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Abstract: The rapid development of industrialization and urbanization has posed serious challenges
for coastal farmland ecosystems. Source apportionment of soil heavy metals is an effective way for
the detection of non-point source pollution in farmland to help support the high-quality development
of coastal agriculture. To this end, 113 surface soil samples were collected in the coastal delta of
China, and the contents of As, Cd, Cr, Cu, Ni, Pb, and Zn were determined. A variety of models
were integrated to apportion the source of soil heavy metals, including positive matrix factorization
(PMF), geographical detector (GD), eXtreme gradient boosting (XGBoost), and structural equation
modeling (SEM). The result of PMF models revealed that there was collinearity between various
heavy metals, and the same heavy metal may have a mixed source. The XGBoost model analysis
indicated that there were significant non-linear relationships between soil heavy metals and source
factors. A synergy between air quality and human activity factors was the key source of heavy metal
that entered the study area, based on the results of the GD. Furthermore, the input path effect of
heavy metals in the soil of the study area was quantified by SEM. The balance of evidence from
the above models showed that air quality (SO2 and NO2) and factories in the study area had the
greatest impacts on Cd, Cr, and Zn. Natural sources were dominant for Pb, while As, Cu, and Ni
were contributed by soil parent material and factories. The above results led to the conclusion that
there was a cycle path in the study area that continuously promoted the migration and accumulation
of heavy metals in farmland soil; that is, the heavy metals discharged during oil exploitation and
smelting entered the atmosphere and then accumulated in the farmland soil through precipitation,
atmospheric deposition, and other paths. In this study, it is shown that a variety of models can be
used to more comprehensively assess the sources of soil heavy metals. This approach can provide
effective support for the rapid prevention and decision-making management of soil heavy metal
pollution in coastal areas.

Keywords: coastal ecosystems; XGBoost; PMF; SEM; farmland

1. Introduction

Heavy metal pollution can be a significant threat to coastal delta farmland and se-
riously threaten soil quality, food security, and human health [1–3]. Given the high cost
and difficulties associated with remediation of heavy metal pollution in soil, source ap-
portionment is an important way to identify and help prevent heavy metal pollution in
farmland soil [4,5]. Generally, the sources of heavy metals in soil include natural sources
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(i.e., soil parent material) and anthropogenic sources, such as industrial mining, sewage
irrigation, traffic emissions, etc. [6–8]. Due to global industrialization and urbanization
over the past few decades, farmland soils have been major receivers of heavy metals from
human activities. Rapid quantification of the source types and contributions of these heavy
metals is of great significance to ensuring the ecological health of agricultural systems and
the safety of agricultural products.

Source apportionment methods for soil heavy metals can be divided into three cate-
gories according to the model on which they are based: statistical and geostatistical models,
receptor models, and machine learning models. Statistical models are based on mathe-
matical calculations to apportion pollution source types of different soil heavy metals and
include principal component analysis (PCA) and cluster analysis (CA) [9–11]. Statistical
models can be used to infer several types of sources of soil heavy metals by grouping
variables that behave similarly. For example, Zhou et al. [12] used PCA to analyze the
sources of soil heavy metals in the old industrial zone in Jiangsu Province of China and
found that Cd and Pb belong to anthropogenic inputs, Hg and Cu belong to natural and
anthropogenic sources, while As, Pb, Cr, and Ni are from natural sources of soil parent
material. However, statistical identification models rely on prior knowledge; they do not
have knowledge of pollution sources, and source identification results cannot quantify
specific natural or anthropogenic source types. Geostatistical models represent a statistical
method that uses the spatial relationships of soil samples [13,14]. In such methods, an
ordinary kriging interpolation method is used to obtain the spatial distribution map of
soil heavy metals, which can be used to infer the possible sources of soil heavy metals
in high concentration areas. Similar to the traditional statistical model, the geostatistical
model only subjectively determines that one or more heavy metals may belong to natural
or anthropogenic sources, resulting in a collinearity of the sources of various heavy metals.

The receptor model approach is used to analyze the contribution of different sources
based on the chemical and physical characteristics of pollutants and can include the fin-
gerprint screening approach [15], chemical mass balance (CMB) [16], positive matrix fac-
torization (PMF) [17], and absolute principal component score/multiple linear regression
methods (APCS/MLR) [18]. For example, Wang et al. (2019) analyzed the sources of vari-
ous heavy metals using isotopic composition and PMF and found that Cd may come from
smelting or refinery emissions, while other heavy metals come from both anthropogenic
and natural sources [19]. Huang et al. (2018) used APCS/MLR to analyze the sources of
heavy metals As, Cd, Hg, and Pb in the soil of a mining area and believed that the lead-zinc
industry is the most important anthropogenic emission source, affecting nearly half of Pb
and As accumulation and about one-third of Cd accumulation [20]. However, the receptor
model also requires prior knowledge to assume that the source of all heavy metals is a
contribution matrix of multiple sources. Since the linear relationship between different
sources and soil heavy metals is assumed, the receptor model ignores the nonlinear source-
sink relationship between sources and soil heavy metals. For example, when the pollution
sources around the farmland are not obvious, a single heavy metal in the soil may exist
from multiple sources, such as natural input, industrial and mining emissions, and traffic
emissions. It is difficult to quantify the contribution of different sources to the same soil
heavy metals using the receptor model.

In order to reflect the quantitative contribution of different sources of soil heavy metals,
machine learning models have been widely applied, including support vector machines
(SVM), random forests (RF), artificial neural networks (ANN), etc. [21–24]. This method
essentially establishes a nonlinear fitting relationship between various sources and soil
heavy metals and realizes its quantitative contribution by calculating the importance of
different sources. The machine learning approach can effectively explain the nonlinear
coupling relationship between sources (such as topography, vegetation index, atmosphere,
factories, traffic, etc.) and heavy metals [25], and it is widely implemented in source
apportionment. However, the machine learning model is subject to the fitting accuracy of
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the target when calculating the contribution of different sources and does not consider the
correlation among various sources.

In fact, there is a complex linear-nonlinear coupling relationship between soil heavy
metals and their sources. The source apportionment results obtained using multiple models,
when compared with those of a single source apportionment model, show that multiple
approaches are effective for source apportionment of heavy metals in soil [26,27]. These
relationships include explaining the collinearity between soil heavy metals from multiple
perspectives, the synergistic contribution between source factors, and the linear-nonlinear
relationship between source factors and heavy metals. In other words, most studies are
limited to the results of a single analysis model for source interpretation, failing to fully
consider the advantages and limitations of different source apportionment models for a
more comprehensive judgment. To consider the above advantages and disadvantages of
source apportionment models, we propose a scientific hypothesis: can a balance of evidence
approach give a more reasonable and comprehensive assessment of the linear-nonlinear
relationship between sources and soil heavy metals? Therefore, we developed diverse
models to comprehensively assess sources of soil heavy metals (As, Cd, Cr, Cu, Ni, Pb, and
Zn) in coastal delta farmland: (1) to analyze the collinearity of heavy metals in soils using
positive matrix factorization (PMF); (2) to detect the single and interactive contributions
of topography, vegetation, air quality, and human activity factors for soil heavy metals
using a geographical detector (GD); (3) to fit the nonlinear relationship between soil heavy
metals and source factors using the eXtreme Gradient Boosting (XGBoost) model; and
(4) to quantify the synergistic contribution of source factors of soil heavy metals using the
structural equation model (SEM).

2. Materials and Methods
2.1. Study Area

The study area (118◦30′–119◦9′ E, 37◦30′–38◦8′ N) is located in the coastal delta of
China (Figure 1). The estimated area of the study area is 2.15 × 103 km2. The annual
average temperature, annual average precipitation, and annual sunshine hours are 14.1 ◦C,
665.3 mm, and 2998.5 h, respectively. The soil parent material in the study area is Yellow
River sediment, and the soil type is fluvo-aquic soil. Due to the influence of underground
high-salinity diving and human farming activities, soil salinization is serious in the farm-
lands of the study area. The terrain tilts from southwest to northeast along the Yellow
River, and the main crops include wheat, corn, and rice. In this study, the selection of the
analyte set (i.e., As, Cd, Cr, Cu, Ni, Pb, and Zn) is based on the Soil Environmental Quality
and Risk Control Standard for Soil Contamination of Agricultural Land (GB 15618-2018)
(https://www.mee.gov.cn/, (accessed on 15 October 2019)), which was published by the
Ministry of Ecology and Environment of the People’s Republic of China. In this standard,
the heavy metals and risk intervention values involved in soil contamination of agricultural
land are specified.

