
Citation: Wang, Y.-Z.; Hu, Z.-H. An

Iterative Re-Optimization

Framework for the Dynamic

Scheduling of Crossover Yard Cranes

with Uncertain Delivery Sequences. J.

Mar. Sci. Eng. 2023, 11, 892. https://

doi.org/10.3390/jmse11050892

Academic Editor: M. Dolores

Esteban

Received: 9 March 2023

Revised: 19 April 2023

Accepted: 20 April 2023

Published: 22 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science
and Engineering

Article

An Iterative Re-Optimization Framework for the Dynamic
Scheduling of Crossover Yard Cranes with Uncertain
Delivery Sequences
Yao-Zong Wang and Zhi-Hua Hu *

Logistics Research Center, Shanghai Maritime University, Shanghai 201306, China;
202040510010@stu.shmtu.edu.cn
* Correspondence: zhhu@shmtu.edu.cn

Abstract: In yard-crane scheduling problems, as loading operations take priority over unloading, the
delivery sequence of unloading from the quaysides to the yard is uncertain. The delivery sequence
changes may make crane scheduling more difficult. As a result, the crane operations schedules
developed statically become suboptimal or even infeasible. In this paper, we propose a dynamic
scheduling problem considering uncertain delivery sequences. A mixed-integer linear program is
developed to assign tasks to cranes and minimize the makespan of crane operations. We propose an
iterative solution framework in which the schedules are re-optimized whenever the delivery sequence
change is revealed. A genetic algorithm is proposed to solve the problem, and a greedy algorithm is
designed to re-optimize and update the solution. To make the updated solution take effect as soon as
possible, regarding batch-based task assignment, the tasks in the scheduling period are divided into
several batches. In this case, the instant requests arising from the delivery sequence change are added
to corresponding batch tasks and re-optimized together with the tasks of this batch. In addition, a
relaxation model is formulated to derive a lower bound for demonstrating the performance of the
proposed algorithm. Experimental results show that the average gap between the algorithm and
the lower bound does not exceed 5%. The greedy insertion algorithm can re-optimize the instant
requests in time. Therefore, the proposed iterative re-optimization framework is feasible and has the
advantages (necessity) of batch-based task assignment.

Keywords: crossover yard crane; uncertain delivery sequence; dynamic scheduling; genetic algorithm;
logistics management

1. Introduction

In automated container terminals (ACTs), the container yard is an important operation
area that connects the terminal quayside and inland [1] . The yard is configured with
several blocks, each with one or two yard cranes for loading and unloading tasks. However,
the complex operations in the yard limit the overall production efficiency of the terminal.
To improve efficiency, the ACT configures a crossover yard crane to cooperate with loading
and unloading tasks in the yard block. A schematic diagram of a block is shown in Figure 1.
The crossover yard cranes, one larger (Crane 1) and one smaller (Crane 2), run on different
rail tracks. They can pass each other and move freely from the seaside and landside and in
the reverse direction. Hence, the advantage of the crossover yard crane is that both cranes
can pass each other and handle any tasks on the range of the yard block.

However, the two cranes are not allowed to perform operations (i.e., drop and lift
a container) simultaneously in a certain bay; otherwise, interferences will occur [2]. In
addition, the small crane cannot cross the larger crane if the larger one is working. As a
result, interferences increase the complexity of modeling the crossover yard-crane schedul-
ing problem. Specifically, the objective is not only to determine the crane scheduling and
crane routing but also to prevent crane interferences (i.e., conflict-free scheduling). We

J. Mar. Sci. Eng. 2023, 11, 892. https://doi.org/10.3390/jmse11050892 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11050892
https://doi.org/10.3390/jmse11050892
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0003-4099-3310
https://doi.org/10.3390/jmse11050892
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11050892?type=check_update&version=3

J. Mar. Sci. Eng. 2023, 11, 892 2 of 26

will refer to our problem as the crossover yard-crane scheduling problem. Typically, the
terminal divides the area of the yard block into several groups with various attributes for
stacking containers Jiang and Jin (2017) [3]. For example, the export containers are stacked
close to the seaside for easy loading on vessels, and the import containers are close to the
landside for easy exiting. In this paper, we dispatch the crossover yard crane to handle the
unloading operations (import tasks).

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 2 of 26

result, interferences increase the complexity of modeling the crossover yard-crane

scheduling problem. Specifically, the objective is not only to determine the crane sched-

uling and crane routing but also to prevent crane interferences (i.e., conflict-free schedul-

ing). We will refer to our problem as the crossover yard-crane scheduling problem. Typi-

cally, the terminal divides the area of the yard block into several groups with various at-

tributes for stacking containers Jiang and Jin (2017) [3]. For example, the export contain-

ers are stacked close to the seaside for easy loading on vessels, and the import containers

are close to the landside for easy exiting. In this paper, we dispatch the crossover yard

crane to handle the unloading operations (import tasks).

Crane 1 Storage

Seaside

Bay

R
ow Crane 2

Landside

Figure 1. Schematic diagram of a yard block with crossover yard crane.

The priority of loading and unloading operations affects the delivery sequences of

import containers to the yard block. In ACTs, the loading and unloading operations are

performed simultaneously while vessels are berthing [4]. To optimize the operating time

to guarantee the shipping date, in general, the loading operations are given higher prior-

ity than unloading (i.e., loading-first). To ensure continuous loading, cranes in the yard

should alternately deliver containers to quay cranes [5]. However, continuous loading

operations are difficult to guarantee due to too many random factors in the terminal op-

erations. Therefore, the terminals try to relax the other optimization objectives to achieve

continuous loading operations as far as possible, e.g., the delivery sequence in the un-

loading scheme is allowed to be adjusted frequently. As a result, the planned delivery

sequence is subject to uncertainty due to the loading-first operational requirement. For

example, the task may be handled behind or ahead of the planned schedule, or a con-

tainer planned to be delivered to the yard block may be delivered to other blocks. Figure

2 illustrates the delivery sequences of the two yard blocks before and after adjustment.

In the upper part of Figure 2, ten containers are distributed on a vessel in two tiers. The

quay crane first handles the upper tier and then the lower tier. In the scheme, the ten

containers are delivered to two yard blocks, and the delivery sequences are shown in

Figure 2a. However, in loading-first, the continuous delivery of the export containers

from yard block 2# may cause it to be unable to handle import container 5 in time. How-

ever, container 5 must be handled so that container 10 can be handled successfully,

whereas waiting would cause other exceptions. Hence, the delivery of container 5 to

yard block 2# is a feasible solution, as shown in Figure 2b. Therefore, in field operations

of ACTs, the delivery sequence from the quay cranes to the yard block is subject to un-

certainty.

The yard operations are subject to uncertain delivery sequences and may cause dis-

turbance to the planned scheme of the crossover yard crane. The planned scheme may

become suboptimal or even infeasible under uncertainty [6]. To eliminate as much as

possible the impact of uncertainty on production operations, terminals need to constant-

ly adjust the scheme of cranes. As a result, a new set of tasks (i.e., instant request)

Figure 1. Schematic diagram of a yard block with crossover yard crane.

The priority of loading and unloading operations affects the delivery sequences of
import containers to the yard block. In ACTs, the loading and unloading operations are
performed simultaneously while vessels are berthing [4]. To optimize the operating time to
guarantee the shipping date, in general, the loading operations are given higher priority
than unloading (i.e., loading-first). To ensure continuous loading, cranes in the yard should
alternately deliver containers to quay cranes [5]. However, continuous loading operations
are difficult to guarantee due to too many random factors in the terminal operations.
Therefore, the terminals try to relax the other optimization objectives to achieve continuous
loading operations as far as possible, e.g., the delivery sequence in the unloading scheme is
allowed to be adjusted frequently. As a result, the planned delivery sequence is subject to
uncertainty due to the loading-first operational requirement. For example, the task may be
handled behind or ahead of the planned schedule, or a container planned to be delivered to
the yard block may be delivered to other blocks. Figure 2 illustrates the delivery sequences
of the two yard blocks before and after adjustment. In the upper part of Figure 2, ten
containers are distributed on a vessel in two tiers. The quay crane first handles the upper
tier and then the lower tier. In the scheme, the ten containers are delivered to two yard
blocks, and the delivery sequences are shown in Figure 2a. However, in loading-first, the
continuous delivery of the export containers from yard block 2# may cause it to be unable to
handle import container 5 in time. However, container 5 must be handled so that container
10 can be handled successfully, whereas waiting would cause other exceptions. Hence,
the delivery of container 5 to yard block 2# is a feasible solution, as shown in Figure 2b.
Therefore, in field operations of ACTs, the delivery sequence from the quay cranes to the
yard block is subject to uncertainty.

J. Mar. Sci. Eng. 2023, 11, 892 3 of 26

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 3 of 26

emerge to adapt to uncertainty. When instant requests occur, the terminals should up-

date the scheme quickly. This paper proposes an iterative solution framework in which

the instant request is re-optimized whenever the delivery sequence change is revealed.

The dynamic scheduling of the instant request for cranes may be like solving static prob-

lems with the latest available data. Therefore, efficient re-optimization is the key to a

quick response to the instant request.

(a) Planned delivery sequences

1 2 3

6 7 8

4 5

9 10

1 3 6 8 5

2 4 7 9

Yard block 1#

Yard block 2#

1 3 6 8

52 4 7 9

(b) Updated delivery sequences

T
ie

r

Vessel

10 10

Location of the containers on the
vessel, e.g., container 7 is
located in row 2, tier 1

Row

Figure 2. Schematic diagram of the planned delivery sequences and their updates.

Moreover, the re-optimized scheme takes effect as soon as possible to ensure con-

tinuous operation. In the literature, heuristic algorithms are widely used for solving dy-

namic scheduling problems, e.g., [6–10].Among them, the batch-based task assignment

and the rolling-horizon are usually developed to cope with uncertainty and large-scale

operations at terminals. Inspired by these approaches, we divide the task to be handled

within a planning period into several batches. The scheme of the crossover yard crane is

generated within each batch task one by one. When instant requests emerge, we add

these requests to an appropriate batch task. Then, the instant requests perform a re-

optimization along with the tasks that are already in that batch. Therefore, within the re-

optimization framework, the re-optimized scheme is generated quickly to ensure con-

tinuous operations. In addition, the batch-based task assignment approach can avoid ex-

tensive scheme adjustments and reduce the difficulty and cost of task adjustment in stat-

ic mode.

In the scheduling of crossover yard cranes, the coupling of operational processes

and the interdependence of loading and unloading decisions and uncertainties consti-

tute the complexity [11]. To simplify, Vis and Carlo [12] formulated the crossover yard-

crane scheduling problem. [13] abstracted the crane scheduling problem as a multiple

asymmetric generalized traveling salesman problem (TSP) with precedence constraints.

Chen et al. [14] proposed a multi-commodity network flow model to formulate the inte-

grated scheduling of cranes and automated guided vehicles. The approach of the above

studies inspires us to formulate the scheduling problem of the crossover yard crane as a

vehicle routing problem with interference constraints. A workload balanced model in-

spired by [12] is developed to derive a lower model. In addition, interference will occur

if two cranes are operating simultaneously at the same bay. To avoid interference, [15]

dealt with the interference between two cranes by analyzing the minimum time interval

between any two tasks and representing the interference relationship with a matrix.

They developed a greedy-based insertion algorithm to re-optimize infeasible solutions.

Pre-defining the obstacle graph is another approach to avoiding interference. For exam-

ple, Briskorn and Angeloudis [16] pre-defined the rules for crane avoidance when inter-

ference occurs and separated the scheduling problem using a decomposition strategy.

Figure 2. Schematic diagram of the planned delivery sequences and their updates.

The yard operations are subject to uncertain delivery sequences and may cause dis-
turbance to the planned scheme of the crossover yard crane. The planned scheme may
become suboptimal or even infeasible under uncertainty [6]. To eliminate as much as
possible the impact of uncertainty on production operations, terminals need to constantly
adjust the scheme of cranes. As a result, a new set of tasks (i.e., instant request) emerge
to adapt to uncertainty. When instant requests occur, the terminals should update the
scheme quickly. This paper proposes an iterative solution framework in which the instant
request is re-optimized whenever the delivery sequence change is revealed. The dynamic
scheduling of the instant request for cranes may be like solving static problems with the
latest available data. Therefore, efficient re-optimization is the key to a quick response to
the instant request.

Moreover, the re-optimized scheme takes effect as soon as possible to ensure continu-
ous operation. In the literature, heuristic algorithms are widely used for solving dynamic
scheduling problems, e.g., [6–10]. Among them, the batch-based task assignment and the
rolling-horizon are usually developed to cope with uncertainty and large-scale operations
at terminals. Inspired by these approaches, we divide the task to be handled within a
planning period into several batches. The scheme of the crossover yard crane is generated
within each batch task one by one. When instant requests emerge, we add these requests to
an appropriate batch task. Then, the instant requests perform a re-optimization along with
the tasks that are already in that batch. Therefore, within the re-optimization framework,
the re-optimized scheme is generated quickly to ensure continuous operations. In addition,
the batch-based task assignment approach can avoid extensive scheme adjustments and
reduce the difficulty and cost of task adjustment in static mode.

In the scheduling of crossover yard cranes, the coupling of operational processes
and the interdependence of loading and unloading decisions and uncertainties constitute
the complexity [11]. To simplify, Vis and Carlo [12] formulated the crossover yard-crane
scheduling problem. [13] abstracted the crane scheduling problem as a multiple asymmetric
generalized traveling salesman problem (TSP) with precedence constraints. Chen et al. [14]
proposed a multi-commodity network flow model to formulate the integrated scheduling
of cranes and automated guided vehicles. The approach of the above studies inspires us to
formulate the scheduling problem of the crossover yard crane as a vehicle routing problem
with interference constraints. A workload balanced model inspired by [12] is developed
to derive a lower model. In addition, interference will occur if two cranes are operating
simultaneously at the same bay. To avoid interference, [15] dealt with the interference
between two cranes by analyzing the minimum time interval between any two tasks and
representing the interference relationship with a matrix. They developed a greedy-based
insertion algorithm to re-optimize infeasible solutions. Pre-defining the obstacle graph is
another approach to avoiding interference. For example, Briskorn and Angeloudis [16]

J. Mar. Sci. Eng. 2023, 11, 892 4 of 26

pre-defined the rules for crane avoidance when interference occurs and separated the
scheduling problem using a decomposition strategy. This paper analyzes two forms of
interference and proposes an avoidance strategy and its exact calculation methods.

