 111299. [CrossRef]

58. Freeman, B.; Tang, Y.; Huang, Y.; VanZwieten, J. Rotor blade imbalance fault detection for variable-speed marine current turbines
via generator power signal analysis. Ocean Eng. 2021, 223, 108666. [CrossRef]

59. Wen, P.; Wang, T.; Xin, B.; Tang, T.; Wang, Y. Blade imbalanced fault diagnosis for marine current turbine based on sparse
autoencoder and softmax regression. In Proceedings of the 2018 33rd Youth Academic Annual Conference of Chinese Association
of Automation (YAC), Nanjing, China, 18–20 May 2018; pp. 246–251. [CrossRef]

60. Wilson, D.; Passmore, S.; Tang, Y.; VanZwieten, J. Bidirectional Long Short-Term Memory Networks for Rapid Fault Detection
in Marine Hydrokinetic Turbines. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and
Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 495–500. [CrossRef]

61. Peng, H.; Yang, D.; Wang, T.; Pandey, S.; Chen, L.; Shi, M.; Diallo, D. An adaptive coarse-fine semantic segmentation method for
the attachment recognition on marine current turbines. Comput. Electr. Eng. 2021, 93, 107182. [CrossRef]

62. Zheng, Y.; Wang, T.; Xin, B.; Xie, T.; Wang, Y. A Sparse Autoencoder and Softmax Regression Based Diagnosis Method for the
Attachment on the Blades of Marine Current Turbine. Sensors 2019, 19, 826. [CrossRef]

63. Yang, D.; Peng, H.; Wang, T. Attachment Fault Diagnosis for Tidal Stream Turbine based on Improved ShuffleNetv2. In
Proceedings of the 2021 China Automation Congress (CAC), Shanghai, China, 6–8 November 2021; pp. 6844–6849. [CrossRef]

64. Xin, B.; Zheng, Y.; Wang, T.; Chen, L.; Wang, Y. A diagnosis method based on depthwise separable convolutional neural network
for the attachment on the blade of marine current turbine. Proc. Inst. Mech. Eng. Part J. Syst. Control Eng. 2021, 235, 1916–1926.
[CrossRef]

65. Mérigaud, A.; Ringwood, J.V. Condition-based maintenance methods for marine renewable energy. Renew. Sustain. Energy Rev.
2016, 66, 53–78. [CrossRef]

66. Bonnin-Pascual, F.; Ortiz, A. On the use of robots and vision technologies for the inspection of vessels: A survey on recent
advances. Ocean Eng. 2019, 190, 106420. [CrossRef]

67. Song, S.; Demirel, Y.K.; Atlar, M.; Shi, W. Prediction of the fouling penalty on the tidal turbine performance and development of
its mitigation measures. Appl. Energy 2020, 276, 115498. [CrossRef]

68. Bloomfield, N.J.; Wei, S.; Woodham, A.; Wilkinson, P.; Robinson, A.P. Automating the assessment of biofouling in images using
expert agreement as a gold standard. Sci. Rep. 2021, 11, 2739. [CrossRef]

69. Santos, J.; Pedersen, M.L.; Ulusoy, B.; Weinell, C.E.; Pedersen, H.C.; Petersen, P.M.; Dam-Johansen, K.; Pedersen, C. A Tunable
Hyperspectral Imager for Detection and Quantification of Marine Biofouling on Coated Surfaces. Sensors 2022, 22, 7074. [CrossRef]

70. Jónsdóttir, G.M.; Milano, F. Modeling of Short-Term Tidal Power Fluctuations. IEEE Trans. Sustain. Energy 2020, 11, 2337–2344.
[CrossRef]

71. Gormley, K.; McLellan, F.; McCabe, C.; Hinton, C.; Ferris, J.; Kline, D.I.; Scott, B.E. Automated Image Analysis of Offshore
Infrastructure Marine Biofouling. J. Mar. Sci. Eng. 2018, 6, 2. [CrossRef]

72. Hambarde, P.; Murala, S. S2DNet: Depth Estimation From Single Image and Sparse Samples. IEEE Trans. Comput. Imaging 2020,
6, 806–817. [CrossRef]