2.2. Sample Collection and Analysis

In the study area, 113 samples were collected from the surface soil (0–20 cm) of the
farmland in October 2020. Based on high-resolution remote sensing images, we determined
the location of the farmland and evaluated traffic accessibility. We also prepared relevant
materials, including gloves, record books, sampling tables, soil drills, soil shovels, sample
bags, etc. In each field, 4–6 samples of soil were taken, respectively. After fully mixing, the
soil (1 kg) was loaded into a sample bag, and GPS coordinates were recorded. The soil
samples were naturally dried indoors and passed through a 200-mesh nylon sieve after
being ground. The detailed sampling criteria are based on the Technical Specification for
Soil Environmental Monitoring (HJ/T 166-2004) (https://www.mee.gov.cn/, (accessed on
15 October 2019)), which was published by the Ministry of Ecology and Environment of
the People’s Republic of China.

https://www.mee.gov.cn/
https://www.mee.gov.cn/
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Soil samples (0.2 g) were weighed, and 6 mL HNO3, 2 mL HCl, and 2 mL HF (propor-
tion of 3:1:1) were added in the fume cupboard, and all operations were repeated thrice in
parallel. Pretreatment samples were then put into the microwave dissolver (CEM MARS5,
Matthews, NC, USA), and time and temperature were set in three stages: 10 min heating
to 120 ◦C for 3 min; 5 min heating to 160 ◦C for 3 min; and 5 min heating to 190 ◦C for
40 min. Each batch of samples also includes a GSS-1 standard soil sample and a blank
sample (Table S1) in order to ensure the accuracy of the measurement process by ICP-MS.
Finally, inductively coupled plasma mass spectrometry (Agilent ICP-MS 7500ce, Santa
Clara, CA, USA) was used to quantify As, Cd, Cr, Cu, Ni, Pb, and Zn. The detailed reference
is available in two standards published by the Ministry of Ecology and Environment of the
People’s Republic of China: Soil and Sediment-Determination of Aqua Regia Extracts of
12 Metal Elements-Inductively Coupled Plasma Mass Spectrometry (HJ 803-2016) and Soil
and Sediment-Determination of Total Metal Elements-Microwave Assisted Acid Digestion
Method (HJ 832-2017) (https://www.mee.gov.cn/, (accessed on 15 October 2019)).

2.3. Auxiliary Data
2.3.1. Terrain

Different terrain factors were extracted based on the digital elevation model (DEM),
which was obtained from the shuttle radar topography mission (SRTM) dataset (https:
//earthexplorer.usgs.gov/, (accessed on 10 January 2020)) with a resolution of 30 m × 30 m.
Then, the surface analysis was applied to obtain terrain factors in ArcGIS 10.7 software,
including DEM, slope (SLO), and relief (REF).

2.3.2. Vegetation

The Landsat 8 OLI image (24 October 2020) was selected to calculate vegetation factors.
The OLI image was processed by radiometric calibration, atmospheric correction, mixed
pixel decomposition, and cropping using ENVI 5.3 software. Five vegetation index factors,
including the clay index (CI), carbonate index (CAI), normalized difference vegetation index
(NDVI), and soil-adjusted vegetation index (SAVI), were calculated from the processed
images (Table S2) [28–31], which had a resolution of 30 m × 30 m.

https://www.mee.gov.cn/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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2.3.3. Air Quality

Air quality data from 40 air monitoring stations in Dongying city (annual average in
2020) were used to reflect the impact of the atmosphere on soil heavy metals (Figure S1).
The data were from the Dongying air quality real-time publishing system (http://218.
58.213.53:8081/dyfb_air/fb_web, (accessed on 10 January 2021)). The air quality factors
of 40 monitoring stations were interpolated by ordinary kriging in ArcGIS 10.7 software,
and the annual average raster data of NO2, PM2.5, PM10, and SO2 were obtained with a
resolution of 30 m × 30 m.

2.3.4. Human Activity

The point of interest (POI) data was obtained from the Baidu map (https://map.baidu.
com, (accessed on 10 May 2021)) using a web crawler method. Factory (FAC) (662), traffic
(TRA) (406), and residential (RES) (571) points were obtained to analyze the response
relationship between human activities and soil heavy metals. Based on the Chinese GF-1
remote sensing image (http://www.sasclouds.com/chinese/normal/, (accessed on 10
January 2021)) with a resolution of 2 m × 2 m, 701 oil well (OLW) points were acquired
by visual interpretation. All point data were analyzed by kernel density in ArcGIS 10.7
software to obtain a spatial distribution map with a resolution of 30 m × 30 m.

In order to avoid the influence of numerical range differences on the accuracy of
four source apportionment models, we normalized the values of all factors and soil heavy
metals. The normalization formula is as follows [32]:

Xi =
x− xmin

xmax − xmin
, (1)

where Xi is the rescaled data, and xmin and xmax denote the minimum and maximum
observed data. The normalized auxiliary factors in the study area are shown in Figure 2.
The spatial distribution of human activities and air quality factors is clustered, indicating
that these areas may cause a strong accumulation of soil heavy metals in the study area.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 6 of 22 
 

 

 
Figure 2. Auxiliary factors in the study area, including (a-1) DEM, (a-2) REF, (a-3) SLO, (b-1) CAI, 
(b-2) CI, (b-3) NDVI, (b-4) SAVI, (c-1) NO2, (c-2) PM10, (c-3) PM2.5, (c-4) SO2, (d-1) OLW, (d-2) FAC, 
(d-3) TRA, and (d-4) RES. 

2.4. Source Apportionment Method 
2.4.1. PMF 

The positive matrix factorization (PMF) model is recommended by the United States 
Environmental Protection Agency (EPA) (https://www.epa.gov/, (accessed on 10 January 
2021)) for matrix analysis of pollution sources based on receptor models [26,33]. It has the 
advantage of not being limited by the composition of a single pollution source and has 
been commonly used in the field of pollutant source analysis. The load of soil heavy 
metals on PMF factors is an important basis for the quantitative distribution of heavy 
metal sources [34]. The PMF model decomposes the heavy metal element concentration 
matrix (X) into a source factor score matrix (G), a source factor load matrix (F), and a 
factor residual matrix (E) by using correlation and covariance matrices, and then 
determines the source contribution rate of different heavy metals according to prior 
knowledge. The source apportionment result of the PMF model was calculated in the 
EPA PMF 5.0 software, and its formula is as follows [35]: 

ij

p

1k
kjikij EFG +=

=

X ,  (2)

where Xij represents the measured concentration of the j-th heavy metal element at the 
i-th sampling point, Gik is the relative contribution of the source factor k to the i-th 
sampling point, Fkj is the concentration of the j-th heavy metal element in the source 
factor k, and Eij is the residual of the j-th element at the i-th sampling point. 

Figure 2. Auxiliary factors in the study area, including (a-1) DEM, (a-2) REF, (a-3) SLO, (b-1) CAI,
(b-2) CI, (b-3) NDVI, (b-4) SAVI, (c-1) NO2, (c-2) PM10, (c-3) PM2.5, (c-4) SO2, (d-1) OLW, (d-2) FAC,
(d-3) TRA, and (d-4) RES.

http://218.58.213.53:8081/dyfb_air/fb_web
http://218.58.213.53:8081/dyfb_air/fb_web
https://map.baidu.com
https://map.baidu.com
http://www.sasclouds.com/chinese/normal/


J. Mar. Sci. Eng. 2023, 11, 1069 6 of 20

2.4. Source Apportionment Method
2.4.1. PMF

The positive matrix factorization (PMF) model is recommended by the United States
Environmental Protection Agency (EPA) (https://www.epa.gov/, (accessed on 10 January
2021)) for matrix analysis of pollution sources based on receptor models [26,33]. It has
the advantage of not being limited by the composition of a single pollution source and
has been commonly used in the field of pollutant source analysis. The load of soil heavy
metals on PMF factors is an important basis for the quantitative distribution of heavy
metal sources [34]. The PMF model decomposes the heavy metal element concentration
matrix (X) into a source factor score matrix (G), a source factor load matrix (F), and a factor
residual matrix (E) by using correlation and covariance matrices, and then determines
the source contribution rate of different heavy metals according to prior knowledge. The
source apportionment result of the PMF model was calculated in the EPA PMF 5.0 software,
and its formula is as follows [35]:

Xij =
p

∑
k=1

GikFkj + Eij, (2)

where Xij represents the measured concentration of the j-th heavy metal element at the i-th
sampling point, Gik is the relative contribution of the source factor k to the i-th sampling
point, Fkj is the concentration of the j-th heavy metal element in the source factor k, and Eij
is the residual of the j-th element at the i-th sampling point.

The PMF model uses multiple iterations to continuously decompose the sample
concentration matrix to obtain the optimal source factor score matrix (G) and source factor
load matrix (F) such that the objective function Q is minimized. The objective function Q is
defined as:

Q =
n

∑
i=1

m

∑
j=1


xij −

p
∑

k=1
GikFkj

Uij


2

, (3)

where Uij is the uncertainty of Xij, that is, the uncertainty of the concentration of the j-th
heavy metal element in the i-th sample. The uncertainty (Unc) formula is calculated from
the species-specific method detection limit (MDL) in this study.

When the element concentration is greater than MDL:

Unc =

√
(errorfraction × concentrations)2 + (0.5×MDL)2 (4)

When the element concentration is less than MDL:

Unc =
5
6
×MDL (5)

We adopted a robust mode according to the principle that the initial eigenvalue is
greater than 1% based on principal component analysis (PCA). By trying to set different
factor numbers and operation times, we finally determined that the operation should be
conducted 20 times and that the number of factors is 4. When the factor number is 4,
Qrobust/Qtrue is in rapid decline, and the residual size is low. Then, the 4-factor scenario
was brought into the PMF model for verification. After debugging, the results showed that
the objective function Q value was the smallest at the 11th iteration. The categories of each
component in the PMF model were strong, and the S/N values were all greater than 8.8.