The scheduling problem of cranes is NP-hard. Most studies attempt to develop a
variety of algorithms to solve large-scale problems. We summarize the algorithm in three
aspects: (1) Model-based mathematical heuristics, e.g., Branch-and-Bound [14] and Branch-
and-Cut [2]; (2) neighborhood search-based heuristics, e.g., greedy [15]; and (3) evolutionary
algorithms based on swarm optimization, e.g., genetic algorithm [17] and Particle swarm
optimization [18]. Inspired by the methods, a Branch-and-Bound and a genetic algorithm
are proposed for solving the planned scheme with small-scale and medium-scale instances,
respectively. The instant requests are re-optimized by a greedy insertion algorithm. The
proposed algorithms run within the iterative re-optimization framework.

The uncertain delivery sequence may make the planned scheme of crossover yard
crane suboptimal or even infeasible. We propose an iterative re-optimization framework for
the dynamic scheduling of cranes. We propose mixed-integer linear programming to solve
the solution (i.e., the sequence of the cranes). A genetic algorithm is developed to solve
the planned scheme, and a greedy-based insertion algorithm is designed to re-optimize
the batch tasks that include instant requests. Moreover, a relaxation model is proposed
to derive a lower bound for demonstrating the performance of the proposed algorithms.
The major contributions of this paper are: (1) proposing a dynamic optimization approach
for complex field operations and demonstrating that the greedy algorithm can be used
effectively in a dynamic environment; (2) modeling and solving the scheduling problem
batch by batch, avoiding extensive adjustments to the planned scheme; and (3) providing
insights into how to choose an appropriate duration of the scheme under various workloads
at terminals.

The rest of the article is organized as follows. In Section 2, we present a literature
review of related studies. In Section 3, we develop a model for scheduling the crossover
yard crane and derive a relaxation model to provide a lower bound. Section 4 develops
an iterative re-optimization framework that contains a genetic algorithm and a greedy
insertion algorithm. Numerical experiments are presented in Section 5 to show that the
framework can cope with the dynamic problem. Section 6 concludes this paper.

2. Related Studies
2.1. Crane Scheduling

Operations research on ACTs has gained widespread attention in the field of Port
Logistics. An essential research topic is scheduling optimization for operating devices.
The aim is to improve production efficiency and thereby reduce the berthing time of the
vessel [15]. In the container yard, a block is usually configured with one or two cranes
for handling the tasks. There are two kinds of cranes, namely, rail-mounted gantry cranes
(RMGs) and rubber-tired gantry cranes (RTGs). The RMG is automatically controlled, and
the ASCs (including crossover yard cranes) fall into this category. For a review of research
on RTGs, see [19]. The ASCs have the advantage of high-level operational efficiency
and low labor costs and are currently used in terminals such as the Hamburg Port and
Shanghai Port.

Developing a scheduling plan (i.e., scheme) for cranes is complex. Generally, a mathe-
matical program is developed subject to several assumptions. Even so, the scale of tasks
that the model can solve is very limited (no more than 20 tasks). To solve large-scale
instances and to improve the applicability of the model, many studies have developed
a decomposition-based approach. This approach decomposes the original problem into
a master problem and a series of sub-problems, e.g., [2,3,14]. To simplify the solving of
sub-problems, multi-stage or multi-layer iterative algorithms are proposed to reach a con-
tinuous interaction between the main problem and several sub-problems, e.g., the column
generation algorithm continuously generates new columns using an optimality test. Finally,
the master problem continues to be improved and solved. In addition, swarm optimization-

J. Mar. Sci. Eng. 2023, 11, 892 5 of 26

based algorithms have advantages in solving scheduling problems. The genetic algorithms
(GAs), have adaptive and robust features which improve search diversity while avoiding
premature convergence of the algorithm. For example, [15,17,20] used GAs to solve the
crane scheduling problem including multiple operating devices. Table 1 lists the pioneering
research on yard-crane scheduling. The development of heuristic or intelligent algorithms
has been of interest to most studies.

Table 1. Research on yard-crane scheduling.

Literature The Problem Objective Function (Minimize) Model Algorithm

[11] Twin-crane Interference-free - -
[16] Twin-crane Makespan MILP Heuristic
[21] Crane + YT Makespan MILP BD
[14] AGV + ASC Makespan MCF B and B
[13] Twin-crane Makespan MILP ALNS
[17] Twin-ASC Makespan MILP GA
[22] Multi-crane Delay time + Energy consumption MILP GA + PSO
[18] Crane + YT Makespan Analytical GA + PSO
[15] Twin-crane Makespan MILP GA + Greedy
[3] SM + Crane Crane’s movements cost + Penalty cost MIP B and B + CG

[23] Crane + YT Makespan MILP DP
[4] QC + AGV + Crane Berthing time CP Heuristic

[24] Twin-crane Makespan MILP PSO
[25] ASC + AGV Makespan MILP GA
[26] Twin-crane Makespan MILP Heuristic + DP
[2] Dual-ASC Makespan MILP NS

[27] Twin-crane ASC and truck waiting time MILP Look-Ahead
[20] Twin-ASC + AGV Waiting time + Handling time MILP GA
[5] Crane Makespan MILP Tabu Search

[28] ASC + AGV Makespan MILP ALNS

ALNS—Adaptive large neighborhood search; B and B—Branch-and-Bound; BD—Benders’ decomposition;
CG—Column generation; CP—Constraint programming; DP—Dynamic programming; GA—Genetic algorithm;
MCF—Multi-commodity network flow; MILP—Mixed-integer linear programming; NS—Neighborhood search;
PSO—Particle swarm optimization; QC—Quay crane; SA—Simulated annealing; SM—Storage management;
YT—Yard truck.

2.2. Dynamic Optimization

In a real-world system, the constituent elements are interrelated and interlocked,
constituting the complexity of the system. Among them, the dynamic nature is a major
expression of complexity, and it is always throughout the system’s operational process. For
example, in ACTs, multi-level operating devices are highly coordinated and orderly when
completing the operations. However, the devices and their operational activities affect each
other. In particular, if there is a change in an operation, then its related operational activities
involve taking appropriate action to respond to the impact of that change. Therefore, the
dynamic optimization of operational activities at all levels in response to changing demands
is the direction of research into terminal operations.

This section summarizes the studies on three aspects of dynamic optimization, namely,
distribution vehicle routing optimization, job shop scheduling, and crew (or crew) staff
scheduling for aircraft (or trains). These studies are listed in Table 2. In terms of modeling,
Markov decision processes and non-linear programming methods are commonly used
to describe dynamic processes. To simplify the solving, mathematically based heuristic
algorithms such as column generation and Lagrangian relaxation are used to deal with
complex constraints in the model. On the other hand, the dynamic process is formulated as
a neural network and solved using machine learning approaches.

J. Mar. Sci. Eng. 2023, 11, 892 6 of 26

Table 2. Research on dynamic optimization.

Literature The Problem Model Algorithm

[29] Dynamic routing - Cluster reschedule

[30] Railway scheduling with dynamic
passenger demand MILP ALNS

[31] Dynamic large-scale urban transportation Network Simulation
[32] Dynamic job shop scheduling MIP GA
[7] Dynamic routing with congestion Set Covering Batch assignment

[33] Dynamic workload management for
cranes - DSTP

[34] Railway crew scheduling ILP CG + LR
[35] Airline crew scheduling QP CG

[36] A review of dynamic vehicle routing
problems - -

[37] Metro train scheduling dynamic
passenger demand MILP LR

[6] Crane scheduling DP Heuristic + Exact
[8] Dynamic routing - B and P + CG
[9] Dynamic job shop scheduling MILP PSO
[38] Dynamic bus scheduling MIQP RO
[39] Dynamic vehicle allocation in ridesharing MIQP ADP + LR
[40] Dynamic job shop scheduling MDP DQN
[41] Dynamic routing MILP DDD + LR
[42] Dynamic routing MDP -
[43] Dynamic job shop scheduling DRL PPO
[44] Dynamic job shop scheduling MDP DQN
[10] Dynamic routing MILP Heuristic

ADP—Approximate dynamic programming; B and B—Branch-and-Price; CG—Column generation; GA—Genetic
algorithm; MDP: Markov decision process; MICQP—Mixed integer convex quadratic programming; MILP—Mixed-
integer linear programming; LP—Linear relaxations algorithm; LR—Lagrangian relaxation; NLP—Non-linear
programming; DDD- Dynamic discretization discovery; DP—Dynamic programming; DQN—Deep Q network;
DRL—Deep reinforcement learning; DSTP—Dynamic space and time partitioning; PPO—Proximal policy opti-
mization; PSO—Particle swarm optimization; QP—Quadratic programming; RO—Robust optimization.

2.3. A Summary

Crane scheduling problems are complex, and researchers work to come up with
new solutions to serve the production practices of terminals. For example, 13 Ghare-
hgozli et al. [13] formulated the crane scheduling problem as a multiple asymmetric gener-
alized traveling salesman problem (TSP) with precedence constraints. Nossack et al. [2]
proposed a decomposition approach to solve the scheduling problem of the crossover yard
crane. The approach decomposes the problem into two sub-problems and connects them
via logic-based Benders’ constraints to prevent crane interference. The related literature
has provided rich and solid contributions that point the way to our work. Inspired by
the literature, we formulate the scheduling problem as a vehicle routing problem with
interference constraints. Similarly, the main component is to determine the task assignment
of each crane and the operational order (i.e., sequence). The difference is that two cranes
should avoid conflict at the same time on the same bay. We provide a rigorous conflict
analysis process, which is an innovation of this paper.

In addition, the planned scheme of the cranes is influenced by the loading-first strategy,
and the re-optimization of the affected scheme is necessary to ensure the optimality of the
operations. In this paper, we study the dynamic scheduling of cranes while considering
uncertain delivery sequences. To reduce the impact of the dynamic scheduling on the
planned scheme, a batch-based task assignment inspired by Gans and Van Ryzin (1999)
and Ozbaygin and Savelsbergh (2019) [7,8] is used to divide the task within the scheduling
period into several batch tasks, and the formulations and solving are independent within
each batch task. Another innovation is that we propose a solution framework with a genetic
algorithm and a greedy insertion algorithm to cope with uncertainty.

J. Mar. Sci. Eng. 2023, 11, 892 7 of 26

3. Formulations
3.1. Problem Definition

This paper investigates a scheduling problem of the crossover yard crane with an
uncertain delivery sequence. The tasks to be handled consist of a series of import containers.
The import containers enter the yard block at the seaside. Each task has two locations: the
starting position (i.e., origin) and the target position (i.e., destination). Origins are located
on the seaside, and destinations are located in a certain position in the yard block. The
crossover yard-crane configuration is two cranes that can pass each other while handling
tasks. Each task is dispatched to exactly one crane. The crane lifts the container from
the origin and drops it at the destination. If the cranes are ready to pass each other, the
spreader of the larger crane needs to be located at the far-end side of the crane to guarantee
effective operations.

However, interferences may occur if the larger crane (Crane 1) works (i.e., lift or drop
a container) in a certain bay and the smaller crane (Crane 2) wants to pass or work in the
same bay as well, as illustrated in Figure 3. In Figure 3, there are two crossover points for
two crane operations, i.e., point A and point B. The two cranes conflict at point A, while
point B is conflict-free. In addition, the two cranes are not allowed to work (i.e., lift and
drop a container) simultaneously at the seaside or at a certain bay in the yard block.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 7 of 26

ing on the planned scheme, a batch-based task assignment inspired by Gans and Van

Ryzin (1999) and Ozbaygin and Savelsbergh (2019) [7,8] is used to divide the task within

the scheduling period into several batch tasks, and the formulations and solving are in-

dependent within each batch task. Another innovation is that we propose a solution

framework with a genetic algorithm and a greedy insertion algorithm to cope with un-

certainty.

3. Formulations

3.1. Problem Definition

This paper investigates a scheduling problem of the crossover yard crane with an

uncertain delivery sequence. The tasks to be handled consist of a series of import con-

tainers. The import containers enter the yard block at the seaside. Each task has two loca-

tions: the starting position (i.e., origin) and the target position (i.e., destination). Origins

are located on the seaside, and destinations are located in a certain position in the yard

block. The crossover yard-crane configuration is two cranes that can pass each other

while handling tasks. Each task is dispatched to exactly one crane. The crane lifts the

container from the origin and drops it at the destination. If the cranes are ready to pass

each other, the spreader of the larger crane needs to be located at the far-end side of the

crane to guarantee effective operations.

However, interferences may occur if the larger crane (Crane 1) works (i.e., lift or

drop a container) in a certain bay and the smaller crane (Crane 2) wants to pass or work

in the same bay as well, as illustrated in Figure 3. In Figure 3, there are two crossover

points for two crane operations, i.e., point A and point B. The two cranes conflict at point

A, while point B is conflict-free. In addition, the two cranes are not allowed to work (i.e.,

lift and drop a container) simultaneously at the seaside or at a certain bay in the yard

block.

Unlike the universal scheduling problem, the objective is not only to determine the

crane scheduling and crane routing but also to prevent crane interferences. Therefore,

three major decision problems emerge from the scheduling of crossover yard cranes,

namely: (1) crane scheduling: the task is dispatched to the cranes; (2) crane routing: the

handling sequence of each crane; and (3) preventing crane interferences: conflict-free

scheduling.

Crane 1 LoadPath

Crane 1 EmptyLoadPath

Crane 2 LoadPath

Crane 2 EmptyLoadPath

Bay

T
im

e

A

B

Figure 3. Schematic drawing of interference.

The parameters are explained as follows. We address the case of two cranes � =
{1,2}, where 1 represents the larger crane and 2 represents the smaller crane. The bays in

the yard block are denoted by � = {0,1, … ,40}, where 0 represents the bay at the seaside.

For each task � ∈ �, the origin �� and destination �� are known, as explained below. As a

result, for each task �, its service time �� (i.e., the travel time of the crane from the origin

to the destination) is known. We assume that the travel time between any two bays is

Figure 3. Schematic drawing of interference.

Unlike the universal scheduling problem, the objective is not only to determine the
crane scheduling and crane routing but also to prevent crane interferences. Therefore, three
major decision problems emerge from the scheduling of crossover yard cranes, namely:
(1) crane scheduling: the task is dispatched to the cranes; (2) crane routing: the handling
sequence of each crane; and (3) preventing crane interferences: conflict-free scheduling.

The parameters are explained as follows. We address the case of two cranes K = {1, 2},
where 1 represents the larger crane and 2 represents the smaller crane. The bays in the yard
block are denoted by B = {0, 1, . . . , 40}, where 0 represents the bay at the seaside. For each
task i ∈ J, the origin Oi and destination Di are known, as explained below. As a result,
for each task i, its service time Ti (i.e., the travel time of the crane from the origin to the
destination) is known. We assume that the travel time between any two bays is measured
in time units. One time unit Tm corresponds to the time required by the crane to move the
distance of one container (i.e., one bay)—a default of 4 s. We define Tij as the empty travel
time between any two tasks i, j. In addition, Ts denotes the time of lifting and dropping a
container)—a default of 30 s, i.e., 7.5 Tm.