http://dx.doi.org/10.1016/j.oceaneng.2020.108194
http://dx.doi.org/10.1016/j.ifacol.2020.12.756
http://dx.doi.org/10.1109/IECON43393.2020.9254894
http://dx.doi.org/10.1109/DDCLS49620.2020.9275073
http://dx.doi.org/10.1109/ACCESS.2020.2972935
http://dx.doi.org/10.1109/PESGM40551.2019.8973470
http://dx.doi.org/10.1109/IECON.2019.8926625
http://dx.doi.org/10.3390/en13112888
http://dx.doi.org/10.1016/j.isatra.2017.02.011
http://dx.doi.org/10.1016/j.oceaneng.2021.108808
http://dx.doi.org/10.1016/j.oceaneng.2022.111299
http://dx.doi.org/10.1016/j.oceaneng.2021.108666
http://dx.doi.org/10.1109/YAC.2018.8406380
http://dx.doi.org/10.1109/ICMLA.2018.00080
http://dx.doi.org/10.1016/j.compeleceng.2021.107182
http://dx.doi.org/10.3390/s19040826
http://dx.doi.org/10.1109/CAC53003.2021.9728227
http://dx.doi.org/10.1177/0959651820937841
http://dx.doi.org/10.1016/j.rser.2016.07.071
http://dx.doi.org/10.1016/j.oceaneng.2019.106420
http://dx.doi.org/10.1016/j.apenergy.2020.115498
http://dx.doi.org/10.1038/s41598-021-81011-2
http://dx.doi.org/10.3390/s22187074
http://dx.doi.org/10.1109/TSTE.2019.2954977
http://dx.doi.org/10.3390/jmse6010002
http://dx.doi.org/10.1109/TCI.2020.2981761


J. Mar. Sci. Eng. 2023, 11, 908 18 of 18

73. Shi, Y.; Tian, Y.; Wang, Y.; Huang, T. Sequential Deep Trajectory Descriptor for Action Recognition with Three-Stream CNN. IEEE
Trans. Multimed. 2017, 19, 1510–1520. [CrossRef]

74. Uzun, D.; Ozyurt, R.; Demirel, Y.K.; Turan, O. Does the barnacle settlement pattern affect ship resistance and powering? Appl.
Ocean Res. 2020, 95, 102020. [CrossRef]

75. Habbouche, H.; Amirat, Y.; Benkedjouh, T.; Benbouzid, M.E.H. Bearing fault event-triggered diagnosis using a variational mode
decomposition-based machine learning approach. IEEE Trans. Energy Convers. 2022, 37, 466–474. [CrossRef]

76. Benbouzid, M.E.H. Signal Processing for Fault Detection and Diagnosis in Electric Machines and Systems; IET: London, UK, 2020;
p. 284.

77. Berghout, T.; Benbouzid, M.E.H. A systematic guide for predicting remaining useful life with machine learning. Electronics 2022,
11, 1125. [CrossRef]

78. Benbouzid, M.E.H.; Berghout, T. Quo vadis machine learning-based systems condition prognosis?–A perspective. Electronics
2023, 12, 527. [CrossRef]

79. Huang, Y.; Tang, Y.; VanZwieten, J.; Jiang, G.; Ding, T. Remaining Useful Life Estimation of Hydrokinetic Turbine Blades
Using Power Signal. In Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM), Denver, CO, USA,
17–21 July 2019; pp. 1–5. [CrossRef]

80. Xia, J.; Zou, G. Operation and maintenance optimization of offshore wind farms based on digital twin: A review. Ocean Eng.
2023, 268, 113322. [CrossRef]

81. Zhao, Z.; Chen, N.Z. Acoustic emission based damage source localization for structural digital twin of wind turbine blades.
Ocean Eng. 2022, 265, 112552. [CrossRef]

82. Walker, J.; Coraddu, A.; Oneto, L.; Kilbourn, S. Digital Twin of the Mooring Line Tension for Floating Offshore Wind Turbines. In
Proceedings of the OCEANS 2021, San Diego, CA, USA, 20–23 September 2021; pp. 1–7. [CrossRef]

83. Cao, Y.; Tang, X.; Gaidai, O.; Wang, F. Digital twin real time monitoring method of turbine blade performance based on numerical
simulation. Ocean Eng. 2022, 263, 112347. [CrossRef]

84. Finnegan, W.; Jiang, Y.; Meier, P.; Hung, L.C.; Fagan, E.; Wallace, F.; Glennon, C.; Flanagan, M.; Flanagan, T.; Goggins, J. Numerical
modelling, manufacture and structural testing of a full-scale 1 MW tidal turbine blade. Ocean Eng. 2022, 266, 112717. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TMM.2017.2666540
http://dx.doi.org/10.1016/j.apor.2019.102020
http://dx.doi.org/10.1109/TEC.2021.3085909
http://dx.doi.org/10.3390/electronics11071125
http://dx.doi.org/10.3390/electronics12030527
http://dx.doi.org/10.1109/PESGM40551.2019.8973840
http://dx.doi.org/10.1016/j.oceaneng.2022.113322
http://dx.doi.org/10.1016/j.oceaneng.2022.112552
http://dx.doi.org/10.23919/OCEANS44145.2021.9706018
http://dx.doi.org/10.1016/j.oceaneng.2022.112347
http://dx.doi.org/10.1016/j.oceaneng.2022.112717

	Introduction
	 Biofouling vs. Tidal Stream Turbines
	Biofouling Briefly
	Biofouling vs. Turbine Technologies

	 Biofouling Detection and Estimation 
	What Was Done for Biofouling Detection in Vessels Hull and Propeller?
	What about Tidal Stream Turbine Biofouling Detection?
	Biofouling Estimation

	 Challenges and Prospects
	 Conclusions
	References