2.4.2. Geographical Detector

The geographical detector (GD) is applied to detect the spatial heterogeneity of soil
heavy metals and reveal the importance of their source factors, including differentiation

https://www.epa.gov/
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factor detection and interaction detection [36]. Differentiation factor detection can detect
the interpretation of source factors in the spatial variability of soil heavy metals. Interaction
detection (i.e., double-factor) can further determine the synergistic effect of dual-source
factors on the spatial variability of soil heavy metals. It has five interactive relationships:
nonlinear weakening, single-factor nonlinear weakening, double-factor enhancement, inde-
pendence, and nonlinear enhancement [36]. The double-factor method is the interaction
assessment of the two sources, which results in the interaction phenomena of multiple
source combinations. In the calculation process of the double-factor method, it can combine
multiple source factors in pairs and traverse the spatial correlation of each combination for
soil heavy metals. Finally, the synergistic effects of double factors with similar or different
sources on soil heavy metals were obtained. The detailed theory of this model is available
in previous works [37–39].

2.4.3. XGBoost Model

The XGBoost model is developed from decision tree methodology and has been
commonly applied in flash flood risk assessment [40], mineral potential mapping [41], and
winter wheat SPAD estimation [42]. The principle of the XGBoost model is to assign an
early prediction value to the root of the tree, calculate the residual value of the data set (the
difference between the predicted value and the observed value), and then distribute all the
residuals to the root of the tree so that it can process sparse data. In order to obtain the
optimal solution of the XGBoost model, we use the grid search (GS) algorithm to optimize
the hyperparameters of the XGBoost model. GS is used to optimize the XGBoost model
by traversing a given combination of hyperparameters. The GS algorithm is simple and
widely used, and it is suitable for the adjustment of small-range hyperparameters [43,44].
The source contribution to soil heavy metals was interpreted by calculating the importance
score of source factors based on an optimized XGBoost model.

In this study, the XGBoost model was established by using a Python 3.9 programming
environment and importing the XGBoost package. The source factors were used as the
input variables of the XGBoost model. All samples were randomly divided into a 70%
training set and a 30% validation set. The source contribution to soil heavy metals was
interpreted by calculating the importance score of source factors, and the accuracy was
evaluated based on the coefficient of determination (R2) [45,46].

R2 =

[
n
∑

i=1

(
p(xi)− p(xi)

)(
p̂(xi)− p̂(xi)

)]2

n
∑

i=1

(
p(xi)− p(xi)

)2 n
∑

i=1

(
p̂(xi)− p̂(xi)

)2 (6)

In the above formula, p̂(xi) and p(xi) are the measured values and predicted values
of soil heavy metal contents, respectively, with the XGBoost model, and p(xi) and p̂(xi) are
the stationary mean values of p(xi) and of p̂(xi) soil heavy metal contents at n sites.

2.4.4. Structural Equation Model

The structural equation model (SEM) is a statistical method for analyzing variables
based on their covariance matrix [47]. SEM consists of a structural model and a mea-
surement model. The structural model is used to describe the mathematical relationship
between the source factors and the soil heavy metal elements [48], and the measurement
model is used to quantify the contribution of the source factors to the soil heavy metals. Its
advantages are that it is good at solving the problem of latent variables when dealing with
the source analysis of soil heavy metals and can deal with multiple dependent variables
at the same time. With SEM, the fitting degree of the whole model can be evaluated by
estimating the factor structure and factor relationship [49], and it can be used to efficiently
and quickly reveal the complex relationship between soil heavy metals and source factors.
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In this study, soil heavy metals, vegetation (VEG), terrain (TER), air quality (AQ), and
human activity (HA) were used as latent variables of the SEM, and high driving source
factors based on GD screening were used as measurement variables. In order to ensure
the objectivity of SEM analysis, the importance of source factors in the XGBoost model is
used as the initialization weight of the SEM modeling process. Cronbach’s α and KMO
were used to verify the accuracy of SEM. Cronbach’s α values of heavy metals, VEG, TER,
AQ, and HA as latent variables are 0.615, 0.782, 0.676, 0.631, and 0.720, respectively, and
the KMO values are greater than 0.55, indicating that the data have good reliability and
validity in the modeling process of the structural equation. The SEM model is executed in
IBM SPSS Statistics 26 and IBM Amos 26 software.

3. Results
3.1. Statistical Analysis

The results for the statistical analysis of soil heavy metal contents are shown in Table 1,
and the average concentrations of As, Cd, Cr, Cu, Ni, Pb, and Zn were 22.3 mg kg−1,
0.36 mg kg−1, 122 mg kg−1, 23.0 mg kg−1, 30.1 mg kg−1, 21.8 mg kg−1, and 43.7 mg kg−1,
respectively. The coefficient of variation (CV) of the seven heavy metals is Cd (53%) > Pb
(31%) > Zn (28%) > Cr (25%) > Cu (22%) > As (22%) > Ni (19%), which indicates the large
numerical dispersion of Cd and Pb. Based on the background (BG) values of Shandong
province of China [50], the excessive rates of As, Cd, Cr, Cu, Ni, Pb, and Zn are 100%, 99.1%,
98.2%, 47.8%, 66.4%, 30.1%, and 7.08%, respectively. The statistical results of the numerical
normalization of seven heavy metals are shown in Figure 3. For all heavy metals (except
As and Cr), the values show they are mostly concentrated in the low-value area, and the
numerical structure exhibits a nonstandard distribution. In addition, the mean and median
of all heavy metals are far apart, indicating that the spatial variability of heavy metals is
strong in the study area.

Table 1. Descriptive statistics of soil heavy metals (mg kg−1).

Elements Min Max Mean SD CV (%) BG Excessive
Rate (%)

As 9.78 31.3 22.3 4.79 22 8.60 100
Cd 0.13 0.91 0.36 0.19 53 0.13 99.1
Cr 53.8 197 123 30.3 25 62.0 98.2
Cu 12.7 38.8 23.0 4.98 22 22.6 47.8
Ni 17.8 45.1 30.1 5.64 19 27.1 66.4
Pb 10.4 45.4 21.8 6.67 31 23.6 30.1
Zn 25.7 86.1 43.7 11.8 28 63.3 7.08

Figure 4 presents the numerical distribution of the vegetation index, which conforms
to a normal distribution, and other factors that present left-skewed or right-skewed distribu-
tions. The normalized values of RES, TRA, and FAC indicate aggregation in the low-value
area (0–0.2). This is because POI is mainly distributed in the city, the farmland sample
point is far away from the city, and the corresponding kernel density value is low. The
positive linear relationship between similar source factors was significant (CI–SAVI–NDVI,
FAC–TRA–RES, and SO2–PM2.5), and there is a strong negative linear relationship between
vegetation factor and air quality factor as well as between terrain factor and air quality
factor. The linear relationship between terrain, vegetation, human activity, and other fac-
tors is not obvious. This indicates that there are strong nonlinear characteristics between
different source factors, and inputting these characteristics into different source analysis
models may result in the complexity of soil heavy metal sources (multiple homologous or
homologous sources).



J. Mar. Sci. Eng. 2023, 11, 1069 9 of 20
J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 10 of 22 
 

 

 
Figure 3. The statistical results of the normalized value for soil heavy metals. 

 

Figure 3. The statistical results of the normalized value for soil heavy metals.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 10 of 22 
 

 

 
Figure 3. The statistical results of the normalized value for soil heavy metals. 

 

Figure 4. The numerical distribution of normalized values for all factors. The number in the upper
right corner of each grid is an adjusted R-square of linear fit.



J. Mar. Sci. Eng. 2023, 11, 1069 10 of 20

3.2. Source Apportionment of Heavy Metal in Soil Using the Balance of Evidence Method

In this study, a balance of evidence method is used, including PMF, GD, XGBoost, and
SEM, to analyze the sources of heavy metals in soil. The four source apportionment models
are found to be complementary, but in different aspects. The PMF can be carried out using
a collinearity assessment of soil heavy metals from a statistical perspective. The GD and
XGBoost models quantify the driving effect of each source on soil heavy metals, whereas
the SEM expands on the accumulation path.

3.2.1. Homology Analysis of Soil Heavy Metals

The source apportionment results of soil heavy metals by the PMF model revealed
that the proportions of four pollution source factors are 36.2%, 13.8%, 23.7%, and 26.3%,
respectively. Zn (54.3%) and Cu (33.3%), Cd (57.5%) and Cr (36.1%), and Cd (42.5%) and
Pb (41.9%) had higher contribution rates in Factor 1, Factor 2, and Factor 3, respectively,
while Pb (48.1%), Cr (37.6%), Ni (30.9%), and As (34.8%) had higher contribution rates in
Factor 4 (Figure 5a). The distribution trend of high-concentration heavy metals was similar,
and they are more likely to have the same source (Figure 5b). The industrial source may
be the main source of Zn and Cu in Factor 1 [33]. In Factor 2, Cr could be contributed
by various industrial sources, including a range of mining and metallurgical smelting
and refining processes that can also result in the release of Cd into the air, water, and
soil [51]. Mining and smelting activities also discharge large amounts of dust containing
Cd and Pb [52], resulting in accumulation in the soil (Factor 3). Moreover, phosphoric
fertilizer and pesticides may contain a large amount of As; Pb was usually considered a
sign of transportation; and Ni was influenced by petrochemical and petroleum smelting
(Factor 4) [53].

In addition, the factors derived from the PMF are not necessarily indicative of external
sources but may, to some extent, reflect intrinsic geochemical associations. For example,
Ni, Cr, and As are associated with natural (i.e., lithogenic aluminosilicates) sources, and Fe
and Mn oxides adsorb heavy metals (i.e., Cr, Pb, Cu, Cd, Zn, and Ni) in strongly weathered
soils [54,55]. The results of PMF models in assessing the sources of heavy metals in soil
were quite different, indicating that the subjective source apportionment model has great
uncertainty. These complex uncertainties also indicate that the same heavy metal may
come from multiple input sources, and a variety of heavy metals may also have the same
source. It is necessary to combine the quantitative model to further infer the sources of soil
heavy metals.