J. Mar. Sci. Eng. 2023, 11, 892 8 of 26

Parameters
J: Set of tasks. J = {1, 2, . . . , N}, indexed by i, j.

J−, J+: J− = J ∪ {O} and J+ = J ∪
{

O
}

, where O and O indicate the start and finish dummy tasks, respectively.
K: Set of cranes, K = {1, 2}, indexed by k.
B: Set of bays, B = {0, 1, · · · , 40}, indexed by b.

Oi, Di: The origin/destination of task i, Di ∈ B\{0}, Oi = 0.
Tij: Empty travel time between two adjacent tasks i, j. Tij =

∣∣∣Oj − Di

∣∣∣ · Tm.

Tm: Time unit, u = Tm.
Ti: Service time of task i.
Ts: The time of lifting or dropping a container by crane, Ts = 7.5·u.

Therefore, crane scheduling and crane routing need to be addressed to find the efficient
assignment and sequence of the two cranes and to find efficient combinations of tasks
such that the total travels are minimized. The assignment and the sequence constitute the
scheme of the crossover yard crane. Meanwhile, the scheme must not contain a conflicted
handling path, i.e., conflict-free scheduling.

3.2. The Model

The proposed problem aims to optimize the task assignment and the sequences of
cranes by minimizing the makespan. For each task i, three primary decisions need to be
clarified, namely, (1) which crane is going to handle task i; (2) at what time is crane k ready
to lift task i at its origin; and (3) the order (i.e., sequence) in which crane k should handle
the tasks that it is assigned. In addition, the handling path contained in the two sequences
should not overlap, i.e., performing interference avoidance if there is interference in the
scheme. The decision variables in the model are as follows.

Variables
xkij: xkij ∈ {0, 1}. 1 if tasks i and j are handled by crane k sequentially; otherwise, 0.
yki: yki ∈ {0, 1}. 1 if task i is handled by crane k; otherwise, 0.
aij: aij ∈ {0, 1}. 1 if task i starts before task j; otherwise, 0.
bij: bij ∈ {0, 1}. 1 if task i ends before task j; otherwise, 0.

ski, cki: The start/completion time of the task i handled by crane k.
si, ci: The start/completion time of the task i.

A mixed-integer linear programming model [M1] is formulated to determine a scheme
for both cranes, indicating the order in which all tasks should be handled so that the
maximum completion time is minimized (i.e., the makespan). The objective function f1 is
shown in Constraint (1).

[M1]
min{ f1|(1); (2)− (18)}

f1 = min
{

max
k∈K,i∈J

{cki}
}

(1)

(1) Baseline model

The baseline model formulates the scheduling of the crossover yard crane without
considering interference. The modeling mechanism of the crane scheduling problem is
the same as that of the vehicle routing problem, i.e., both with assignment constraints and
order constraints. In the proposed problem, the assignment constraints are the requirement
for handling the given tasks, and the order constraints are the requirement for the sequence
of operating tasks. The difference is that the demand in the crane scheduling problem is
homogeneous and there are no capacity constraints on the cranes (i.e., one-load operations).
The segment constraints of the baseline model are shown in Constraints (2)–(12).

Constraint (2) ensures that one and only one task follows the start dummy task and
one and only one task leads the finish dummy task. Constraint (3) guarantees that all tasks
are handled by one crane. In Constraint (4), the assignment variable (yki) is presented by
the sequencing variable (xkij), namely, task i is handled by crane k if task i is assigned to

J. Mar. Sci. Eng. 2023, 11, 892 9 of 26

crane k. Constraint (5) ensures that the numbers of in-arcs and out-arcs of each task are
either one or zero. Constraint (6) determines the start time and completion time of each
task. In Constraint (7), the start time of a task is restricted by the completion time of the
precedent task handled by the same crane (xkij). Constraints (8) and (9) are upper operating
time constraints. Constraint (10) is a minimum value of Ma. Constraints (11) and (12)
constrain the ranges of the variables.

∑j∈J xk,O,j = ∑i∈J xk,i,O = 1, ∀k ∈ K (2)

∑k∈K yki = 1, ∀i ∈ J (3)

∑j∈J+ xkij = yki, ∀k ∈ K, ∀i ∈ J− (4)

∑i∈J− xkij = ∑i∈J+ xkji, ∀k ∈ K, ∀j ∈ J (5)

cki ≥ ski + Ti + 2·Ts + (yki − 1)·Ma, ∀i ∈ J, ∀k ∈ K (6)

skj ≥ cki + Tij +
(

xkij − 1
)
·Ma, ∀i ∈ J−, j ∈ J+, ∀k ∈ K (7)

ski ≤ yki·Ma, ∀i ∈ J−, ∀k ∈ K (8)

cki ≤ yki·Ma, ∀i ∈ J−, ∀k ∈ K (9)

Ma = ∑ij

(
Ti + Tij

)
+ 2·N·Ts (10)

ski, cki ≥ 0, ∀i ∈ J, ∀k ∈ K (11)

xkij, yki ∈ {0, 1}, ∀i, j ∈ J, ∀k ∈ K (12)

(2) Conflict-free scheduling

The loading and unloading decisions are interdependent due to interference. The
solution by Constraints (2)–(12) may be infeasible, i.e., there is conflict in the two sequences.
Hence, generating conflict-free sequences in the scheme constrains the time relationship
of operations at the same bay. Constraints (13) and (14) represent the start time and
completion time of operating task i. Constraints (15) and (16) guarantee that either the
start (or completion) time of task i is later or the start (or completion) time of task j is later.
Constraint (17) makes sure that the start time of task i is strictly earlier than task j at the
seaside. Constraint (18) makes sure that the completion time of task i is strictly earlier
than task j on a certain bay in the block. Constraints (19) and (20) constrain the ranges of
the variables.

si = ∑k∈K ski, ∀i ∈ J− (13)

ci = ∑k∈K cki, ∀i ∈ J− (14)

aij + aji = 1, ∀i, j ∈ J, Oi = Oj, i 6= j (15)

bij + bji = 1, ∀i, j ∈ J, Di = Dj, i 6= j (16)

J. Mar. Sci. Eng. 2023, 11, 892 10 of 26

sj ≥ si + Ts +
(
aij − 1

)
·Ma, ∀i, j ∈ J, Oi = Oj, i 6= j (17)

cj ≥ ci + Ts +
(
bij − 1

)
·Ma, ∀i, j ∈ J, Di = Dj, i 6= j (18)

si, ci ≥ 0, ∀i ∈ J (19)

aij, bij ∈ {0, 1}, ∀i, j ∈ J (20)

3.3. Analysis of Variables and Model

In this section, we analyze the validity of Constraints (15) and (16) based on the
characteristics of the problem. The critical conditions for conflicts are shown in Figure 4.
We use Figure 4b as an example to illustrate the interference relationship between two
cranes. Within a certain time horizon R, two cranes preparing to store task i and task j,
respectively, in the same bay (i.e., Di = Dj) may conflict. We introduce the task i−, i0, i+

to denote the left-, median-, and right-critical cases of conflict, respectively. Introducing
∆ measures the overlap time of conflict, i.e., ∆ can be negative, positive, or zero, where
∆ = c1,i∗ − c2,j, i∗ ∈

{
i−, i0, i+

}
. Thus, the overlap times ∆ between task j and i−, i0, i+

are −Ts, 0, Ts, i.e., the length of the diagram between the “two-way arrows” is the time
horizon R in which the conflict may occur, where R = [−Ts, Ts], ∆ ∈ R.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 10 of 26

In this section, we analyze the validity of Constraints (15) and (16) based on the

characteristics of the problem. The critical conditions for conflicts are shown in Figure 4.

We use Figure 4b as an example to illustrate the interference relationship between two

cranes. Within a certain time horizon �, two cranes preparing to store task � and task �,

respectively, in the same bay (i.e., �� = ��) may conflict. We introduce the task ��, ��, �� to

denote the left-, median-, and right-critical cases of conflict, respectively. Introducing Δ

measures the overlap time of conflict, i.e., Δ can be negative, positive, or zero, where Δ =

��,�∗ − ��,� , �∗ ∈ {��, ��, ��} . Thus, the overlap times Δ between task � and ��, ��, �� are

−��, 0, ��, i.e., the length of the diagram between the “two-way arrows” is the time hori-

zon � in which the conflict may occur, where � = [−��, ��], Δ ∈ �.

�/�

�

(�) Tasks �, � are ready to store in the yard block

��

�

(�) Tasks �, � are ready to be lifted at the seaside

��,� ��,�, ��,���

Δ = 0

Δ = ��

Δ = −����
��

��,�� ��,��

�/�

�

��

�

��,�
�

Δ = 0

Δ = ��

Δ = −����
��

��,�, ��,��

��,�� ��,��

Crane 1 Crane 2 Lifting/dropping time

�
�

Figure 4. Diagram of conflict-avoidance constraints and their critical conditions.

The two types of conflict and their avoidance rules are shown in Table 3. Namely,

the two tasks are ready to be lifted by the crane at the seaside or are ready to store in a

certain bay. When the two cranes are ready to drop containers at the same bay (see Fig-

ure 4b), this currently delays one crane’s completion time ��,� as it has to wait until the

other crane completes its operations. When Δ ≥ 0, the waiting time is (�� − Δ); otherwise,

the waiting time is �� + |�|, i.e., �� − Δ. Therefore, the completion time of storage opera-

tions by Crane 1 is set to ���,� + �� − Δ�. Similarly, the avoidance rule in Figure 4a follows

the above analysis.

Table 3. Conflict and their avoidance rules.

No. Type Overlap Time � Rules

 Δ ≥ 0 Δ < 0

1 Ready to lift ��,� − ��,� ��,� ← ��,� + (�� − Δ) ��,� ← ��,� + �� + |Δ|

2 Ready to store ��,� − ��,� ��,� ← ��,� + (�� − Δ) ��,� ← ��,� + �� + |Δ|

Note: |Δ| indicates the absolute value when Δ is less than zero.

3.4. A Lower Bound

In the scheduling problem under study, we deal with two cranes that can handle all

tasks. In this section, we derive a model to determine a lower bound for the makespan of

the two cranes. The key of the model is to solve the sequence problem for a single crane.

Vis and Roodbergen [45] proposed an optimal lower-bound derivation method based on

dynamic programming, whose objective is to find the shortest path of crane operations

that contains all tasks. Vis and Carlo [12] demonstrated that the makespan of the two

cranes is approximately equal to half the travel time of a single crane for all tasks. In-

spired by the above two approaches, we propose a model for deriving a lower bound

considering the workload balanced. In this model, the makespan of the two cranes is half

of the operating time for all tasks. We introduce an integer decision variable ��� ∈ {0,1}

to denote that task � is handled by the crane immediately after task �. A relaxed model

[M-LB] is developed to derive a lower bound ���.

Figure 4. Diagram of conflict-avoidance constraints and their critical conditions.

The two types of conflict and their avoidance rules are shown in Table 3. Namely, the
two tasks are ready to be lifted by the crane at the seaside or are ready to store in a certain
bay. When the two cranes are ready to drop containers at the same bay (see Figure 4b),
this currently delays one crane’s completion time c1,i as it has to wait until the other crane
completes its operations. When ∆ ≥ 0, the waiting time is (Ts − ∆); otherwise, the waiting
time is Ts + |∆|, i.e., Ts−∆. Therefore, the completion time of storage operations by Crane 1
is set to (c1,i + Ts − ∆). Similarly, the avoidance rule in Figure 4a follows the above analysis.

Table 3. Conflict and their avoidance rules.

No. Type Overlap Time ∆ Rules

∆ ≥ 0 ∆ < 0

1 Ready to lift s1,i − s2,j s1,i ← s1,i + (Ts − ∆) s1,i ← s1,i + Ts + |∆|
2 Ready to store c1,i − c2,j c1,i ← c1,i + (Ts − ∆) c1,i ← c1,i + Ts + |∆|

Note: |∆| indicates the absolute value when ∆ is less than zero.

J. Mar. Sci. Eng. 2023, 11, 892 11 of 26

3.4. A Lower Bound

In the scheduling problem under study, we deal with two cranes that can handle all
tasks. In this section, we derive a model to determine a lower bound for the makespan of
the two cranes. The key of the model is to solve the sequence problem for a single crane.
Vis and Roodbergen [45] proposed an optimal lower-bound derivation method based on
dynamic programming, whose objective is to find the shortest path of crane operations that
contains all tasks. Vis and Carlo [12] demonstrated that the makespan of the two cranes is
approximately equal to half the travel time of a single crane for all tasks. Inspired by the
above two approaches, we propose a model for deriving a lower bound considering the
workload balanced. In this model, the makespan of the two cranes is half of the operating
time for all tasks. We introduce an integer decision variable uij ∈ {0, 1} to denote that task
j is handled by the crane immediately after task i. A relaxed model [M-LB] is developed to
derive a lower bound fLB.

The objective function (21) is to minimize the makespan under the workload balanced
for both cranes. Constraint (22) ensures that one and only one task follows the start dummy
task and one and only one task leads the finish dummy task. The degree constraint (23)
imposes that exactly two edges are incident into each vertex associated with a task. In
Constraint (24), the operation sequence constraint of ASCs is converted into the well-known
generalized sub-tour elimination constraints. However, Constraint (24) has a cardinality
growing exponentially with N. Therefore, we relax the constraints containing binary
variables uij ∈ {0, 1} to variables 0 ≤ uij ≤ 1, namely, Constraint (26). The model can be
solved by CPLEX. As a result, we find the lower bound for the makespan as a criterion for
evaluating the performance of the proposed algorithms.

[M-LB]

minz =
1
2
·
(

2·N·TS + ∑i,j∈J uij·Tij + ∑i∈J Ti

)
(21)

Subject to
∑
j∈J

uO,j = ∑
i∈J

ui,O = 1 (22)

∑
i<j

uij + ∑
j<i

uji = 2, ∀i ∈ J (23)

∑
i∈S,j∈S

uij ≤ |S| − 1, ∀S ⊂ J, 2 ≤ |S| < N − 1 (24)

uij ∈ {0, 1}, ∀i, j ∈ J (25)

0 ≤ uij ≤ 1, ∀i, j ∈ J (26)

4. The Framework and Solution Algorithms

In this paper, we propose a dynamic scheduling problem for a crossover yard crane
while considering an uncertain delivery sequence. To solve the problem, we develop an
iterative solution to cope with the delivery sequence changes. Initially, the planned scheme
is activated and cranes handle the tasks according to the planned scheme. The planned
scheme may become suboptimal or even infeasible when instant requests emerge. Hence,
the instant requests are re-optimized together with the remaining tasks within the planned
scheme to generate a new scheme (i.e., an updated scheme). Then, when the scheme is
updated, the cranes handle the updated scheme until the delivery sequence changes again.
If a new instant request occurs, we solve another re-optimization problem. In brief, the
iterative solution generates an updated batch of schemes whenever the delivery sequence
changes. We propose a dynamic optimization process as follows.