3.2.2. Source Driving Effect for Soil Heavy Metals

The highest driving factors from the single-factor detection of the GD model for As,
Cd, Cr, Cu, Ni, Pb, and Zn were CI (0.70), NO2 (0.69), SO2 (0.67), CI (0.61), CI (0.64), CI
(0.72), and NO2 (0.68), respectively (Figure 6a). The driving force of OLW for all heavy
metals also exceeds 0.3. On the whole, air quality and vegetation factors have a higher
degree of total explanation for the spatial heterogeneity of heavy metals, while terrain
factors have the smallest driving force. According to the double-factor co-detection results
of the GD model (Figure 6b–h), the driving forces of the double-factor from the same source
type (i.e., CI–SAVI, CI–NDVI, CAI–SAVI, and CAI–NDVI) for seven heavy metals are all
more than 0.97, much higher than for the single-factor driving contribution. In addition,
the synergistic driving effect of different source types of factors on soil heavy metals was
also high. For example, the driving forces of vegetation (CI, CAI, SAVI, and NDVI) and air
quality factors (PM2.5, PM10, SO2, and NO2) on soil heavy metals were more than 0.92, and
the driving forces of human activity factors (OLW and FAC) and other factors were also
high. The results of double-factor synergistic detection indicated that the spatial variation
of soil heavy metals in the study area was significantly affected by multiple sources, and
the sources had complex mixed input characteristics.
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The prediction accuracies (R2) of the XGBoost model for As, Cd, Cr, Cu, Ni, Pb, and Zn
were 57.88%, 60.26%, 63.45%, 59.82%, 58.63%, 62.28%, and 58.56%, respectively (Figure 7).
The XGBoost model demonstrates good nonlinear fitting performance between source
factors and soil heavy metals and can reflect their nonlinear response relationships. The
importance of source factors exhibited that NO2 was most important for Cr (33%), As
(32%), and Ni (30%), FAC contributed the most to the prediction accuracy of Cu (30%), Cr
(30%), and Zn (29%), and Pb (18.97%) was influenced by SLO. In addition, the percentage
of cumulative importance of source types for seven heavy metals from high to low was air
quality (51%), human activity (25%), vegetation index (14%), and terrain (10%).
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3.2.3. Multi-Source Path Analysis for Soil Heavy Metals

The direct or indirect effects of four sources on heavy metals in soil determined by the
SEM model are presented in Figure 8. The loadings of the observed variables (As, Cd, Cr,
Cu, Ni, Pb, and Zn) on the endogenous latent variables (i.e., soil heavy metals) were 0.54,
0.53, 0.62, 0.87, 0.86, 0.39, and 0.67, respectively. This difference in loading indicates that
there is a homologous or mixed source relationship between soil heavy metals. The direct
effect coefficients of exogenous latent variables (i.e., topography, vegetation, air quality,
and human activity) on heavy metals were 0.19, 0.15, 0.65, and 0.57, respectively (Figure 8),
suggesting that air quality and human activities have a significant direct input effect on the
accumulation of heavy metals in farmland soil in the study area.

The largest loading factors of human activity, air quality, topography, and vegetation
sources were OLW (0.98), NO2 (0.92), REF (0.77), and NDVI (0.91), respectively, which
are indicative of their significant indirect effects on soil heavy metal accumulation. Air
quality had a negative correlation with terrain (−0.35) and vegetation (−0.15), while human
activity was positively correlated with terrain (0.09), vegetation (0.12), and air quality (0.14).
Furthermore, the highest path effect (0.091) was from human activity to air quality to
soil heavy metals, indicating that the coupling of human activity and air quality had a
significant indirect effect on the accumulation of soil heavy metals.
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4. Discussion
4.1. Response Relationship between Sources and Soil Heavy Metals

The PMF, GD, XGBoost, and SEM results have incomplete consistency, which is
caused by the differences in model mechanisms. The PMF is essentially a linear matrix
calculation of multiple heavy metals, and it has uncertainty when the potential sources
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have similar characteristic elements [19]. Moreover, characterizing the potential sources
of PMF for each heavy metal is still based on experiential knowledge [56]. This is because
the mechanism of PMF suffers from one key shortcoming, namely the assumption that the
total content of heavy metals is intrinsically equal to the sum of the contributions from all
individual sources [57–59]. There are complementary models among quantitative source
apportionment models. Many studies have found that machine learning models (SVM,
RF, XGBoost, etc.) are able to accurately reflect the driving effect of a single source on
the accumulation of heavy metals in soil [22,23,60,61]. However, they cannot quantify the
synergistic importance of multiple factors. Although the GD model was able to analyze
the contribution of double-factor synergy to the accumulation of soil heavy metals [62], it
cannot obtain the interaction path relationship among source factors. Then the SEM model
quantifies the path synergy contribution of multiple source factors for soil heavy metals.
Based on the above analysis, although we used four models to analyze the input sources
of soil heavy metals, the combination of XGBoost and SEM is the clearest expression of a
coherent source apportionment rather than keeping all four models, which can be simpler
and more efficient for application in future studies.

The results of quantitative source apportionment of soil heavy metals by GD, XGBoost,
and SEM models were similar. The sources that contributed the most to As, Cd, Cr, Cu, Ni,
Pb, and Zn were CI and NO2, NO2 and SO2, SO2 and NO2, CI and FAC, CI and NO2, CI and
SLO, and NO2 and FAC, respectively. CI is an effective indicator of soil texture and parent
material. Similar studies have shown that the accumulation of As, Cu, Ni, and Pb in soil is
largely affected by the natural background [63–65], and its enrichment in soil is also related
to the overall topography of the study area and rivers [17]. The study area was located in
the coastal delta, with rich vegetation diversity and serious soil salinization [66,67]; that
is, the high soil pH environment will inhibit the migration and transformation of heavy
metals. Hence, an important reason for the accumulation of As, Cu, Ni, and Pb in the study
area may be the dominant input from natural sources.

However, the results of quantitative source apportionment also indicate that NO2 and
SO2 greatly contribute to soil heavy metals in the study area. On the one hand, NO2 and
SO2 enter the soil through acid deposition and release heavy metal ions by changing the
acid-base environment of the soil, thereby affecting the total content of heavy metals in the
soil [68,69]. Some studies have shown that heavy metals are soluble in acidic environments,
have higher mobility, and can enter groundwater through media infiltration [70,71]. When
the soil pH is alkaline, most of the heavy metals exist in the form of low-solubility salt,
and the mobility of heavy metals is low, resulting in the enrichment of heavy metals in
the soil [72,73]. On the other hand, some studies have shown that heavy metals in traffic,
industrial emissions, and coal combustion are highly correlated with NO2 and SO2 [74,75],
which indirectly affect the accumulation of heavy metals through precipitation into the
soil. As PM2.5 enters the soil by atmospheric deposition, the heavy metals and ions it
carries will also cause changes to the original pattern of heavy metal accumulation [76–78].
There are some studies showing that particulate matter (PM), SO2, and NO2 are highly
correlated with heavy metals from industrial emissions [19,26,74,79]. This was identified
as one of the key reasons for the input of As, Cu, and Ni by some sources of human
activity. Additionally, unreasonable agricultural activities [33] may also play a role in the
accumulation and pollution of heavy metals in the soil [80].

However, according to the highest path effect of the SEM model (i.e., human activity
–air quality–soil heavy metals (HA–AQ–HMs)), human activities impact the accumulation
of soil heavy metals (i.e., As, Cd, Cr, Ni, and Zn) in the study area by promoting air
quality pollution. In other words, there is a continuous source of heavy metals deposited
in the study area, and we speculate that these sources are oil exploitation and smelting
activities. Many studies have found that Cd and Zn are mainly enriched in industrial
and mining activities [53,81–83]. Under the influence of the local prevailing wind, dust
produced by industrial activities is deposited in the surface soil through atmospheric
deposition [84]. The study area was located in China’s important petrochemical industry
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base (i.e., Shengli Oilfield). The heavy metals emitted during oil exploitation and smelting
enter the atmosphere and are then input into the soil through precipitation, atmospheric
deposition, etc. This cycle path continues to promote the migration and accumulation of
heavy metals in farmland soil in the study area.

4.2. Limitations and Implications

In this work, a variety of methods and source variables have been used to analyze
the source of heavy metals in farmland soil. However, there are some limitations and
implications for future research that still need to be considered. Firstly, the comprehensive
and three-dimensional source apportionment of farmland soil should be focused. The
influence of soil thickness on heavy metals was considered in soil sampling. Generally
speaking, the shallow soil (0–10 cm) of farmland is most affected by human activities.
When samples are too deep, the trace element signals are diluted by cleaner material
from underneath. Then, more advanced determination methods for soil heavy metal
content should be introduced. For example, use a ‘pseudo-total’ strong acid digestion
(e.g., 4 M nitric acid) for trace element determinations. The traditional determination
method (through which HF dissolves the silicate minerals) exhibited a large signal from
the naturally occurring trace elements that are locked up inside resistant minerals and are
not available to the environment. This method gets less of a signal from the anthropogenic
components. The usual approach for contaminated land work is ‘pseudo-total’ or strong
acid digestion, which focuses on the material that can be extracted without dissolving all of
the silicate minerals. In future work, we could run both HF digestion and pseudo total to
see if there is a difference.

Thirdly, more trace elements (i.e., Fe, Me, Ca, Na, etc.) and source variables (i.e.,
fertilizer, pesticide, total organic carbon, total P, total N, etc.) should be added. Land under
farming is subject to a range of direct soil amendments, including fertilizers, manures, and
pesticides. In some cases, these are the main sources of soil heavy metals. In particular,
Fe and Mn are important soil elements that control the adsorption of other elements, and
total organic carbon (TOC) is also important as a controlling phase; total P is an element
that provides an indication of phosphate fertilizer addition (which relates to a source of
Cd), and both P and total N or nitrate give an idea about the anthropogenic additions
through farming. These sources may cause some uncertainties in the source allocation and
quantification of soil heavy metals. However, quantitative fertilization and pesticide data
are difficult to obtain. For example, in the statistical yearbook of Dongying City in 2020
(Supplementary file) (http://dystjj.dongying.gov.cn/index.html, (accessed on 15 October
2021)), the amount of fertilizer applied in the whole region is only one value, and it is
difficult to distinguish the difference in the amount of fertilizer applied in each sample
point. Moreover, heavy metals produced by agricultural activities such as fertilizers or
pesticides usually require accurate pot or field experiments (Table S3) [85–89], which is a
challenge for data-hungry nonlinear model source apportionment of regional-scale soil
heavy metals. Finally, more scenario simulations and model sensitivity analyses should
be explored. For example, run some model sensitivity analyses by adding and removing
some of the key source and receptor components (i.e., with or without Fe and Me) to
test what overall effect their presence or absence has on the outcome. More interesting
results may be obtained in this case if the analysis had included an anthropogenic farming
source (fertilizer, manure, and agrichemical additions) or if the trace element suite had
been extended to include major elements and controlling trace elements.

5. Conclusions

In this study, the PMF, GD, XGBoost, and SEM models were integrated to analyze the
source of heavy metals in the farmland soil of a coastal delta. The PMF results indicate
that heavy metals have the same source, and the same heavy metals also have a mixed
source. Upon further combining these with GD, XGBoost, and SEM, it was found that
air quality (SO2 and NO2) and human activity (FAC) have the highest impact on Cd, Cr,
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and Zn. Natural sources (SLO) were the main input sources of Pb, while As, Cu, and Ni
were elevated by a combination of vegetation (CI and CAI) and human activity (FAC).
The results show that a balance of evidence approach can provide a more reasonable and
comprehensive assessment of the linear-nonlinear relationship between sources and soil
heavy metals. The accumulation of heavy metal content in soil is indirectly affected by the
coupling of multiple sources. In other words, the heavy metals discharged from long-term
oil exploitation and smelting in the study area enter the atmosphere and are then input into
the soil through precipitation, atmospheric deposition, and other ways. It is essential to
strengthen emissions control for the sources (i.e., mining and smelting) of heavy metals
so the migration and accumulation pathways of heavy metals in farmland soils in the
study area can be effectively truncated. Different models of source apportionment have
various response mechanisms for soil heavy metals, and the accumulation of heavy metals
in soil also has time properties. It is necessary to combine multiple source apportionment
models and more source factors with fine time series in future studies and to analyze the
accumulation and migration characteristics of time and space for soil heavy metals so as to
support the high-quality development of agriculture and early warning systems for soil
ecological health in coastal delta regions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jmse11051069/s1. Figure S1. 40 air quality monitoring stations
in the Dongying city. Table S1. The results for the GSS-1 standard soil sample and a blank sample.
Table S2. Vegetation indices derived from Landsat 8 OLI image. Table S3. Studies on farming practices
for soil heavy metals.

Author Contributions: Conceptualization, Y.S.; methodology, W.H.; software, Y.Z.; validation, L.W.
and H.Y.; formal analysis, S.W.; investigation, W.H.; resources, Y.S.; data curation, W.H. and Y.S.;
writing—original draft preparation, Y.S.; writing—review and editing, W.H. and Y.S.; visualization,
Y.X.; supervision, Y.S.; project administration, Y.S.; funding acquisition, Y.S. and Y.H. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Shandong Provincial Natural Science Foundation (ZR2020QD013),
and the National Natural Science Foundation of China (U1901601).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Soil Environmental Quality and Risk Control Standard for Soil
Contamination of Agricultural Land (GB 15618-2018) comes from the Ministry of Ecology and
Environment of the People’s Republic of China (https://www.mee.gov.cn/, (accessed on 15 October
2019)). The Technical Specification for Soil Environmental Monitoring (HJ/T 166-2004) comes from
the Ministry of Ecology and Environment of the People’s Republic of China (https://www.mee.
gov.cn/, (accessed on 15 October 2019)). Soil and Sediment-Determination of Aqua Regia Extracts
of 12 Metal Elements-Inductively Coupled Plasma Mass Spectrometry (HJ 803-2016) and Soil and
Sediment-Determination of Total Metal Elements-Microwave Assisted Acid Digestion Method (HJ
832-2017) come from the Ministry of Ecology and Environment of the People’s Republic of China
(https://www.mee.gov.cn/, (accessed on 15 October 2019)). The DEM data was obtained from
the shuttle radar topography mission (SRTM) (https://earthexplorer.usgs.gov/, (accessed on 10
January 2020)). The air quality data comes from the Dongying air quality real-time publishing
system (http://218.58.213.53:8081/dyfb_air/fb_web, (accessed on 10 January 2021)). The point of
interest (POI) data was obtained from the Baidu map (https://map.baidu.com, (accessed on 10
May 2021)). The Chinese GF-1 remote sensing image comes from the natural resource satellite
remote sensing cloud service platform (http://www.sasclouds.com/chinese/normal/, (accessed
on 10 January 2021)). The positive matrix factorization (PMF) model comes from the United States
Environmental Protection Agency (EPA) (https://www.epa.gov/, (accessed on 10 January 2021)).
The statistical yearbook of Dongying City in 2020 comes from Dongying City Bureau of Statistics
(http://dystjj.dongying.gov.cn/index.html, (accessed on 15 October 2021)).

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/jmse11051069/s1
https://www.mdpi.com/article/10.3390/jmse11051069/s1
https://www.mee.gov.cn/
https://www.mee.gov.cn/
https://www.mee.gov.cn/
https://www.mee.gov.cn/
https://earthexplorer.usgs.gov/
http://218.58.213.53:8081/dyfb_air/fb_web
https://map.baidu.com
http://www.sasclouds.com/chinese/normal/
https://www.epa.gov/
http://dystjj.dongying.gov.cn/index.html


J. Mar. Sci. Eng. 2023, 11, 1069 17 of 20

References
1. Marchant, B.P.; Saby, N.; Arrouays, D. A survey of topsoil arsenic and mercury concentrations across France. Chemosphere 2017,

181, 635–644. [CrossRef] [PubMed]
2. Zang, F.; Wang, S.; Nan, Z.; Ma, J.; Zhang, Q.; Chen, Y.; Li, Y. Accumulation, spatio-temporal distribution, and risk assessment of

heavy metals in the soil-corn system around a polymetallic mining area from the Loess Plateau, northwest China. Geoderma 2017,
305, 188–196. [CrossRef]

3. Imseng, M.; Wiggenhauser, M.; Müller, M.; Keller, A.; Frossard, E.; Wilcke, W.; Bigalke, M. The fate of Zn in agricultural soils: A
stable isotope approach to anthropogenic impact, soil formation, and soil–plant cycling. Environ. Sci. Technol. 2019, 53, 4140–4149.
[CrossRef] [PubMed]

4. Hu, W.; Huang, B.; He, Y.; Kalkhajeh, Y.K. Assessment of potential health risk of heavy metals in soils from a rapidly developing
region of China. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 211–225. [CrossRef]

5. Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available
strategies for remediation. Int. Sch. Res. Not. 2011, 2011, 402647. [CrossRef]

6. Barkett, M.O.; Akün, E. Heavy metal contents of contaminated soils and ecological risk assessment in abandoned copper mine
harbor in Yedidalga, Northern Cyprus. Environ. Earth Sci. 2018, 77, 378. [CrossRef]

7. Kaur, M.; Kumar, A.; Mehra, R.; Mishra, R. Human health risk assessment from exposure of heavy metals in soil samples of
Jammu district of Jammu and Kashmir, India. Arab. J. Geosci. 2018, 11, 411. [CrossRef]

8. Hu, N.; Liu, J.; Huang, P.; Yan, S.; Shi, X.; Ma, D. Sources, geochemical speciation, and risk assessment of metals in coastal
sediments: A case study in the Bohai Sea, China. Environ. Earth Sci. 2017, 76, 309. [CrossRef]

9. Tian, K.; Huang, B.; Xing, Z.; Hu, W. Geochemical baseline establishment and ecological risk evaluation of heavy metals in
greenhouse soils from Dongtai, China. Ecol. Indic. 2017, 72, 510–520. [CrossRef]

10. Zhang, Z.; Wang, J.J.; Ali, A.; DeLaune, R.D. Heavy metals and metalloid contamination in Louisiana Lake Pontchartrain Estuary
along I-10 Bridge. Transp. Res. Part D Transp. Environ. 2016, 44, 66–77. [CrossRef]

11. Liu, R.; Men, C.; Liu, Y.; Yu, W.; Xu, F.; Shen, Z. Spatial distribution and pollution evaluation of heavy metals in Yangtze estuary
sediment. Mar. Pollut. Bull. 2016, 110, 564–571. [CrossRef] [PubMed]