J. Mar. Sci. Eng. 2023, 11, 892 12 of 26

Step 1
The given tasks are divided into multiple-batch subtask set ϕi, i ∈ {1, 2, . . . , m}. T−i and T+

i denote the start
time and completion time of the scheme ϕi, respectively.

Step 2 At moment 0, three schemes of subtasks are generated, i.e., scheme P1, P2, P3. Set i← 1 .
Step 3 At the current moment t (t ∈

[
T−i , T+

i
]
), one scheme Pi+3 is generated backwards.

Step 4
If an instant request r emerges at moment Ir ∈

[
T−j , T+

j

]
, j ∈ {i + 3, i + 4, . . . , m}, then request r is added into

the subtask ϕj and this subtask is re-optimized. The subsequent schemes Pi+3, Pi+4, . . . , Pm should also be
refreshed—return to Step 3. Otherwise, Step 5 is performed.

Step 5
Scheme Pi is generated and the current moment t∗ is recorded, where t∗ is the moment when all tasks in the
scheme Pi are completed.

Step 6 The current moment and the progress of the task handling are updated. t← t∗ , i← i + 1 . Return to Step 3.

All the tasks in the scheduling period are divided into a multi-batch subtask
ϕi, i ∈ {1, 2, . . . , m}. During the scheduling period, the scheme of two cranes is generated
for all subsets successively. Thus, within each scheme Pi, there is a start time T−i and a
completion time T+

i . When an instant request emerges at time t, the request is added to
an appropriate subtask ϕi, i.e., t ∈

[
T−i , T+

i
]
). Subsequently, the instant requests are re-

scheduled together with the subtask ϕi. The segmented optimization approach effectively
reduces the computing time and is helpful for the updated scheme taking effect as soon
as possible. In addition, several subtasks after that subtask with instance requests are also
refreshed to ensure optimality.

The core of dynamic optimization is “generating schemes and handling tasks simulta-
neously”. Namely, at the same moment, the crane handles tasks within the scheme while
generating the scheme for the remaining tasks. Dynamic optimization based on iterative
updates is the premise for the design of the solution framework.

4.1. The Iterative Re-Optimization Framework

In ACTs, dynamics and real-time are always present in every process of field oper-
ations. Therefore, an updated scheme should be put into effect as soon as possible to
maintain the smooth operations of the system. We develop an iterative re-optimization
framework combining GA and greedy strategy to solve the proposed dynamic problem,
and the structure is shown in Figure 5. The GA is used to generate the planned scheme of
each subtask, while the greedy insertion algorithm is used to re-optimize the scheme that
includes instant requests and to update the scheme that copes with changes in delivery
sequences. It should be noted that the MILP solver (e.g., CPLEX) is used to find the exact
solution (i.e., scheme) for small-scale instances. For large-scale instances, the genetic algo-
rithm is applied for solving. The re-optimization problem is solved during the handling
process of two cranes, so it is very important to quickly generate the updated scheme. The
greedy insertion algorithm has the features of lower complexity and fast search and can
insert the instant request into the best position in the sequence based on the initial scheme.
As a result, the greedy algorithm can re-optimize and generate an updated scheme with
little computing time.

In this framework, the constitutive logic of the algorithm and its closed-loop optimiza-
tion strategy has three advantages. First, the genetic algorithm, or CPLEX, solves a certain
batch task rather than the entire set of tasks. Thus, the solution space is limited to a small
space, and the possibility of finding the global optimal solution becomes greater. Second,
the greedy algorithm can quickly generate an optimal scheme in its finite neighborhood to
complete the re-optimization of the corresponding batch of tasks. Finally, the re-optimized
scheme forms a smoother transition with the planned scheme, avoiding large disturbances
to crane operations due to extensive adjustments.

J. Mar. Sci. Eng. 2023, 11, 892 13 of 26

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 12 of 26

scheduled together with the subtask ��. The segmented optimization approach effective-

ly reduces the computing time and is helpful for the updated scheme taking effect as

soon as possible. In addition, several subtasks after that subtask with instance requests

are also refreshed to ensure optimality.

The core of dynamic optimization is “generating schemes and handling tasks simul-

taneously”. Namely, at the same moment, the crane handles tasks within the scheme

while generating the scheme for the remaining tasks. Dynamic optimization based on it-

erative updates is the premise for the design of the solution framework.

4.1. The Iterative Re-Optimization Framework

In ACTs, dynamics and real-time are always present in every process of field opera-

tions. Therefore, an updated scheme should be put into effect as soon as possible to

maintain the smooth operations of the system. We develop an iterative re-optimization

framework combining GA and greedy strategy to solve the proposed dynamic problem,

and the structure is shown in Figure 5. The GA is used to generate the planned scheme

of each subtask, while the greedy insertion algorithm is used to re-optimize the scheme

that includes instant requests and to update the scheme that copes with changes in de-

livery sequences. It should be noted that the MILP solver (e.g., CPLEX) is used to find

the exact solution (i.e., scheme) for small-scale instances. For large-scale instances, the

genetic algorithm is applied for solving. The re-optimization problem is solved during

the handling process of two cranes, so it is very important to quickly generate the up-

dated scheme. The greedy insertion algorithm has the features of lower complexity and

fast search and can insert the instant request into the best position in the sequence based

on the initial scheme. As a result, the greedy algorithm can re-optimize and generate an

updated scheme with little computing time.

Feedback

Planned
scheme

Updated
scheme

Delivery
sequence
change?

Greedy insertion

Objective: minimizing
increment of makespan

Yes

No

GA or MILP solver

Objective: minimizing
makespan

Instant requests
and remaining
tasks

optimization

re-optimization

Figure 5. The iterative re-optimization framework and its logic.

In this framework, the constitutive logic of the algorithm and its closed-loop opti-

mization strategy has three advantages. First, the genetic algorithm, or CPLEX, solves a

certain batch task rather than the entire set of tasks. Thus, the solution space is limited to

a small space, and the possibility of finding the global optimal solution becomes greater.

Second, the greedy algorithm can quickly generate an optimal scheme in its finite neigh-

borhood to complete the re-optimization of the corresponding batch of tasks. Finally, the

re-optimized scheme forms a smoother transition with the planned scheme, avoiding

large disturbances to crane operations due to extensive adjustments.

4.2. A GA Based on Greedy Insertion

Figure 5. The iterative re-optimization framework and its logic.

4.2. A GA Based on Greedy Insertion
4.2.1. Encoding and Initial Population

In this section, we use randomly arranged encoding vectors to represent the handling
sequences of cranes. Figure 6 illustrates the encoding vector (i.e., an individual) with nine
points, where each point corresponds to a task and all points are distinct. We cannot know
the task assigned to each crane until it is decoded; that is, Crane 1 handles the task set
{6, 3, 1, 8, 4} and Crane 2 handles the task set {2, 9, 7, 5}, which are determined according
to a decoding algorithm (as in Section 4.2.2).

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 13 of 26

4.2.1. Encoding and Initial Population

In this section, we use randomly arranged encoding vectors to represent the han-

dling sequences of cranes. Figure 6 illustrates the encoding vector (i.e., an individual)

with nine points, where each point corresponds to a task and all points are distinct. We

cannot know the task assigned to each crane until it is decoded; that is, Crane 1 handles

the task set {6,3,1,8,4} and Crane 2 handles the task set {2,9,7,5}, which are determined

according to a decoding algorithm (as in Section 4.2.2).

The sequence of crane 1 The sequence of crane 2

73 26 1 98 54

Figure 6. An illustration of encoding vector.

We first randomly generate and evaluate 100 individuals. Then, the first 30 individ-

uals with a smaller makespan were selected as the initial population. In field operations,

the population size can be adjusted according to the limitations of the computing time.

4.2.2. Decoding Algorithm

The decoding strategy of the GA is to transform the vector into a sequence of the

two cranes. The encoding vector is converted into a feasible sequence of crossover yard

cranes subject to sequential constraints and conflict-free constraints. The decoding strat-

egy and its corresponding algorithm (Algorithm 1) are illustrated using a batch task as

an example.

Before decoding, the number of tasks assigned to each crane is not determined. A

flexible strategy is developed for assigning the optimal task set to each crane. We trav-

erse the encoding vector from the head to the end, successively splitting the points of the

individual into two segments (i.e., Step 2 in Algorithm 1). In each traverse, the makespan

of sequences is evaluated. Finally, the sequence with a minimum makespan is the opti-

mal solution.

Algorithm 1: Decoding strategy based on random arrangement

Input: (1) The set and parameter: [�, �, ��, ��]; (2) random arranged sequence: ��.

Output: (1) ��: the optimal scheme of cranes, ∀� ∈ �; (2) [���, ���]: the start and com-

pletion time of task �, ∀� ∈ �, ∀� ∈ �; (3) �: the makespan.

Variables: �: the set of the makespan.

Steps

Step 1 Initialization: Let � be a sufficient number. Set 0 ← ���, ���.

Step 2 For � in �, � = |��|

Step 2.1 Divide the sequence ��, and the preceding and succeeding segments are as-

signed in turn to the two cranes, i.e., ��
∗∗ ← ��[: , �]; ��

∗∗ ← ��[�, :].

Step 2.2 Calculate the makespan �∗∗ of sequence ��
∗∗, � ∈ � and append �∗∗ into �,

i.e., � = � ∪ {�∗∗}.

Step 2.3 End for

Step 3 Find the minimum �∗and its corresponding sequences ��
∗, i.e., �∗ =

������(�).

Calculate the ���
∗ , ���

∗ in sequence ��
∗, � ∈ �.

Step 4 Detect and avoid conflict.

Step 4.1 For �, � in ��
∗, ��

∗

Step 4.1.1 If �� = �� and Δ = ���,�
∗ − ��,�

∗ � ≤ ��, then set ��,�
∗ ← ��,�

∗ + (�� − Δ);

Step 4.1.2 Elif �� = �� and Δ = ���,�
∗ − ��,�

∗ � ≤ ��, then set ��,�
∗ ← ��,�

∗ + (�� − Δ).

Step 4.1.3 End for

Step 4.2 Calculate the makespan ��∗, ��∗ for the two sequences.

Figure 6. An illustration of encoding vector.

We first randomly generate and evaluate 100 individuals. Then, the first 30 individuals
with a smaller makespan were selected as the initial population. In field operations, the
population size can be adjusted according to the limitations of the computing time.

4.2.2. Decoding Algorithm

The decoding strategy of the GA is to transform the vector into a sequence of the two
cranes. The encoding vector is converted into a feasible sequence of crossover yard cranes
subject to sequential constraints and conflict-free constraints. The decoding strategy and its
corresponding algorithm (Algorithm 1) are illustrated using a batch task as an example.

Before decoding, the number of tasks assigned to each crane is not determined. A
flexible strategy is developed for assigning the optimal task set to each crane. We traverse
the encoding vector from the head to the end, successively splitting the points of the
individual into two segments (i.e., Step 2 in Algorithm 1). In each traverse, the makespan
of sequences is evaluated. Finally, the sequence with a minimum makespan is the optimal
solution.

J. Mar. Sci. Eng. 2023, 11, 892 14 of 26

Algorithm 1: Decoding strategy based on random arrangement

Input: (1) The set and parameter: [J, K, Oi, Di]; (2) random arranged sequence: S0.

Output:
(1) Sk: the optimal scheme of cranes, ∀k ∈ K; (2) [ski, cki]: the start and completion
time of task i, ∀i ∈ J, ∀k ∈ K; (3) f : the makespan.

Variables: F : the set of the makespan.
Steps
Step 1 Initialization: Let f be a sufficient number. Set 0← ski, cki .
Step 2 For w in W, W = |S0|

Step 2.1
Divide the sequence S0, and the preceding and succeeding segments are assigned in
turn to the two cranes, i.e., S∗∗1 ← S0[:, w] ; S∗∗2 ← S0[w, :] .

Step 2.2
Calculate the makespan f ∗∗ of sequence S∗∗k , k ∈ K and append f ∗∗ into F, i.e.,
F = F ∪ { f ∗∗}.

Step 2.3 End for

Step 3
Find the minimum f ∗ and its corresponding sequences S∗k , i.e., f ∗ = argmin(F).
Calculate the s∗ki, c∗ki in sequence S∗k , k ∈ K.

Step 4 Detect and avoid conflict.
Step 4.1 For i, j in S∗1 , S∗2
Step 4.1.1 If Oi = Oj and ∆ =

∣∣∣s∗1,i − s∗2,j

∣∣∣ ≤ Ts, then set s∗1,i ← s∗1,i + (Ts − ∆) ;

Step 4.1.2 Elif Di = Dj and ∆ =
∣∣∣c∗1,i − c∗2,j

∣∣∣ ≤ Ts, then set c∗1,i ← c∗1,i + (Ts − ∆) .

Step 4.1.3 End for
Step 4.2 Calculate the makespan f 1∗, f 2∗ for the two sequences.
Step 4.3 Set f ∗ = max

(
f 1∗, f 2∗).

Step 5 If f ∗ < f , then f ← f ∗ , Sk ← S∗k , ski ← s∗ki, cki ← c∗ki .
Step 6 Output f , Sk, ski, cki, i ∈ J, k ∈ K.

Proposition 1. The computational time complexity of Algorithm 1 is O
(
n + nm−m2), where n

denotes the number of tasks and m denotes the number of tasks assigned to anyone crane (m < n).

Proof. The decoding algorithm consists of two main steps: task assignment and conflict
avoidance. In the worst case, the randomly arranged sequence is split n times, and the two
parts of the sequence at the front and back the split obtained are assigned to two cranes,
respectively. Thus, the complexity of task assignment is O(n). In conflict avoidance, the
sequences assigned to the two cranes are calculated in turn to identify whether they conflict.
Suppose the number of tasks assigned to one crane is m, then the other crane is (n−m).
Thus, the complexity of task assignment is O(m(n−m)). Finally, the computational time
complexity of the entire algorithm is O

(
n + nm−m2). �

4.2.3. Crossover and Mutation Operations

In GAs, we design a multi-point crossover operator and a 2-opt mutation operator to
perform the neighborhood search. The operators are visualized in Figure 7. In brief, one or
two individuals are randomly assigned as parents, and the neighborhood generations are
executed to generate offspring. The operations of the operators are defined as follows.

In the decoding algorithm, the individual is split into two parts—front and back—as
two sequences of crane operations. In the multi-point crossover operator, one point in each
of the front and back parts of the individual is selected (the same operation is performed by
the other individual), and then two points in the two individuals are exchanged to generate
two new individuals. Therefore, the advantage of the multi-point crossover operator is that
it can increase the diversity of search. The 2-opt mutation operator focuses on performing
operations on the front or back half of an individual’s point position. This operation helps
to prevent the algorithm from falling into a local optimum solution.

J. Mar. Sci. Eng. 2023, 11, 892 15 of 26

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 14 of 26

Step 4.3 Set �∗ = max (��∗, ��∗).

Step 5 If �∗ < �, then � ← �∗, �� ← ��
∗, ��� ← ���

∗ , ��� ← ���
∗ .

Step 6 Output �, ��, ���, ���, � ∈ �, � ∈ �.

Proposition 1. The computational time complexity of Algorithm 1 is O(n + nm − m�),

where n denotes the number of tasks and m denotes the number of tasks assigned to an-

yone crane (m < n).

Proof. The decoding algorithm consists of two main steps: task assignment and conflict

avoidance. In the worst case, the randomly arranged sequence is split � times, and the

two parts of the sequence at the front and back the split obtained are assigned to two

cranes, respectively. Thus, the complexity of task assignment is �(�). In conflict avoid-

ance, the sequences assigned to the two cranes are calculated in turn to identify whether

they conflict. Suppose the number of tasks assigned to one crane is �, then the other

crane is (� − �). Thus, the complexity of task assignment is ���(� − �)�. Finally, the

computational time complexity of the entire algorithm is �(� + �� − ��). □

4.2.3. Crossover and Mutation Operations

In GAs, we design a multi-point crossover operator and a 2-opt mutation operator

to perform the neighborhood search. The operators are visualized in Figure 7. In brief,

one or two individuals are randomly assigned as parents, and the neighborhood genera-

tions are executed to generate offspring. The operations of the operators are defined as

follows.

(b) Mutation operation

73 26 1 98 54
parents

(a) Crossover operation

6 3721 9 85 4

73 26 1 98 54

75 62 1 98 34

2 5761 9 83 4

73 26 1 58 94

offspring

parent

offspring

Figure 7. Schematic diagram of crossover and mutation operators.

In the decoding algorithm, the individual is split into two parts—front and back—

as two sequences of crane operations. In the multi-point crossover operator, one point in

each of the front and back parts of the individual is selected (the same operation is per-

formed by the other individual), and then two points in the two individuals are ex-

changed to generate two new individuals. Therefore, the advantage of the multi-point

crossover operator is that it can increase the diversity of search. The 2-opt mutation op-

erator focuses on performing operations on the front or back half of an individual’s point

position. This operation helps to prevent the algorithm from falling into a local optimum

solution.

In addition, while executing the multi-point crossover operator, the point in the in-

dividual should be detected to avoid repetition. For example, the duplicate tasks 5# and

6# in the first individual need to be transformed to 3# and 2#. The second individual

executes a similar operation.

4.3. Greedy Insertion

Figure 7. Schematic diagram of crossover and mutation operators.

In addition, while executing the multi-point crossover operator, the point in the
individual should be detected to avoid repetition. For example, the duplicate tasks 5#
and 6# in the first individual need to be transformed to 3# and 2#. The second individual
executes a similar operation.

4.3. Greedy Insertion

A greedy insertion algorithm (Algorithm 2) is developed to re-optimize the scheme.
The instant request is added to a batch task close to its emergence time. The instant request
(new task) is inserted at the corresponding position in the existing sequence in the scheme
based on the principle of minimal incremental makespan, as shown in Figure 8. Multiple
new tasks will be sorted by ascending service time Ti, and greedy insertion operations are
performed in turn, as in Algorithm 2.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 15 of 26

A greedy insertion algorithm (Algorithm 2) is developed to re-optimize the scheme.

The instant request is added to a batch task close to its emergence time. The instant re-

quest (new task) is inserted at the corresponding position in the existing sequence in the

scheme based on the principle of minimal incremental makespan, as shown in Figure 8.

Multiple new tasks will be sorted by ascending service time ��, and greedy insertion op-

erations are performed in turn, as in Algorithm 2.

��

��

��

12

2 113

8

1

13��

4

9 14

5

7

10

6

… …

��� ��

���

Planned task

Inserting

��

Dummy task��

Instant request��

… …

Figure 8. Schematic diagram of re-optimization for instant requests.

Algorithm 2: The greedy insertion algorithm within the iterative re-optimization

framework

Input: (1) Set of cranes: �; (2) The sequence in planned scheme �: ���, ∀� ∈ �, � ∈ �;

(3) Set of instant requests: �

Output: (1) ��: the p-th updated scheme; (2) [���, ���]: the start and completion time of

each task � in p-th scheme, ∀� ∈ �, ∀� ∈ �.

Variable: (1) ��
�, ��

�: the start/completion time of p-th scheme; (2) �: the minimum lead

time for the planned to be re-optimize; (3) �: the current moment.

Steps

Step 1 At moment 0, generate a planned scheme for three batch tasks, i.e., the initial

scheme ��, ∀� ∈ {1,2,3}. Set � ← 1.

Step 2 The two cranes handle the scheme ��.

Step 3 Within � ∈ (��
�, ��

�), generate a scheme for one batch task backwards ����.

Step 4 If the emergence time of the instant request is close to the start handling time

��
� of the p-th planned scheme, i.e., � < ��

� − �, � = {� + 1, � + 2}, then re-

optimize the p-th planned scheme; otherwise, go to Step 7.

Step 4.1 The instant requests � ∈ � are arranged in ascending order according to the

service time �� and perform the insert operations in turn. Namely, take � =

����������, inserting task � to ���.

Step 4.2 Update the sequence in the p-th scheme, ��� ← ��� ∪ {�}, ��� � ← ��� �\�.

Step 5 Avoid conflict as Step 4 in Algorithm 1. Update [���, ���] ← [���
∗ , ���

∗].

Step 6 Generate a re-optimization scheme ��, � = {� + 1, � + 2}.

Step 7 When � ≥ ����
� , the scheme ���� is handled by the two cranes; Set � ← � + 1

and return to Step 3.

Proposition 2. The computational time complexity of Algorithm 2 is O�(qr + r� +

1)log�(r)�, where q denotes the number of p-th scheme, r denotes the number of instant

requests, and log�() denotes the logarithm with base 2.

Proof. Algorithm 2 consists of two processes, i.e., a sorting operation and a greedy inser-

tion operation. Firstly, sorting the � instant requests by the length of the service has a

computational time complexity of ���log�(�)�. In the greedy insertion operation, sup-

pose the p-th scheme has � tasks, and the � tasks and � instant requests constitute

Figure 8. Schematic diagram of re-optimization for instant requests.

Proposition 2. The computational time complexity of Algorithm 2 is O
((

qr + r2 + 1
)
log2(r)

)
,

where q denotes the number of p-th scheme, r denotes the number of instant requests, and log2()
denotes the logarithm with base 2.

Proof. Algorithm 2 consists of two processes, i.e., a sorting operation and a greedy in-
sertion operation. Firstly, sorting the r instant requests by the length of the service has a
computational time complexity of O(r log2(r)). In the greedy insertion operation, suppose
the p-th scheme has q tasks, and the q tasks and r instant requests constitute (q + r) tasks.
Thus, in the worst case, there are total of (q + r + 1) insertion positions, i.e., (q + r + 1)
insertion possibilities. Therefore, the computational time complexity of the entire algorithm
is O

((
qr + r2 + 1

)
log2(r)

)
.�

J. Mar. Sci. Eng. 2023, 11, 892 16 of 26

Algorithm 2: The greedy insertion algorithm within the iterative re-optimization framework

Input:
(1) Set of cranes: K; (2) The sequence in planned scheme p: Skp, ∀k ∈ K, p ∈ P; (3) Set
of instant requests: R

Output:
(1) Pp: the p-th updated scheme; (2) [ski, cki]: the start and completion time of each
task i in p-th scheme, ∀i ∈ J, ∀k ∈ K.

Variable:
(1) T−p , T+

p : the start/completion time of p-th scheme; (2) δ: the minimum lead time
for the planned to be re-optimize; (3) τ: the current moment.

Steps

Step 1
At moment 0, generate a planned scheme for three batch tasks, i.e., the initial
scheme Pp, ∀p ∈ {1, 2, 3}. Set m← 1 .

Step 2 The two cranes handle the scheme Pm.
Step 3 Within τ ∈

(
T−m , T+

m
)
, generate a scheme for one batch task backwards Pm+3.

Step 4
If the emergence time of the instant request is close to the start handling time T−p of
the p-th planned scheme, i.e., τ < T−p − δ, p = {m + 1, m + 2}, then re-optimize the
p-th planned scheme; otherwise, go to Step 7.

Step 4.1
The instant requests j ∈ R are arranged in ascending order according to the service
time Tj and perform the insert operations in turn. Namely, take l = argminhcki,
inserting task l to Skp.

Step 4.2 Update the sequence in the p-th scheme, Skp ← Skp ∪ {l}, Skp ← Skp\R .
Step 5 Avoid conflict as Step 4 in Algorithm 1. Update

[
ski, cki]← [s∗ki, c∗ki

]
.

Step 6 Generate a re-optimization scheme Pp, p = {m + 1, m + 2}.

Step 7
When τ ≥ T−m+1, the scheme Pm+1 is handled by the two cranes; Set m← m + 1
and return to Step 3.

5. Computational Experiments
5.1. Instances

We generated several instances to demonstrate the effectiveness of the model [M1]
and relaxation model [MLB], the performance of Algorithm 1, and the re-optimization
performance of Algorithm 2. The computer configuration was Intel (R) Core (TM) i7-10510
CPU @1.8 GHz, 16 G RAM. We used CPLEX as a solver for solving the proposed models.

We provide a generator to generate the datasets (https://github.com/MaritimeYZWang/
craneSchedulingModel.git) accessed on 8 March 2023. We generated multiple sets of small-
scale instances (i.e., IS = {5, 6, . . . , 20}) and large-scale instances (i.e., IL = 30, 40, 50, 75, 100,
125, 150, 175), where the figures in the instances indicate the number of tasks. The dimen-
sions of the block were 40 bays × 6 stacks × 5 tiers. The movement speed of the crane was
set to 3 m/s, i.e., the crane can pass one bay (the length is 12 m) in 4 s (set as a unit). In addi-
tion, the lifting or dropping time for a container by crane was set to 30 s (i.e., 7.5 units). The
origin Oi and the destination Di were the two main parameters of task i, and an example is
shown in Table 4.

Table 4. An instance (N = 10).

No. Oi Di Bay No. Oi Di Bay

1 0 16 16 6 0 16 16
2 0 28 28 7 0 38 38
3 0 32 32 8 0 24 24
4 0 19 19 9 0 16 16
5 0 23 23 10 0 31 31

5.2. Settings

The experimental purpose and settings are shown in Table 5.

https://github.com/MaritimeYZWang/craneSchedulingModel.git
https://github.com/MaritimeYZWang/craneSchedulingModel.git

J. Mar. Sci. Eng. 2023, 11, 892 17 of 26

Table 5. Experimental settings.

No. Purpose Settings Results

Exp.
1

Verify the correctness of the models and the validity of the
algorithms

a. Use small-scale instances IS = {5, 6, . . . , 20};
b. Solve by CPLEX solver and Algorithm 1.

Table 6
Figures 9 and 10

Exp.
2

Analyze the performance of the algorithms

a. Use large-scale instance IL = {30, 50}; Tables 7 and 8b. The crossover probability C is set to {0.1, 0.2, . . . , 0.9};
c. The mutation probability M is set to {0.1, 0.2, . . . , 0.9}. Figures 11 and 12d. Let Algorithm 1 iterate 100 times in each combination of C and M.

Exp.
3

Analyze the impact of the duration of the scheme on the
planning results

a. Use large-scale instance IL = {30, 40, 50, 75, 100, 125, 150, 175};
b. The duration of the scheme is set to T = {300, 600, 900}.

Table 9
Figure 13

Exp.
4

Analyze the impact of the level of uncertainty (the volume
of instant request) on the planning results

a. Use large-scale instance IL = {30, 50, 100};
b. The ratio of the volume of instant requests to the number of tasks is set
to β = {0.1, 0.2, 0.3};
c. The duration of the scheme is set to T = {300, 600, 900}.

Table 10
Figure 14

Table 6. Comparison of the model [M1] and Algorithm 1.

N fLB (u)
[M1] (CPLEX Solver) Algorithm 1 (GA)

Dev 2 (%)
f1 (u) CPU (s) Dev 1 (%) Min (u) Max (u) Ave (u) CPU (s)

5 147.00 154.00 0.11 6.82 154.00 157.00 154.03 1.00 0
6 181.00 188.50 0.25 5.57 188.50 194.00 188.64 1.54 0.07
7 209.50 220.00 4.30 5.68 220.00 232.00 220.22 1.53 0.10
8 233.00 241.50 7.58 2.07 241.50 256.00 241.83 1.63 0.14
9 269.50 280.00 135.58 3.75 281.00 295.00 281.31 2.06 0.47

10 307.00 317.00 1278.39 5.05 317.00 328.00 317.27 2.87 0.09
11 334.50 342.50 3600.00 3.21 342.50 357.00 342.88 3.93 0.11
12 371.00 385.50 3600.00 4.41 385.50 401.00 385.87 4.83 0.10
13 402.50 420.00 3600.00 4.52 423.00 438.00 423.20 4.93 0.76
14 437.00 456.50 3600.00 4.27 456.00 474.00 457.00 6.13 0.11
15 473.50 478.00 3600.00 2.51 479.00 496.00 479.33 6.71 0.28
16 495.50 504.50 3600.00 2.38 505.50 523.00 505.81 7.77 0.26
17 522.00 - 3600.00 - 542.00 558.00 542.34 9.14 3.63
18 556.50 - 3600.00 - 583.00 597.00 583.18 10.87 4.11
19 600.00 - 3600.00 - 623.00 640.00 623.46 11.33 4.71
20 639.50 - 3600.00 - 651.00 665.00 652.70 12.04 3.66

Note: Min, Max, and Ave represent the minimum, maximum and average of the makespan; CPU is the computing
time; Dev 1 = (f1 − fLB)/ fLB × 100%; Dev 2 = (Ave− f1)/ f1 × 100%.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 17 of 26

Table 6. Comparison of the model [M1] and Algorithm 1.