12. Zhou, J.; Feng, K.; Li, Y.; Zhou, Y. Factorial Kriging analysis and sources of heavy metals in soils of different land-use types in the
Yangtze River Delta of Eastern China. Environ. Sci. Pollut. R. 2016, 23, 14957–14967. [CrossRef]

13. Zhang, X.; Wei, S.; Sun, Q.; Wadood, S.A.; Guo, B. Source identification and spatial distribution of arsenic and heavy metals in
agricultural soil around Hunan industrial estate by positive matrix factorization model, principle components analysis and geo
statistical analysis. Ecotox. Environ. Safe. 2018, 159, 354–362. [CrossRef] [PubMed]

14. Shit, P.K.; Bhunia, G.S.; Maiti, R. Spatial analysis of soil properties using GIS based geostatistics models. Model. Earth Syst. Environ.
2016, 2, 107. [CrossRef]

15. Chen, R.; Zhang, Q.; Chen, H.; Yue, W.; Teng, Y. Source apportionment of heavy metals in sediments and soils in an interconnected
river-soil system based on a composite fingerprint screening approach. J. Hazard. Mater. 2021, 411, 125125. [CrossRef]

16. Wang, P.; Li, Z.; Liu, J.; Bi, X.; Ning, Y.; Yang, S.; Yang, X. Apportionment of sources of heavy metals to agricultural soils using
isotope fingerprints and multivariate statistical analyses. Environ. Pollut. 2019, 249, 208–216. [CrossRef] [PubMed]

17. Chai, L.; Wang, Y.; Wang, X.; Ma, L.; Cheng, Z.; Su, L. Pollution characteristics, spatial distributions, and source apportionment of
heavy metals in cultivated soil in Lanzhou, China. Ecol. Indic. 2021, 125, 107507. [CrossRef]

18. Qu, M.; Chen, J.; Huang, B.; Zhao, Y. Enhancing apportionment of the point and diffuse sources of soil heavy metals using robust
geostatistics and robust spatial receptor model with categorical soil-type data. Environ. Pollut. 2020, 265, 114964. [CrossRef]

19. Wang, L.; Gao, S.; Yin, X.; Yu, X.; Luan, L. Arsenic accumulation, distribution and source analysis of rice in a typical growing area
in north China. Ecotox. Environ. Safe. 2019, 167, 429–434. [CrossRef]

20. Huang, Y.; Deng, M.; Wu, S.; Japenga, J.; Li, T.; Yang, X.; He, Z. A modified receptor model for source apportionment of heavy
metal pollution in soil. J. Hazard. Mater. 2018, 354, 161–169. [CrossRef]

21. Jia, X.; Hu, B.; Marchant, B.P.; Zhou, L.; Shi, Z.; Zhu, Y. A methodological framework for identifying potential sources of soil
heavy metal pollution based on machine learning: A case study in the Yangtze Delta, China. Environ. Pollut. 2019, 250, 601–609.
[CrossRef] [PubMed]

22. Zhang, B.; Liu, L.; Huang, Z.; Hou, H.; Zhao, L.; Sun, Z. Application of stochastic model to assessment of heavy metal (loid) s
source apportionment and bio-availability in rice fields of karst area. Sci. Total Environ. 2021, 793, 148614. [CrossRef] [PubMed]

23. Zhang, H.; Yin, A.; Yang, X.; Fan, M.; Shao, S.; Wu, J.; Wu, P.; Zhang, M.; Gao, C. Use of machine-learning and receptor models for
prediction and source apportionment of heavy metals in coastal reclaimed soils. Ecol. Indic. 2021, 122, 107233. [CrossRef]

24. Wang, Q.; Xie, Z.; Li, F. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a
local scale. Environ. Pollut. 2015, 206, 227–235. [CrossRef]

25. Shi, T.; Ma, J.; Zhang, Y.; Liu, C.; Hu, Y.; Gong, Y.; Wu, X.; Ju, T.; Hou, H.; Zhao, L. Status of lead accumulation in agricultural soils
across China (1979–2016). Environ. Int. 2019, 129, 35–41. [CrossRef]

26. Fei, X.; Lou, Z.; Xiao, R.; Ren, Z.; Lv, X. Contamination assessment and source apportionment of heavy metals in agricultural soil
through the synthesis of PMF and GeogDetector models. Sci. Total Environ. 2020, 747, 141293. [CrossRef]

27. Cao, J.; Li, C.; Zhang, L.; Wu, Q.; Lv, J. Source apportionment of potentially toxic elements in soils using APCS/MLR, PMF and
geostatistics in a typical industrial and mining city in Eastern China. PLoS ONE 2020, 15, e0238513.

https://doi.org/10.1016/j.chemosphere.2017.04.106
https://www.ncbi.nlm.nih.gov/pubmed/28476003
https://doi.org/10.1016/j.geoderma.2017.06.008
https://doi.org/10.1021/acs.est.8b03675
https://www.ncbi.nlm.nih.gov/pubmed/30767516
https://doi.org/10.1080/10807039.2015.1057102
https://doi.org/10.5402/2011/402647
https://doi.org/10.1007/s12665-018-7556-6
https://doi.org/10.1007/s12517-018-3746-5
https://doi.org/10.1007/s12665-017-6599-4
https://doi.org/10.1016/j.ecolind.2016.08.037
https://doi.org/10.1016/j.trd.2016.02.014
https://doi.org/10.1016/j.marpolbul.2016.05.060
https://www.ncbi.nlm.nih.gov/pubmed/27267116
https://doi.org/10.1007/s11356-016-6619-z
https://doi.org/10.1016/j.ecoenv.2018.04.072
https://www.ncbi.nlm.nih.gov/pubmed/29778047
https://doi.org/10.1007/s40808-016-0160-4
https://doi.org/10.1016/j.jhazmat.2021.125125
https://doi.org/10.1016/j.envpol.2019.03.034
https://www.ncbi.nlm.nih.gov/pubmed/30893633
https://doi.org/10.1016/j.ecolind.2021.107507
https://doi.org/10.1016/j.envpol.2020.114964
https://doi.org/10.1016/j.ecoenv.2018.10.015
https://doi.org/10.1016/j.jhazmat.2018.05.006
https://doi.org/10.1016/j.envpol.2019.04.047
https://www.ncbi.nlm.nih.gov/pubmed/31031218
https://doi.org/10.1016/j.scitotenv.2021.148614
https://www.ncbi.nlm.nih.gov/pubmed/34328992
https://doi.org/10.1016/j.ecolind.2020.107233
https://doi.org/10.1016/j.envpol.2015.06.040
https://doi.org/10.1016/j.envint.2019.05.025
https://doi.org/10.1016/j.scitotenv.2020.141293


J. Mar. Sci. Eng. 2023, 11, 1069 18 of 20

28. Hengl, T. A Practical Guide to Geostatistical Mapping, 2nd ed.; University of Amsterdam: Amsterdam, The Netherlands, 2009.
29. Boettinger, J.L.; Ramsey, R.D.; Bodily, J.M.; Cole, N.J.; Stum, A.K. Landsat spectral data for digital soil mapping. In Digital Soil

Mapping with Limited Data; Hartemink, A.E., McBratney, A.B., Mendonca Santos, M.L., Eds.; Springer Science: Melbourne, VIC,
Australia, 2008; pp. 193–203.

30. Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [CrossRef]
31. Rouse, J.W.; Hass, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings

of the Third ERTS Symposium, Washington, DC, USA, 10–14 December 1973; NASA SP-351. National Aeronautics and Space
Administration: Washington, DC, USA, 1973; pp. 309–371.

32. Hassoun, M.H. Fundamentals of Artificial Neural Networks; MIT Press: Cambridge, MA, USA, 1995.
33. Xiao, R.; Guo, D.; Ali, A.; Mi, S.; Liu, T.; Ren, C.; Li, R.; Zhang, Z. Accumulation, ecological-health risks assessment, and source

apportionment of heavy metals in paddy soils: A case study in Hanzhong, Shaanxi, China. Environ. Pollut. 2019, 248, 349–357.
[CrossRef]

34. Guan, Q.; Zhao, R.; Pan, N.; Wang, F.; Yang, Y.; Luo, H. Source apportionment of heavy metals in farmland soil of Wuwei, China:
Comparison of three receptor models. J. Clean. Prod. 2019, 237, 117792. [CrossRef]

35. EPA. Positive Matrix Factorization (PMF) 5.0-Fundamentals and User Guide; US Environmental Protection Agency: Washington, DC,
USA, 2014.

36. Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134.
37. Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment

and its application in the neural tube defects study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127.
[CrossRef]

38. Wang, J.F.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Model. Softw. 2012, 33, 114–115. [CrossRef]
39. Fei, X.; Lou, Z.; Christakos, G.; Ren, Z.; Liu, Q.; Lv, X. The association between heavy metal soil pollution and stomach cancer: A

case study in Hangzhou City, China. Environ. Geochem. Health 2018, 40, 2481–2490. [CrossRef]
40. Ma, M.; Zhao, G.; He, B.; Li, Q.; Dong, H.; Wang, S.; Wang, Z. XGBoost-based method for flash flood risk assessment. J. Hydrol.