N ��� (�)
[M1] (CPLEX Solver) Algorithm 1 (GA)

Dev 2 (%)
�� (�) CPU (s) Dev 1 (%) Min (�) Max (�) Ave (�) CPU (s)

5 147.00 154.00 0.11 6.82 154.00 157.00 154.03 1.00 0

6 181.00 188.50 0.25 5.57 188.50 194.00 188.64 1.54 0.07

7 209.50 220.00 4.30 5.68 220.00 232.00 220.22 1.53 0.10

8 233.00 241.50 7.58 2.07 241.50 256.00 241.83 1.63 0.14

9 269.50 280.00 135.58 3.75 281.00 295.00 281.31 2.06 0.47

10 307.00 317.00 1278.39 5.05 317.00 328.00 317.27 2.87 0.09

11 334.50 342.50 3600.00 3.21 342.50 357.00 342.88 3.93 0.11

12 371.00 385.50 3600.00 4.41 385.50 401.00 385.87 4.83 0.10

13 402.50 420.00 3600.00 4.52 423.00 438.00 423.20 4.93 0.76

14 437.00 456.50 3600.00 4.27 456.00 474.00 457.00 6.13 0.11

15 473.50 478.00 3600.00 2.51 479.00 496.00 479.33 6.71 0.28

16 495.50 504.50 3600.00 2.38 505.50 523.00 505.81 7.77 0.26

17 522.00 - 3600.00 - 542.00 558.00 542.34 9.14 3.63

18 556.50 - 3600.00 - 583.00 597.00 583.18 10.87 4.11

19 600.00 - 3600.00 - 623.00 640.00 623.46 11.33 4.71

20 639.50 - 3600.00 - 651.00 665.00 652.70 12.04 3.66

Note: Min, Max, and Ave represent the minimum, maximum and average of the makespan; CPU is

the computing time; Dev 1 = (�� − ���)/��� × 100%; Dev 2= (Ave − ��)/�� × 100%.

Crane 1 load path

Crane 1 empty load path

Crane 2 load path

Crane 2 empty load path

��

Crane 1 load path

Crane 1 empty load path

Crane 2 load path

Crane 2 empty load path

(a) Solved by model [M1] (N = 10) (b) Solved by GA (N = 10)

Figure 9. The working paths of the crossover yard crane.

Table 7. Comparison of the simulated annealing and the proposed GA.

N Simulated Annealing Algorithm 1 (GA) Gap 1 (%) Gap 2 (%)

 �� (�) ���� (s) �� (�) ���� (s)

20 699.50 7.34 651.00 12.04 7.45 −39.04

30 1076.00 27.01 1030.60 16.81 4.41 60.68

40 1391.50 56.03 1306.00 40.58 6.55 38.07

50 1775.50 124.54 1689.50 79.28 5.09 57.09

75 2832.50 415.36 2699.00 256.99 4.95 61.62

100 3881.00 891.11 3772.50 672.93 2.89 32.42

125 4845.00 1755.37 4696.00 1162.30 3.18 51.03

Figure 9. The working paths of the crossover yard crane.

J. Mar. Sci. Eng. 2023, 11, 892 18 of 26

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 18 of 26

150 6009.00 2782.72 5915.00 2223.17 1.59 25.17

175 7171.50 4957.47 7092.50 3537.56 1.11 40.14

Note: Gap 1 = (�� − ��)/�� × 100%; Gap 2 = (CPU� − CPU�)/CPU� × 100%.

Crane 1 load path

Crane 1 empty load path

Crane 2 load path

Crane 2 empty load path

Figure 10. The operation paths of Dual-ASCs solved by Algorithm 1 (N = 20).

Table 8. Results for each of the 30 tasks of Exp. 2.

No. ��� (�)
Algorithm 1 (� = ��)

Diff Ave (%)
Min (�) Max (�) Ave (�) CPU (s)

1 997.50 1050.00 1070.50 1061.57 37.16 6.42

2 1018.00 1078.50 1090.50 1089.62 33.30 7.04

3 1065.70 1113.00 1127.50 1124.34 32.44 5.50

4 959.20 984.00 996.50 998.25 39.03 4.07

5 916.50 946.00 975.00 956.43 32.35 4.36

6 1009.00 1043.00 1060.00 1053.85 38.78 4.44

7 987.50 1017.00 1042.00 1027.80 37.05 4.08

8 1017.50 1046.00 1061.50 1056.45 57.02 3.83

9 960.50 999.00 1025.50 1011.66 40.38 5.33

10 1028.00 1075.50 1090.50 1088.35 41.04 5.87

11 989.00 1028.00 1059.00 1039.99 36.23 5.16

12 1022.70 1034.50 1054.00 1048.58 34.59 2.53

13 1007.00 1035.50 1045.00 1044.06 33.69 3.68

14 1039.50 1075.00 1087.50 1085.87 38.09 4.46

15 993.50 1024.50 1038.00 1036.43 34.11 4.32

16 978.00 1032.00 1045.50 1044.48 36.53 6.80

17 978.00 1000.50 1026.00 1009.52 35.58 3.22

18 936.70 960.00 980.00 971.50 32.41 3.72

19 959.20 1016.50 1041.00 1028.18 34.77 7.19

20 898.00 924.50 947.00 935.43 33.28 4.17

Note: Diff Ave = (��� − ���)/��� × 100%.

Figure 10. The operation paths of Dual-ASCs solved by Algorithm 1 (N = 20).
J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 19 of 26

Figure 11. Convergence procedure under multi-parameter combinations.

Figure 12. Convergence diagram of genetic algorithm in solving 30 instances.

Table 9. Results for each of the 50 tasks of Exp. 2.

No. ��� (�)
Algorithm 1 (� = ��)

Diff Ave (%)
Min (�) Max (�) Ave (�) CPU (s)

1 1694.25 1753.00 1778.50 1769.22 172.50 4.42

2 1664.00 1758.00 1779.50 1771.42 153.84 6.46

3 1652.75 1726.50 1768.50 1745.41 168.01 5.61

4 1749.00 1787.50 1813.00 1803.08 155.29 3.09

5 1608.75 1674.00 1686.00 1690.00 153.44 5.05

6 1663.50 1736.00 1758.50 1757.21 168.27 5.63

7 1779.50 1807.00 1827.50 1817.67 166.99 2.14

8 1671.00 1722.50 1740.50 1737.00 168.80 3.95

9 1561.50 1632.50 1663.50 1649.07 155.25 5.61

10 1666.75 1708.50 1739.00 1725.68 154.47 3.54

11 1726.75 1792.50 1816.00 1810.56 155.56 4.85

12 1676.25 1745.00 1756.00 1760.24 168.89 5.01

Figure 11. Convergence procedure under multi-parameter combinations.

Table 7. Comparison of the simulated annealing and the proposed GA.

N Simulated Annealing Algorithm 1 (GA) Gap 1 (%) Gap 2 (%)

fa (u) CPUa (s) fb (u) CPUb (s)

20 699.50 7.34 651.00 12.04 7.45 −39.04
30 1076.00 27.01 1030.60 16.81 4.41 60.68
40 1391.50 56.03 1306.00 40.58 6.55 38.07
50 1775.50 124.54 1689.50 79.28 5.09 57.09
75 2832.50 415.36 2699.00 256.99 4.95 61.62

100 3881.00 891.11 3772.50 672.93 2.89 32.42
125 4845.00 1755.37 4696.00 1162.30 3.18 51.03
150 6009.00 2782.72 5915.00 2223.17 1.59 25.17
175 7171.50 4957.47 7092.50 3537.56 1.11 40.14

Note: Gap 1 = (fa − fb)/ fb × 100%; Gap 2 = (CPUa −CPUb)/CPUb × 100%.

J. Mar. Sci. Eng. 2023, 11, 892 19 of 26

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 19 of 26

Figure 11. Convergence procedure under multi-parameter combinations.

Figure 12. Convergence diagram of genetic algorithm in solving 30 instances.

Table 9. Results for each of the 50 tasks of Exp. 2.

No. ��� (�)
Algorithm 1 (� = ��)

Diff Ave (%)
Min (�) Max (�) Ave (�) CPU (s)

1 1694.25 1753.00 1778.50 1769.22 172.50 4.42

2 1664.00 1758.00 1779.50 1771.42 153.84 6.46

3 1652.75 1726.50 1768.50 1745.41 168.01 5.61

4 1749.00 1787.50 1813.00 1803.08 155.29 3.09

5 1608.75 1674.00 1686.00 1690.00 153.44 5.05

6 1663.50 1736.00 1758.50 1757.21 168.27 5.63

7 1779.50 1807.00 1827.50 1817.67 166.99 2.14

8 1671.00 1722.50 1740.50 1737.00 168.80 3.95

9 1561.50 1632.50 1663.50 1649.07 155.25 5.61

10 1666.75 1708.50 1739.00 1725.68 154.47 3.54

11 1726.75 1792.50 1816.00 1810.56 155.56 4.85

12 1676.25 1745.00 1756.00 1760.24 168.89 5.01

Figure 12. Convergence diagram of genetic algorithm in solving 30 instances.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 20 of 26

13 1628.50 1676.00 1703.00 1688.98 154.28 3.71

14 1741.00 1790.00 1814.00 1807.93 167.84 3.84

15 1663.75 1729.00 1761.00 1747.41 165.59 5.03

16 1676.50 1717.00 1749.50 1736.90 167.50 3.60

17 1747.00 1807.00 1824.50 1821.77 155.30 4.28

18 1681.50 1751.00 1779.50 1765.90 154.07 5.02

19 1637.50 1695.00 1718.00 1710.97 166.76 4.49

20 1793.50 1850.00 1874.50 1862.59 169.77 3.85

Note: Diff Ave = (��� − ���)/��� × 100%.

0

1000

2000

3000

4000

5000

6000

7000

8000

30 40 50 75 100 125 150 175

M
ak

ea
p
an

(u
)

The number of tasks (N)

T=inf

T=900

T=600

T=300

0 400 800 1200 1600 2000 2400 2800 3200 3600

30

40

50

75

100

125

150

175

Computing time (s)

T
he

 n
um

b
er

 o
f

ta
sk

s
(N

)

T=300

T=600

T=900

T=inf

Figure 13. The makespan and computing time under various durations of the scheme.

Table 10. Comparison of results under various durations of the scheme.

� � = ��� (∞) � = ��� (�) � = ��� (�) � = ��� (�)

 ��� (�) ���� (�) Diff (%) ���� (�) Diff (%) ���� (�) Diff (%)

30 961.50 961.50 0 1058.44 10.08 1073.42 11.64

40 1306.00 1421.47 8.84 1435.38 9.91 1440.13 10.27

50 1689.50 1796.51 6.33 1809.29 7.09 1844.60 9.18

75 2699.00 2819.39 4.46 2857.16 5.86 2919.51 8.17

100 3772.50 3874.73 2.71 3950.56 4.72 4054.50 7.48

125 4696.00 4827.55 2.80 4883.37 3.99 5025.19 7.01

150 5915.00 6158.73 4.12 6094.82 3.04 6298.88 6.49

175 7092.50 7242.93 2.12 7304.57 2.99 7394.64 4.26

Note: Diff = (|Ave� − Ave|)/Ave × 100%, where � = {1,2,3}.

5.3. Experimental Results

5.3.1. The Demonstration of Model and Algorithm

The working path of two cranes is solved using the MILP solver and Algorithm 1,

respectively, as shown in Figure 9. The solid line represents the path of the crane in the

loaded state, and the dashed line represents the path of the empty load operation. The

results show that (1) there is no overlap between the operating times of the two cranes at

the same bay, and (2) there is no crossover between the load paths (shown by the solid

line) and the empty load paths (shown by the dashed line) of the two cranes. The above

two points indicate that the conflict-avoidance rules and their constraints are effective. In

addition, Algorithm 1 obtains conflict-free paths within 12 s. Hence, initially, it is shown

Figure 13. The makespan and computing time under various durations of the scheme.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 21 of 26

that Algorithm 1 has a good performance. The working path for the instance with task

20 is shown in Figure 10.

0

2

4

6

8

10

12
N=30 (T=900)

N=50 (T=900)

N=100 (T=900)

N=30 (T=600)

N=50 (T=600)N=100 (T=600)

N=30 (T=300)

N=50 (T=300)

N=100 (T=300)

β=10%

β=20%

β=30%

Figure 14. The effect of the uncertain degree and the duration of the scheme on the results.

The results of [M1] and Algorithm 1 as shown in Table 6. ��� represents a lower

bound derived by [M��]. The results show that the average gap between ��� and the op-

timal makespan �� is 4.19%. Hence, the relaxation model can provide a good lower

bound and can be used as a benchmark for evaluating the optimized performance of the

model and the proposed algorithms. The average gap between Algorithm 1 and the op-

timal makespan found by CPLEX is only 1.16% on average (the maximum gap is no

more than 5%). The CPLEX is unable to solve the problem within an acceptable time

when the number of tasks exceeds 10. However, Algorithm 1 is still able to find the ap-

proximate optimal makespan in a shorter time. Therefore, the proposed algorithm has a

good performance in small-scale instances. In addition, the performance in large-scale

instances was tested in Exp. 2.

5.3.2. Parameter Tuning and Performance

The GA has two main parameters (crossover/mutation probability) whose values af-

fect the convergence ability of the algorithm. We selected several combinations of pa-

rameters to find the best convergence ability. Figure 11 represents the solving process in

various parameter combinations. When crossover probability (C) and mutation probabil-

ity (M) are set to 0.8 and 0.3 respectively, the algorithm finds the optimal makespan

within 120 generations. The convergence trend of the other parameter combinations is

approximately the same as the optimal parameters. Therefore, the proposed algorithm

has a stable ability, which is beneficial to extend to the complex field operation at termi-

nals. In addition, Figure 12 shows the solving process for the algorithm taking the opti-

mal parameters. Before 120 generations, the average makespan is approximately uni-

formly distributed around the current optimal makespan. Therefore, the proposed algo-

rithm has good performance in terms of optimization results, computing time, and sta-

bility. Hence, the algorithm can provide a reference in the algorithm design for termi-

nals.

We use large-scale instances (i.e., � ≥ 30) to further test the performance of the

proposed algorithms. Without loss of generality, the parameters near the optimal pa-

rameter combinations were taken to reduce the effect of fixed crossover and mutation

probabilities on the solving. The results are shown in Tables 8 and 9. The average gap be-

tween the proposed Algorithm 1 and the lower bound is no more than 5%. Therefore,

the algorithm still has an advantage in solving large-scale instances.

In addition, to further validate the performance of the algorithm, we developed

simulated annealing for comparison with the proposed GA. The same decoding strategy

Figure 14. The effect of the uncertain degree and the duration of the scheme on the results.

5.3. Experimental Results
5.3.1. The Demonstration of Model and Algorithm

The working path of two cranes is solved using the MILP solver and Algorithm 1,
respectively, as shown in Figure 9. The solid line represents the path of the crane in the
loaded state, and the dashed line represents the path of the empty load operation. The

J. Mar. Sci. Eng. 2023, 11, 892 20 of 26

results show that (1) there is no overlap between the operating times of the two cranes at
the same bay, and (2) there is no crossover between the load paths (shown by the solid
line) and the empty load paths (shown by the dashed line) of the two cranes. The above
two points indicate that the conflict-avoidance rules and their constraints are effective. In
addition, Algorithm 1 obtains conflict-free paths within 12 s. Hence, initially, it is shown
that Algorithm 1 has a good performance. The working path for the instance with task 20
is shown in Figure 10.

The results of [M1] and Algorithm 1 as shown in Table 6. fLB represents a lower bound
derived by [MLB]. The results show that the average gap between fLB and the optimal
makespan f1 is 4.19%. Hence, the relaxation model can provide a good lower bound and
can be used as a benchmark for evaluating the optimized performance of the model and
the proposed algorithms. The average gap between Algorithm 1 and the optimal makespan
found by CPLEX is only 1.16% on average (the maximum gap is no more than 5%). The
CPLEX is unable to solve the problem within an acceptable time when the number of tasks
exceeds 10. However, Algorithm 1 is still able to find the approximate optimal makespan
in a shorter time. Therefore, the proposed algorithm has a good performance in small-scale
instances. In addition, the performance in large-scale instances was tested in Exp. 2.

5.3.2. Parameter Tuning and Performance

The GA has two main parameters (crossover/mutation probability) whose values
affect the convergence ability of the algorithm. We selected several combinations of pa-
rameters to find the best convergence ability. Figure 11 represents the solving process in
various parameter combinations. When crossover probability (C) and mutation probability
(M) are set to 0.8 and 0.3 respectively, the algorithm finds the optimal makespan within
120 generations. The convergence trend of the other parameter combinations is approxi-
mately the same as the optimal parameters. Therefore, the proposed algorithm has a stable
ability, which is beneficial to extend to the complex field operation at terminals. In addition,
Figure 12 shows the solving process for the algorithm taking the optimal parameters. Before
120 generations, the average makespan is approximately uniformly distributed around
the current optimal makespan. Therefore, the proposed algorithm has good performance
in terms of optimization results, computing time, and stability. Hence, the algorithm can
provide a reference in the algorithm design for terminals.

We use large-scale instances (i.e., N ≥ 30) to further test the performance of the
proposed algorithms. Without loss of generality, the parameters near the optimal parameter
combinations were taken to reduce the effect of fixed crossover and mutation probabilities
on the solving. The results are shown in Tables 8 and 9. The average gap between the
proposed Algorithm 1 and the lower bound is no more than 5%. Therefore, the algorithm
still has an advantage in solving large-scale instances.

In addition, to further validate the performance of the algorithm, we developed
simulated annealing for comparison with the proposed GA. The same decoding strategy is
used by both algorithms. The results show that the proposed GA outperforms simulated
annealing in terms of solution quality and computing time, as shown in Table 7.

J. Mar. Sci. Eng. 2023, 11, 892 21 of 26

Table 8. Results for each of the 30 tasks of Exp. 2.

No. fLB (u)
Algorithm 1 (N=30)

Diff Ave (%)
Min (u) Max (u) Ave (u) CPU (s)

1 997.50 1050.00 1070.50 1061.57 37.16 6.42
2 1018.00 1078.50 1090.50 1089.62 33.30 7.04
3 1065.70 1113.00 1127.50 1124.34 32.44 5.50
4 959.20 984.00 996.50 998.25 39.03 4.07
5 916.50 946.00 975.00 956.43 32.35 4.36
6 1009.00 1043.00 1060.00 1053.85 38.78 4.44
7 987.50 1017.00 1042.00 1027.80 37.05 4.08
8 1017.50 1046.00 1061.50 1056.45 57.02 3.83
9 960.50 999.00 1025.50 1011.66 40.38 5.33

10 1028.00 1075.50 1090.50 1088.35 41.04 5.87
11 989.00 1028.00 1059.00 1039.99 36.23 5.16
12 1022.70 1034.50 1054.00 1048.58 34.59 2.53
13 1007.00 1035.50 1045.00 1044.06 33.69 3.68
14 1039.50 1075.00 1087.50 1085.87 38.09 4.46
15 993.50 1024.50 1038.00 1036.43 34.11 4.32
16 978.00 1032.00 1045.50 1044.48 36.53 6.80
17 978.00 1000.50 1026.00 1009.52 35.58 3.22
18 936.70 960.00 980.00 971.50 32.41 3.72
19 959.20 1016.50 1041.00 1028.18 34.77 7.19
20 898.00 924.50 947.00 935.43 33.28 4.17

Note: Diff Ave = (Ave− fLB)/ fLB × 100%.

5.3.3. Validity Analysis of the Framework

In the iterative re-optimization framework, the given tasks are divided into multiple
batch subtasks, so that Algorithm 1 solves the scheme within each batch task one by one.
Algorithm 2 quickly assigns the instant requests to a corresponding batch task and re-
optimizes the scheme for this batch task. To verify the validity of this framework, we used
various durations of the scheme to compare the planning results.

The effect of the duration of the scheme on planning results.
The duration of the scheme T is set to inf, 900, 600, and 300, where “inf” denotes the

duration is unlimited. The results are shown in Table 10 and Figure 13. The smaller the
duration (i.e., the more batch tasks divided), the greater the makespan, but the computing
time is significantly shorter. In the framework for dynamic scheduling, there are only a
few tasks in the scheme, which not only reduces the computing time but also reserves time
and space for the dynamic scheduling of the instant requests generated by the change of
delivery sequences. Therefore, selecting an appropriate duration will help to improve the
efficiency of the developing scheme.

Analyze the effect of the volume of instant requests on results.
In this section, we define the degree of uncertainty β, which represents the ratio of the

volume of instant requests to the number of tasks in the planned scheme, i.e., β = NI/NO.
For example, the volume of instant requests NI for the instance NO = 30 is 3 when β = 10%.
A planned scheme is generated using Algorithm 1, and Algorithm 2 is invoked to perform
a re-optimization of the tasks including instant requests. The results are shown in Table 11,
and their visual representation is shown in Figure 14. The results show that the larger the
degree β, the larger the incremental Y of the makespan, and this effect gradually weakens
as the duration of the scheme T decreases. There are two possible reasons: (1) as the
uncertainty in the delivery sequence increases, re-optimizing increases the disturbance to
the planned scheme, and (2) shortening the duration of the scheme helps to assign a more
suitable batch task for instant requests and allows the updated scheme to take effect as
soon as possible and reduce the disturbance to the planned scheme.

J. Mar. Sci. Eng. 2023, 11, 892 22 of 26

Table 9. Results for each of the 50 tasks of Exp. 2.

No. fLB (u)
Algorithm 1 (N=50)

Diff Ave (%)
Min (u) Max (u) Ave (u) CPU (s)

1 1694.25 1753.00 1778.50 1769.22 172.50 4.42
2 1664.00 1758.00 1779.50 1771.42 153.84 6.46
3 1652.75 1726.50 1768.50 1745.41 168.01 5.61
4 1749.00 1787.50 1813.00 1803.08 155.29 3.09
5 1608.75 1674.00 1686.00 1690.00 153.44 5.05
6 1663.50 1736.00 1758.50 1757.21 168.27 5.63
7 1779.50 1807.00 1827.50 1817.67 166.99 2.14
8 1671.00 1722.50 1740.50 1737.00 168.80 3.95
9 1561.50 1632.50 1663.50 1649.07 155.25 5.61

10 1666.75 1708.50 1739.00 1725.68 154.47 3.54
11 1726.75 1792.50 1816.00 1810.56 155.56 4.85
12 1676.25 1745.00 1756.00 1760.24 168.89 5.01
13 1628.50 1676.00 1703.00 1688.98 154.28 3.71
14 1741.00 1790.00 1814.00 1807.93 167.84 3.84
15 1663.75 1729.00 1761.00 1747.41 165.59 5.03
16 1676.50 1717.00 1749.50 1736.90 167.50 3.60
17 1747.00 1807.00 1824.50 1821.77 155.30 4.28
18 1681.50 1751.00 1779.50 1765.90 154.07 5.02
19 1637.50 1695.00 1718.00 1710.97 166.76 4.49
20 1793.50 1850.00 1874.50 1862.59 169.77 3.85

Note: Diff Ave = (Ave− fLB)/ fLB × 100%.

Table 10. Comparison of results under various durations of the scheme.

N T=inf (∞) T=900 (u) T=600 (u) T=300 (u)

Ave (u) Ave1 (u) Diff (%) Ave2 (u) Diff (%) Ave3 (u) Diff (%)

30 961.50 961.50 0 1058.44 10.08 1073.42 11.64
40 1306.00 1421.47 8.84 1435.38 9.91 1440.13 10.27
50 1689.50 1796.51 6.33 1809.29 7.09 1844.60 9.18
75 2699.00 2819.39 4.46 2857.16 5.86 2919.51 8.17

100 3772.50 3874.73 2.71 3950.56 4.72 4054.50 7.48
125 4696.00 4827.55 2.80 4883.37 3.99 5025.19 7.01
150 5915.00 6158.73 4.12 6094.82 3.04 6298.88 6.49
175 7092.50 7242.93 2.12 7304.57 2.99 7394.64 4.26

Note: Diff = (|Aveα −Ave|)/Ave× 100%, where α = {1, 2, 3}.

Table 11. The effect of the volume of the instant requests on the results.

No. T(u) NO β=10% β=20% β=30%

Y1 (u) Diff (%) Y2 (u) Diff (%) Y3 (u) Diff (%)

1 900 30 35.00 3.64 41.50 4.32 49.50 5.15
2 900 50 73.00 4.32 46.00 2.72 74.50 4.41
3 900 100 293.50 7.78 234.00 6.20 425.00 11.27
4 600 30 24.00 2.50 93.50 9.72 94.00 9.78
5 600 50 68.50 4.05 110.50 6.54 65.00 3.85
6 600 100 189.50 5.02 224.00 5.94 350.50 9.29
7 300 30 24.00 2.50 49.00 5.10 70.50 7.33
8 300 50 62.50 3.70 92.00 5.45 38.00 2.25
9 300 100 158.50 4.20 172.00 4.56 167.00 4.43

Note: Yi indicates the incremental Y of makespan, i.e., the increased value of the updated scheme relative to the
planned scheme, i = {1, 2, 3}; Di f f = Yi/ fNO , where fNO represents the makespan without instant requests.

J. Mar. Sci. Eng. 2023, 11, 892 23 of 26

5.4. Discussion

Here, we present a discussion of the managerial implications for terminals’ operations
based on the experimental results and our analysis of the experiments.

(1) In the field operations of automated terminals, generating schemes for devices quickly
is essential for real-time operations. The algorithm in this paper finds an approximate
optimal makespan for 20 tasks within 12 s, and the gap between the makespan and
the optimal makespan does not exceed 5%. In addition, experimental results show
that the proposed algorithm can still guarantee solution quality with a small range
of parameter drift. Therefore, the proposed genetic algorithm based on conflict-
avoidance strategy is able to generate the scheme of cranes in a fast and stable manner.

(2) The batch-based task assignment and optimization can overcome the effects of uncer-
tainty in the delivery sequence on the operating system. With uncertainty, generating
schemes for a large number of tasks at once does not guarantee that operations will
proceed as planned. The approach of batch-based task assignment divides the given
task into several batch tasks, and the schemes are generated within each batch task one
by one. The experimental results show that when duration of the scheme is smaller
(i.e., the more batch tasks divided), the computing time is significantly smaller, and
the less affected it is by uncertainty, but the makespan also increases. Therefore, the
batching method makes scheduling and operations flexible, but the number of batch
tasks should be reasonably divided based on the data of historical operations.

(3) The iterative re-optimization framework and its solution methods provide some
theoretical references for dynamic scheduling. Dynamic scheduling is an essential
requirement for scheduling in complex and changing environments. If all devices in
the operating system perform the planned scheme, the static approach is perfectly
capable. The scheme may be suboptimal or even infeasible due to the changes in
the operating environment. As a result, re-optimization is necessary. However, the
computing resources at terminals will be in short supply if completely re-optimized for
all suboptimal schemes. Hence, the iterative re-optimization framework in this paper
combines the two patterns (i.e., static and dynamic). Static scheduling is performed
if there are no changes in the delivery sequence (i.e., no instant request). Dynamic
scheduling is performed as soon as instance requests emerge. The effectiveness of
optimization and re-optimization is verified by Exp. 4.

6. Conclusions

This paper proposes a dynamic scheduling problem for crossover yard cranes. For un-
loading operations, the crane scheduling scheme is usually based on the delivery sequence
from the quayside to the yard. In automated container terminals, the loading-first rule
is established to ensure the shipping date, which may lead to uncertainty in the delivery
sequence for unloading operations. As a result, the planned scheme of cranes may change
due to uncertainty, making the scheme become suboptimal or even infeasible. Therefore,
we proposed an iterative re-optimization framework to re-optimize the scheme.

In this paper, conflict-avoidance constraints are derived to ensure the orderly op-
erations of the two cranes. Meanwhile, we analyze the effectiveness of the formulated
constraints. A mixed-integer program is proposed to solve the problem to minimize the
makespan. We divide the given tasks into several batch tasks, and the scheme for each batch
task is generated in turn. An iterative re-optimization framework is proposed based on
batch-based task assignments and dynamic scheduling processes. Within this framework, a
genetic algorithm is designed to generate the planned scheme for the cranes, and a greedy
insertion algorithm is proposed to perform the re-optimization. Whenever the instant
requests emerged by the delivery sequence change, the framework instantly adds them to
a corresponding batch task and re-optimizes the batch task to generate an updated scheme.
In addition, a relaxation model is proposed to derive a lower bound for comparison with
the makespan by the proposed algorithms.

J. Mar. Sci. Eng. 2023, 11, 892 24 of 26

The experiments show that the average gap between the proposed algorithm and the
optimal makespan obtained by the CPLEX solver is only 1.16% in small-scale instances. In
large-scale instances, the average gap between the algorithm and the lower bound does
not exceed 5%. The greater the degree of uncertainty in the delivery sequence, the greater
the incremental increase of makespan compared to the planned scheme. However, this
effect gradually weakens as the duration of the scheme decreases. Therefore, the iterative
re-optimization framework can meet the requirements of dynamic scheduling, reserving
enough time and space for the dynamic optimization of the instant requests. In addition,
terminals should collect historical operational data and develop personalized solutions for
yard operations to determine an appropriate duration of the scheme based on the workload.