2021, 598, 126382. [CrossRef]
41. Parsa, M. A data augmentation approach to XGboost-based mineral potential mapping: An example of carbonate-hosted Zn Pb

mineral systems of Western Iran. J. Geochem. Explor. 2021, 228, 106811. [CrossRef]
42. Yang, X.; Yang, R.; Ye, Y.; Yuan, Z.; Wang, D.; Hua, K. Winter wheat SPAD estimation from UAV hyperspectral data using

cluster-regression methods. Int. J. Appl. Earth Obs. 2021, 105, 102618. [CrossRef]
43. Alabdullah, A.A.; Iqbal, M.; Zahid, M.; Khan, K.; Amin, M.N.; Jalal, F.E. Prediction of rapid chloride penetration resistance of

metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis. Constr. Build.
Mater. 2022, 345, 128296. [CrossRef]

44. Yan, H.; Yan, K.; Ji, G. Optimization and prediction in the early design stage of office buildings using genetic and XGBoost
algorithms. Build Environ. 2022, 218, 109081. [CrossRef]

45. Fan, J.; Zheng, J.; Wu, L.; Zhang, F. Estimation of daily maize transpiration using support vector machines, extreme gradient
boosting, artificial and deep neural networks models. Agr. Water Manag. 2021, 245, 106547. [CrossRef]

46. Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192.
[CrossRef]

47. Yang, R.; Guo, W.; Zheng, J. Soil prediction for coastal wetlands following Spartina alterniflora invasion using Sentinel-1 imagery
and structural equation modeling. Catena 2019, 173, 465–470. [CrossRef]

48. Zhang, Y.; Hou, D.; Xiong, G.; Duan, Y.; Cai, C.; Wang, X.; Li, J.; Tao, S.; Liu, W. Structural equation modeling of PAHs in ambient
air, dust fall, soil, and cabbage in vegetable bases of Northern China. Environ. Pollut. 2018, 239, 13–20. [CrossRef] [PubMed]

49. Zhao, W.; Zhang, R.; Cao, H.; Tan, W. Factor contribution to soil organic and inorganic carbon accumulation in the Loess Plateau:
Structural equation modeling. Geoderma 2019, 352, 116–125. [CrossRef]

50. Wang, Y.; Liu, Z.; Liu, X.; Song, X.; Cui, D. Distribution and potential ecological risk assessment of heavy metals in the topsoil of
the Yellow River Delta. J. Soil Water Conserv. 2019, 33, 8.

51. Yuanan, H.; He, K.; Sun, Z.; Chen, G.; Cheng, H. Quantitative source apportionment of heavy metal (loid) s in the agricultural
soils of an industrializing region and associated model uncertainty. J. Hazard. Mater. 2020, 391, 122244. [CrossRef]

52. Wang, Y.; Guo, G.; Zhang, D.; Lei, M. An integrated method for source apportionment of heavy metal (loid) s in agricultural soils
and model uncertainty analysis. Environ. Pollut. 2021, 276, 116666. [CrossRef]

53. Chai, L.; Wang, Y.; Wang, X.; Ma, L.; Cheng, Z.; Su, L.; Liu, M. Quantitative source apportionment of heavy metals in cultivated
soil and associated model uncertainty. Ecotox. Environ. Saf. 2021, 215, 112150. [CrossRef]

54. Lopez, A.M.; Fitzsimmons, J.N.; Adams, H.M.; Dellapenna, T.M.; Brandon, A.D. A time-series of heavy metal geochemistry in
sediments of Galveston Bay estuary, Texas, 2017–2019. Sci. Total Environ. 2022, 806, 150446. [CrossRef]

55. Burak, D.L.; Fontes, M.P.; Santos, N.T.; Monteiro, L.V.S.; de Sousa Martins, E.; Becquer, T. Geochemistry and spatial distribution of
heavy metals in Oxisols in a mineralized region of the Brazilian Central Plateau. Geoderma 2010, 160, 131–142. [CrossRef]

56. Guan, Q.; Wang, F.; Xu, C.; Pan, N.; Lin, J.; Zhao, R.; Yang, Y.; Luo, H. Source apportionment of heavy metals in agricultural soil
based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere 2018, 193, 189–197. [CrossRef]

https://doi.org/10.1016/0034-4257(88)90106-X
https://doi.org/10.1016/j.envpol.2019.02.045
https://doi.org/10.1016/j.jclepro.2019.117792
https://doi.org/10.1080/13658810802443457
https://doi.org/10.1016/j.envsoft.2012.01.015
https://doi.org/10.1007/s10653-018-0113-0
https://doi.org/10.1016/j.jhydrol.2021.126382
https://doi.org/10.1016/j.gexplo.2021.106811
https://doi.org/10.1016/j.jag.2021.102618
https://doi.org/10.1016/j.conbuildmat.2022.128296
https://doi.org/10.1016/j.buildenv.2022.109081
https://doi.org/10.1016/j.agwat.2020.106547
https://doi.org/10.1029/2000JD900719
https://doi.org/10.1016/j.catena.2018.10.045
https://doi.org/10.1016/j.envpol.2018.03.084
https://www.ncbi.nlm.nih.gov/pubmed/29627685
https://doi.org/10.1016/j.geoderma.2019.06.005
https://doi.org/10.1016/j.jhazmat.2020.122244
https://doi.org/10.1016/j.envpol.2021.116666
https://doi.org/10.1016/j.ecoenv.2021.112150
https://doi.org/10.1016/j.scitotenv.2021.150446
https://doi.org/10.1016/j.geoderma.2010.08.007
https://doi.org/10.1016/j.chemosphere.2017.10.151


J. Mar. Sci. Eng. 2023, 11, 1069 19 of 20

57. Wu, J.; Li, J.; Teng, Y.; Chen, H.; Wang, Y. A partition computing-based positive matrix factorization (PC-PMF) approach for the
source apportionment of agricultural soil heavy metal contents and associated health risks. J. Hazard. Mater. 2020, 388, 121766.
[CrossRef] [PubMed]

58. Adgate, J.L.; Willis, R.D.; Buckley, T.J.; Chow, J.C.; Watson, J.G.; Rhoads, G.G.; Lioy, P.J. Chemical mass balance source apportion-
ment of lead in house dust. Environ. Sci. Technol. 1998, 32, 108–114. [CrossRef]

59. Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of
data values. Environmetrics 1994, 5, 111–126. [CrossRef]

60. Bhagat, S.K.; Tung, T.M.; Yaseen, Z.M. Heavy metal contamination prediction using ensemble model: Case study of Bay
sedimentation, Australia. J. Hazard. Mater. 2021, 403, 123492. [CrossRef]

61. Li, Y.; Chen, H.; Teng, Y. Source apportionment and source-oriented risk assessment of heavy metals in the sediments of an urban
river-lake system. Sci. Total Environ. 2020, 737, 140310. [CrossRef] [PubMed]

62. Zhao, Y.; Deng, Q.; Lin, Q.; Zeng, C.; Zhong, C. Cadmium source identification in soils and high-risk regions predicted by
geographical detector method. Environ. Pollut. 2020, 263, 114338. [CrossRef]

63. Liu, Q.; Jia, Z.; Li, S.; Hu, J. Assessment of heavy metal pollution, distribution and quantitative source apportionment in surface
sediments along a partially mixed estuary (Modaomen, China). Chemosphere 2019, 225, 829–838. [CrossRef]

64. Fei, X.; Xiao, R.; Christakos, G.; Langousis, A.; Ren, Z.; Tian, Y.; Lv, X. Comprehensive assessment and source apportionment of
heavy metals in Shanghai agricultural soils with different fertility levels. Ecol. Indic. 2019, 106, 105508. [CrossRef]

65. Luo, H.; Wang, Q.; Guan, Q.; Ma, Y.; Ni, F.; Yang, E.; Zhang, J. Heavy metal pollution levels, source apportionment and risk
assessment in dust storms in key cities in Northwest China. J. Hazard. Mater. 2022, 422, 126878. [CrossRef]

66. Liu, L.; Wu, Y.; Yin, M.; Ma, X.; Yu, X.; Guo, X.; Du, N.; Eller, F.; Guo, W. Soil salinity, not plant genotype or geographical distance,
shapes soil microbial community of a reed wetland at a fine scale in the Yellow River Delta. Sci. Total Environ. 2023, 856, 159136.
[CrossRef] [PubMed]

67. Li, Y.; Chang, C.; Wang, Z.; Zhao, G. Upscaling remote sensing inversion and dynamic monitoring of soil salinization in the
Yellow River Delta, China. Ecol. Indic. 2023, 148, 110087. [CrossRef]

68. Yamulki, S.; Harrison, R.M.; Goulding, K.W.T.; Webster, C.P. N2O, NO and NO2 fluxes from a grassland: Effect of soil pH. Soil
Biol. Bioche. 1997, 29, 1199–1208. [CrossRef]

69. Yang, H.I.; Park, H.J.; Lee, K.S.; Lim, S.S.; Kwak, J.H.; Lee, S.I.; Chang, S.; Lee, S.; Choi, W.J. δ13C, δ15N, N concentration, C/N,
and Ca/Al of Pinus densiflora foliage in Korean cities of different precipitation pH and atmospheric NO2 and SO2 levels. Ecol.
Indicat. 2018, 88, 27–36. [CrossRef]

70. Walker, D.J.; Clemente, R.; Bernal, M.P. Contrasting effects of manure and compost on soil pH, heavy metal availability and
growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 2004, 57, 215–224. [CrossRef]

71. Kumar, R.N.; Nagendran, R. Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous
Acidithiobacillus thiooxidans. Chemosphere 2007, 66, 1775–1781. [CrossRef]