The simultaneous consideration of multiple-device scheduling can optimize the empty
load time between devices. In future research directions, the integrated scheduling problem,
such as the integrated scheduling of AGVs and ASCs, can be considered to study the
representation of dynamic scheduling on the integration problem and its modeling and
algorithm design.

Author Contributions: Z.-H.H.: Conceptualization, Methodology. Y.-Z.W.: Formal analysis, Soft-
ware, Writing- Reviewing and Editing. All authors have read and agreed to the published version of
the manuscript.

Funding: National Natural Science Foundation of China: 71871136; the Natural Science Foundation
of Shanghai: 23ZR1426500.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study. Written informed consent has been obtained from the patient(s) to publish this paper.

Data Availability Statement: The data that support the findings of this study are available in GitHub
at https://github.com/MaritimeYZWang/craneSchedulingModel.git (accessed on 8 March 2023).

Acknowledgments: The authors thank the editors and the anonymous referees for the opportunity
of considering this study. This study is partially supported by the Natural Science Foundation of
Shanghai (23ZR1426500).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Carlo, H.J.; Vis, I.F.; Roodbergen, K.J. Transport operations in container terminals: Literature overview, trends, research directions

and classification scheme. Eur. J. Oper. Res. 2014, 236, 1–13. [CrossRef]
2. Nossack, J.; Briskorn, D.; Pesch, E. Container Dispatching and Conflict-Free Yard Crane Routing in an Automated Container

Terminal. Transp. Sci. 2018, 52, 1059–1076. [CrossRef]
3. Jiang, X.J.; Jin, J.G. A branch-and-price method for integrated yard crane deployment and container allocation in transshipment

yards. Transp. Res. Part B Methodol. 2017, 98, 62–75. [CrossRef]
4. Kizilay, D.; Van Hentenryck, P.; Eliiyi, D.T. Constraint programming models for integrated container terminal operations. Eur. J.

Oper. Res. 2020, 286, 945–962. [CrossRef]
5. Zhou, C.; Lee, B.K.; Li, H. Integrated optimization on yard crane scheduling and vehicle positioning at container yards. Transp.

Res. Part E Logist. Transp. Rev. 2020, 138, 101966. [CrossRef]
6. Otto, A.; Li, X.; Pesch, E. Two-way bounded dynamic programming approach for operations planning in transshipment yards.

Transp. Sci. 2017, 51, 325–342. [CrossRef]
7. Gans, N.; van Ryzin, G. Dynamic vehicle dispatching: Optimal heavy traffic performance and practical insights. Oper. Res. 1999,

47, 675–692. [CrossRef]
8. Ozbaygin, G.; Savelsbergh, M. An iterative re-optimization framework for the dynamic vehicle routing problem with roaming

delivery locations. Transp. Res. Part B Methodol. 2019, 128, 207–235. [CrossRef]
9. Wang, Z.; Zhang, J.; Yang, S. An improved particle swarm optimization algorithm for dynamic job shop scheduling problems

with random job arrivals. Swarm Evol. Comput. 2019, 51, 100594. [CrossRef]
10. Xu, B.; Jie, D.; Li, J.; Zhou, Y.; Wang, H.; Fan, H. A Hybrid Dynamic Method for Conflict-Free Integrated Schedule Optimization

in U-Shaped Automated Container Terminals. J. Mar. Sci. Eng. 2022, 10, 1187. [CrossRef]
11. Boysen, N.; Briskorn, D.; Meisel, F. A generalized classification scheme for crane scheduling with interference. Eur. J. Oper. Res.

2017, 258, 343–357. [CrossRef]

https://github.com/MaritimeYZWang/craneSchedulingModel.git
https://doi.org/10.1016/j.ejor.2013.11.023
https://doi.org/10.1287/trsc.2017.0811
https://doi.org/10.1016/j.trb.2016.12.014
https://doi.org/10.1016/j.ejor.2020.04.025
https://doi.org/10.1016/j.tre.2020.101966
https://doi.org/10.1287/trsc.2016.0688
https://doi.org/10.1287/opre.47.5.675
https://doi.org/10.1016/j.trb.2019.08.004
https://doi.org/10.1016/j.swevo.2019.100594
https://doi.org/10.3390/jmse10091187
https://doi.org/10.1016/j.ejor.2016.08.041

J. Mar. Sci. Eng. 2023, 11, 892 25 of 26

12. Vis, I.F.A.; Carlo, H.J. Sequencing Two Cooperating Automated Stacking Cranes in a Container Terminal. Transp. Sci. 2010, 44,
169–182. [CrossRef]

13. Gharehgozli, A.H.; Laporte, G.; Yu, Y.; de Koster, R. Scheduling Twin Yard Cranes in a Container Block. Transp. Sci. 2015, 49,
686–705. [CrossRef]

14. Chen, X.; He, S.; Zhang, Y.; Tong, L.; Shang, P.; Zhou, X. Yard crane and AGV scheduling in automated container terminal: A
multi-robot task allocation framework. Transp. Res. Part C Emerg. Technol. 2020, 114, 241–271. [CrossRef]

15. Hu, Z.-H.; Sheu, J.-B.; Luo, J.X. Sequencing twin automated stacking cranes in a block at automated container terminal. Transp.
Res. Part C Emerg. Technol. 2016, 69, 208–227. [CrossRef]

16. Briskorn, D.; Angeloudis, P. Scheduling co-operating stacking cranes with predetermined container sequences. Discret. Appl.
Math. 2016, 201, 70–85. [CrossRef]

17. Han, X.; Wang, Q.; Huang, J. Scheduling cooperative twin automated stacking cranes in automated container terminals. Comput.
Ind. Eng. 2019, 128, 553–558. [CrossRef]

18. Hsu, H.-P.; Tai, H.-H.; Wang, C.-N.; Chou, C.-C. Scheduling of collaborative operations of yard cranes and yard trucks for export
containers using hybrid approaches. Adv. Eng. Inform. 2021, 48, 101292. [CrossRef]

19. Vis, I.F.; De Koster, R. Transshipment of containers at a container terminal: An overview. Eur. J. Oper. Res. 2003, 147, 1–16.
[CrossRef]

20. Zhang, Q.; Hu, W.; Duan, J.; Qin, J. Cooperative Scheduling of AGV and ASC in Automation Container Terminal Relay Operation
Mode. Math. Probl. Eng. 2021, 2021, 5764012. [CrossRef]

21. Cao, J.X.; Lee, D.H.; Chen, J.H.; Shi, Q. The integrated yard truck and yard crane scheduling problem: Benders’ decomposition-
based methods. Transp. Res. Part E Logist. Transp. Rev. 2010, 46, 344–353. [CrossRef]

22. He, J.; Huang, Y.; Yan, W. Yard crane scheduling in a container terminal for the trade-off between efficiency and energy
consumption. Adv. Eng. Inform. 2015, 29, 59–75. [CrossRef]

23. Kim, K.H.; Kim, K.Y. An optimal routing algorithm for a transfer crane in port container terminals. Transp. Sci. 1999, 33, 17–33.
[CrossRef]

24. Li, J.; Yang, J.; Xu, B.; Yin, W.; Yang, Y.; Wu, J.; Zhou, Y.; Shen, Y. A Flexible Scheduling for Twin Yard Cranes at Container
Terminals Considering Dynamic Cut-Off Time. J. Mar. Sci. Eng. 2022, 10, 675. [CrossRef]

25. Liang, C.; Hu, X.; Shi, L.; Fu, H.; Xu, D. Joint dispatch of shipment equipment considering underground container logistics.
Comput. Ind. Eng. 2022, 165, 107874. [CrossRef]

26. Ng, W.C. Crane scheduling in container yards with inter-crane interference. Eur. J. Oper. Res. 2005, 164, 64–78. [CrossRef]
27. Park, T.; Choe, R.; Ok, S.M.; Ryu, K.R. Real-time scheduling for twin RMGs in an automated container yard. OR Spectr. 2010, 32,

593–615. [CrossRef]
28. Zhuang, Z.; Zhang, Z.; Teng, H.; Qin, W.; Fang, H. Optimization for integrated scheduling of intelligent handling equipment with

bidirectional flows and limited buffers at automated container terminals. Comput. Oper. Res. 2022, 145, 105863. [CrossRef]
29. Huisman, D.; Freling, R.; Wagelmans, A.P.M. A robust solution approach to the dynamic vehicle scheduling problem. Transp. Sci.

2004, 38, 447–458. [CrossRef]
30. Barrena, E.; Canca, D.; Coelho, L.C.; Laporte, G. Single-line rail rapid transit timetabling under dynamic passenger demand.

Transp. Res. Part B Methodol. 2014, 70, 134–150. [CrossRef]
31. Chong, L.; Osorio, C. A simulation-based optimization algorithm for dynamic large-scale urban transportation problems. Transp.

Sci. 2018, 52, 637–656. [CrossRef]
32. Fan, H.; Xiong, H.; Goh, M. Genetic programming-based hyper-heuristic approach for solving dynamic job shop scheduling

problem with extended technical precedence constraints. Comput. Oper. Res. 2021, 134, 105401. [CrossRef]
33. Guo, X.; Huang, S.Y. Dynamic space and time partitioning for yard crane workload management in container terminals. Transp.

Sci. 2012, 46, 134–148. [CrossRef]
34. Potthoff, D.; Huisman, D.; Desaulniers, G. Column generation with dynamic duty selection for railway crew rescheduling. Transp.

Sci. 2010, 44, 493–505. [CrossRef]
35. Saddoune, M.; Desaulniers, G.; Elhallaoui, I.; Soumis, F. Integrated airline crew pairing and crew assignment by dynamic

constraint aggregation. Transp. Sci. 2012, 46, 39–55. [CrossRef]
36. Pillac, V.; Gendreau, M.; Guéret, C.; Medaglia, A.L. A review of dynamic vehicle routing problems. Eur. J. Oper. Res. 2013, 225,

1–11. [CrossRef]
37. Yin, J.; Yang, L.; Tang, T.; Gao, Z.; Ran, B. Dynamic passenger demand oriented metro train scheduling with energy-efficiency

and waiting time minimization: Mixed-integer linear programming approaches. Transp. Res. Part B Methodol. 2017, 97, 182–213.
[CrossRef]

38. Li, S.; Liu, R.; Yang, L.; Gao, Z. Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty.
Transp. Res. Part B Methodol. 2019, 123, 88–109. [CrossRef]

39. Lei, C.; Jiang, Z.; Ouyang, Y. Path-based dynamic pricing for vehicle allocation in ridesharing systems with fully compliant
drivers. Transp. Res. Part B Methodol. 2019, 132, 60–75. [CrossRef]

40. Luo, S. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning. Appl. Soft Comput. 2020,
91, 106208. [CrossRef]

https://doi.org/10.1287/trsc.1090.0298
https://doi.org/10.1287/trsc.2014.0533
https://doi.org/10.1016/j.trc.2020.02.012
https://doi.org/10.1016/j.trc.2016.06.004
https://doi.org/10.1016/j.dam.2015.07.042
https://doi.org/10.1016/j.cie.2018.12.039
https://doi.org/10.1016/j.aei.2021.101292
https://doi.org/10.1016/S0377-2217(02)00293-X
https://doi.org/10.1155/2021/5764012
https://doi.org/10.1016/j.tre.2009.08.012
https://doi.org/10.1016/j.aei.2014.09.003
https://doi.org/10.1287/trsc.33.1.17
https://doi.org/10.3390/jmse10050675
https://doi.org/10.1016/j.cie.2021.107874
https://doi.org/10.1016/j.ejor.2003.11.025
https://doi.org/10.1007/s00291-010-0209-0
https://doi.org/10.1016/j.cor.2022.105863
https://doi.org/10.1287/trsc.1030.0069
https://doi.org/10.1016/j.trb.2014.08.013
https://doi.org/10.1287/trsc.2016.0717
https://doi.org/10.1016/j.cor.2021.105401
https://doi.org/10.1287/trsc.1110.0383
https://doi.org/10.1287/trsc.1100.0322
https://doi.org/10.1287/trsc.1110.0379
https://doi.org/10.1016/j.ejor.2012.08.015
https://doi.org/10.1016/j.trb.2017.01.001
https://doi.org/10.1016/j.trb.2019.03.019
https://doi.org/10.1016/j.trb.2019.01.017
https://doi.org/10.1016/j.asoc.2020.106208

J. Mar. Sci. Eng. 2023, 11, 892 26 of 26

41. Scherr, Y.O.; Hewitt, M.; Saavedra, B.A.N.; Mattfeld, D.C. Dynamic discretization discovery for the service network design
problem with mixed autonomous fleets. Transp. Res. Part B Methodol. 2020, 141, 164–195. [CrossRef]

42. Ulmer, M.W.; Goodson, J.C.; Mattfeld, D.C.; Thomas, B.W. On modeling stochastic dynamic vehicle routing problems. EURO J.
Transp. Logist. 2020, 9, 100008. [CrossRef]

43. Wang, L.; Hu, X.; Wang, Y.; Xu, S.; Ma, S.; Yang, K.; Liu, Z.; Wang, W. Dynamic job-shop scheduling in smart manufacturing using
deep reinforcement learning. Comput. Netw. 2021, 190, 107969. [CrossRef]

44. Li, Y.; Gu, W.; Yuan, M.; Tang, Y. Real-time data-driven dynamic scheduling for flexible job shop with insufficient transportation
resources using hybrid deep Q network. Robot. Comput. Manuf. 2022, 74, 102283. [CrossRef]

45. Vis, I.F.A.; Roodbergen, K.J. Scheduling of Container Storage and Retrieval. Oper. Res. 2009, 57, 456–467. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.trb.2020.09.009
https://doi.org/10.1016/j.ejtl.2020.100008
https://doi.org/10.1016/j.comnet.2021.107969
https://doi.org/10.1016/j.rcim.2021.102283
https://doi.org/10.1287/opre.1080.0621

	Introduction
	Related Studies
	Crane Scheduling
	Dynamic Optimization
	A Summary

	Formulations
	Problem Definition
	The Model
	Analysis of Variables and Model
	A Lower Bound

	The Framework and Solution Algorithms
	The Iterative Re-Optimization Framework
	A GA Based on Greedy Insertion
	Encoding and Initial Population
	Decoding Algorithm
	Crossover and Mutation Operations

	Greedy Insertion

	Computational Experiments
	Instances
	Settings
	Experimental Results
	The Demonstration of Model and Algorithm
	Parameter Tuning and Performance
	Validity Analysis of the Framework

	Discussion

	Conclusions
	References