72. Sun, H.; Song, Y.; Liu, W.; Zhang, M.; Duan, T.; Cai, Y. Coupling soil washing with chelator and cathodic reduction treatment for a
multi-metal contaminated soil: Effect of pH controlling. Electrochim. Acta 2023, 448, 142178. [CrossRef]

73. Martínez-Cortijo, J.; Ruiz-Canales, A. Effect of heavy metals on rice irrigated fields with waste water in high pH Mediterranean
soils: The particular case of the Valencia area in Spain. Agr. Water Manag. 2018, 210, 108–123. [CrossRef]

74. Zhang, G.; Bai, J.; Zhao, Q.; Lu, Q.; Jia, J.; Wen, X. Heavy metals in wetland soils along a wetland-forming chronosequence in the
Yellow River Delta of China: Levels, sources and toxic risks. Ecol. Indic. 2016, 69, 331–339. [CrossRef]

75. Mao, H.T.; Wang, X.M.; Wu, N.; Chen, L.X.; Yuan, M.; Hu, J.C.; Chen, Y.E. Temporal and spatial biomonitoring of atmospheric
heavy metal pollution using moss bags in Xichang. Ecotoxicol. Environ. Saf. 2022, 239, 113688. [CrossRef]

76. Vitali, M.; Antonucci, A.; Owczarek, M.; Guidotti, M.; Astolfi, M.L.; Manigrasso, M.; Avino, P.; Bhattacharya, B.; Protano, C. Air
quality assessment in different environmental scenarios by the determination of typical heavy metals and Persistent Organic
Pollutants in native lichen Xanthoria parietina. Environ. Pollut. 2019, 254, 113013. [CrossRef] [PubMed]

77. Su, T.; Lin, C.; Lu, S.; Lin, J.; Wang, H.; Liu, C. Effect of air quality improvement by urban parks on mitigating PM2. 5 and its
associated heavy metals: A mobile-monitoring field study. J. Environ. Manag. 2022, 323, 116283. [CrossRef] [PubMed]

78. Li, F.; Yan, J.; Wei, Y.; Zeng, J.; Wang, X.; Chen, X.; Zhang, C.; Li, W.; Chen, M.; Lü, G. PM2. 5-bound heavy metals from the
major cities in China: Spatiotemporal distribution, fuzzy exposure assessment and health risk management. J. Clean. Prod. 2021,
286, 124967. [CrossRef]

79. Yin, X.; Franklin, M.; Fallah-Shorshani, M.; Shafer, M.; McConnell, R.; Fruin, S. Exposure models for particulate matter elemental
concentrations in Southern California. Environ. Int. 2022, 165, 107247. [CrossRef]

80. Wang, F.; Guan, Q.; Tian, J.; Lin, J.; Yang, Y.; Yang, L.; Pan, N. Contamination characteristics, source apportionment, and health
risk assessment of heavy metals in agricultural soil in the Hexi Corridor. Catena 2020, 191, 104573. [CrossRef]

81. Liu, H.; Zhang, Y.; Yang, J.; Wang, H.; Li, Y.; Shi, Y.; Li, D.; Holm, P.E.; Ou, Q.; Hu, W. Quantitative source apportionment, risk
assessment and distribution of heavy metals in agricultural soils from southern Shandong Peninsula of China. Sci. Total Environ.
2021, 767, 144879. [CrossRef]

82. Zhao, K.; Zhang, L.; Dong, J.; Wu, J.; Ye, Z.; Zhao, W.; Ding, L.; Fu, W. Risk assessment, spatial patterns and source apportionment
of soil heavy metals in a typical Chinese hickory plantation region of southeastern China. Geoderma 2020, 360, 114011. [CrossRef]

https://doi.org/10.1016/j.jhazmat.2019.121766
https://www.ncbi.nlm.nih.gov/pubmed/31818669
https://doi.org/10.1021/es970052x
https://doi.org/10.1002/env.3170050203
https://doi.org/10.1016/j.jhazmat.2020.123492
https://doi.org/10.1016/j.scitotenv.2020.140310
https://www.ncbi.nlm.nih.gov/pubmed/32783871
https://doi.org/10.1016/j.envpol.2020.114338
https://doi.org/10.1016/j.chemosphere.2019.03.063
https://doi.org/10.1016/j.ecolind.2019.105508
https://doi.org/10.1016/j.jhazmat.2021.126878
https://doi.org/10.1016/j.scitotenv.2022.159136
https://www.ncbi.nlm.nih.gov/pubmed/36191708
https://doi.org/10.1016/j.ecolind.2023.110087
https://doi.org/10.1016/S0038-0717(97)00032-1
https://doi.org/10.1016/j.ecolind.2018.01.020
https://doi.org/10.1016/j.chemosphere.2004.05.020
https://doi.org/10.1016/j.chemosphere.2006.07.091
https://doi.org/10.1016/j.electacta.2023.142178
https://doi.org/10.1016/j.agwat.2018.07.037
https://doi.org/10.1016/j.ecolind.2016.04.042
https://doi.org/10.1016/j.ecoenv.2022.113688
https://doi.org/10.1016/j.envpol.2019.113013
https://www.ncbi.nlm.nih.gov/pubmed/31415978
https://doi.org/10.1016/j.jenvman.2022.116283
https://www.ncbi.nlm.nih.gov/pubmed/36261989
https://doi.org/10.1016/j.jclepro.2020.124967
https://doi.org/10.1016/j.envint.2022.107247
https://doi.org/10.1016/j.catena.2020.104573
https://doi.org/10.1016/j.scitotenv.2020.144879
https://doi.org/10.1016/j.geoderma.2019.114011


J. Mar. Sci. Eng. 2023, 11, 1069 20 of 20

83. Wang, J.; Su, J.; Li, Z.; Liu, B.; Cheng, G.; Jiang, Y.; Li, Y.; Zhou, S.; Yuan, W. Source apportionment of heavy metal and their health
risks in soil-dustfall-plant system nearby a typical non-ferrous metal mining area of Tongling, Eastern China. Environ. Pollut.
2019, 254, 113089. [CrossRef]

84. Vu, C.T.; Lin, C.; Shern, C.; Yeh, G.; Le, V.G.; Tran, H.T. Contamination, ecological risk and source apportionment of heavy metals
in sediments and water of a contaminated river in Taiwan. Ecol. Indic. 2017, 82, 32–42. [CrossRef]

85. Zeyad, M.T.; Khan, S.; Malik, A. Genotoxic hazard and oxidative stress induced by wastewater irrigated soil with special reference
to pesticides and heavy metal pollution. Heliyon 2022, 8, e10534. [CrossRef]

86. Wang, B.; Chu, C.; Wei, H.; Zhang, L.; Ahmad, Z.; Wu, S.; Xie, B. Ameliorative effects of silicon fertilizer on soil bacterial
community and pakchoi (Brassica chinensis L.) grown on soil contaminated with multiple heavy metals. Environ. Pollut. 2020,
267, 115411. [CrossRef] [PubMed]

87. Salem, M.A.; Bedade, D.K.; Al-Ethawi, L.; Al-Waleed, S.M. Assessment of physiochemical properties and concentration of heavy
metals in agricultural soils fertilized with chemical fertilizers. Heliyon 2020, 6, e05224. [CrossRef] [PubMed]

88. Hong, Y.; Li, D.; Xie, C.; Zheng, X.; Yin, J.; Li, Z.; Zhang, K.; Jiao, Y.; Wang, B.; Hu, Y.; et al. Combined apatite, biochar, and organic
fertilizer application for heavy metal co-contaminated soil remediation reduces heavy metal transport and alters soil microbial
community structure. Sci. Total Environ. 2022, 851, 158033. [CrossRef] [PubMed]

89. Soleimani, H.; Mansouri, B.; Kiani, A.; Omer, A.K.; Tazik, M.; Ebrahimzadeh, G.; Sharafi, K. Ecological risk assessment and heavy
metals accumulation in agriculture soils irrigated with treated wastewater effluent, river water, and well water combined with
chemical fertilizers. Heliyon 2023, 9, e14580. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.envpol.2019.113089
https://doi.org/10.1016/j.ecolind.2017.06.008
https://doi.org/10.1016/j.heliyon.2022.e10534
https://doi.org/10.1016/j.envpol.2020.115411
https://www.ncbi.nlm.nih.gov/pubmed/32866868
https://doi.org/10.1016/j.heliyon.2020.e05224
https://www.ncbi.nlm.nih.gov/pubmed/33102850
https://doi.org/10.1016/j.scitotenv.2022.158033
https://www.ncbi.nlm.nih.gov/pubmed/35973531
https://doi.org/10.1016/j.heliyon.2023.e14580

	Introduction 
	Materials and Methods 
	Study Area 
	Sample Collection and Analysis 
	Auxiliary Data 
	Terrain 
	Vegetation 
	Air Quality 
	Human Activity 

	Source Apportionment Method 
	PMF 
	Geographical Detector 
	XGBoost Model 
	Structural Equation Model 


	Results 
	Statistical Analysis 
	Source Apportionment of Heavy Metal in Soil Using the Balance of Evidence Method 
	Homology Analysis of Soil Heavy Metals 
	Source Driving Effect for Soil Heavy Metals 
	Multi-Source Path Analysis for Soil Heavy Metals 


	Discussion 
	Response Relationship between Sources and Soil Heavy Metals 
	Limitations and Implications 

	Conclusions 
	References

