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Abstract: Accurate and real-time monitoring of the shoreline through cameras is an invaluable
guarantee for the safety of near-shore navigation and berthing of unmanned surface vehicles; exist-
ing shoreline detection methods cannot meet both these requirements. Therefore, we propose an
improved shoreline detection method to detect shorelines accurately and in real time. We define
shoreline detection as the combination of water surface area segmentation and edge detection, the key
to which is segmentation. To detect shorelines accurately and in real time, we propose an improved
U-Net for water segmentation. This network is based on U-Net, using ResNet-34 as the backbone to
enhance the feature extraction capability, with a concise decoder integrated attention mechanism to
improve the processing speed while ensuring the accuracy of water surface segmentation. We also
introduce transfer learning to improve training efficiency and solve the problem of insufficient data.
When obtaining the segmentation result, the Laplace edge detection algorithm is applied to detect
the shoreline. Experiments show that our network achieves 97.05% MIoU and 40 FPS with the fewest
parameters, which is better than mainstream segmentation networks, and also demonstrate that our
shoreline detection method can effectively detect shorelines in real time in various environments.

Keywords: water surface segmentation; attention mechanism; edge detection; shoreline detection

1. Introduction

Unmanned surface vehicles (USVs) have dramatically developed in recent years
thanks to technical advancements. These intelligent devices can be navigated by manual or
programmed control to accomplish a variety of tasks. Real-time and accurate monitoring
of the shoreline is important when using these autonomous surface vehicles, both for the
safety of berthing and near-shore navigation.

On large vessels, several types of sensors are installed to monitor the surrounding
environment, such as cameras [1,2] and radar [3,4]. These devices can provide various
forms of environmental information to the ship, but considering the limitations of USVs
themselves in terms of carrying capacity and energy supply, they cannot equip huge or
a large number of sensors. As a result, visual sensors such as cameras that are lighter
and more energy-efficient while still offering extensive environmental information are
better-suited for USVs. Based on this analysis, a visual-based shoreline detection method is
crucial for USVs.

Depending on their technical means, existing visual-based shoreline detection meth-
ods can be classified into traditional image-based methods and deep-learning-based meth-
ods. Traditional methods include local binary patterns combined with the gray-level
co-occurrence matrix method [5], column-by-column logistic regression combined with the
polynomial spline modeling method [6], the calculation of vertical gradients in gray space
combined with the random sample consensus (RANSAC) algorithm fitting method [7], and
the calculation of morphological gradients on HSV color space combined with the water-
shed algorithm and edge detection method [8]. The abovementioned methods are subject to
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limitations in their use and are susceptible to water surface reflections, light changes, waves,
and long processing times, making them unable to meet the need for accurate and real-time
detection of shorelines. In recent years, artificial intelligence has been greatly developed
and been widely used in the maritime fields, such as for ship detection [9,10], ship trajectory
analysis [11] and prediction [12], marine accident risk quantification [13], and environ-
mental perception [14]. As for shoreline detection, some researchers have attempted to
introduce semantic segmentation techniques into this field [15] by first extracting the water
surface area with a semantic segmentation network and using an edge detection algorithm
on the obtained result to detect the shoreline. Based on this, some works have improved
existing semantic segmentation models, making them more suitable for water surface area
segmentation [16–18], and other studies have introduced pretrained methods [19] or the
use of transfer learning [20] to solve the problem of an insufficient amount of data for
training, as well as use self-supervised training approaches [21] to address the problem
of insufficient labeled data. The trained models have strong robustness, which is good
for solving the interference of environmental factors present in traditional image-based
approaches but still cannot address the processing speed problem due to the use of a large
network architecture, the large scale of the feature maps, etc.

To address the abovementioned problem, i.e., that existing visual-based shoreline de-
tection methods cannot meet the requirement of shoreline detection both accurately and in
real time, we constructed a better method to achieve real-time and accurate shoreline detec-
tion. We define shoreline detection as the combination of water surface segmentation and
edge detection. According to our definition, the key to shoreline detection is water surface
segmentation, which directly determines the accuracy and inference speed of our method.
Edge detection has almost no impact on either of these factors. Therefore, to achieve the
abovementioned target, we propose an improved U-Net network to perform water surface
segmentation accurately and in real time. This network is based on U-Net combined with a
residual network [22] and a squeeze-and-excitation (SE) attention module [23] to increase
the segmentation accuracy and processing efficiency and named the Residual Squeeze-and-
excitation U-Net (RS-UNet). According to experimental verification, the network proposed
in this paper achieved a processing speed of 40 FPS and 97.05% MIoU, outperforming
some mainstream methods of semantic segmentation, meeting the demand for real-time
and accurate water surface area segmentation, and shoreline detection when combined
with an edge detection algorithm. Other experiments also demonstrate the generalization
capability of our method. Specifically, the contributions of this paper include:

• An encoder is built based on ResNet-34 to enhance the feature extraction capability of
the network in complicated environments, with the introduction of transfer learning
using pretrained ResNet-34 weights to improve the training efficiency and solve the
problem of insufficient training data;

• To reduce the amount of computation, a lightweight decoder is built, and an attention
mechanism is added to the decoder to force the network to pay more attention to
the data in the critical part throughout the segmentation process, increasing the
computational speed and maintaining the segmentation quality;

• Construction of a shoreline detection method based on the proposed RS-UNet, which
can accurately detect the shoreline in real time and be applied in various environments.

The remainder of this paper is organized as follows. Section 2 presents a brief review of
related works. Section 3 explains our proposed method. Section 4 shows the experimental
results and analyses of these results. Section 5 provides a summary of our work and
directions for future work. We also provide a list of abbreviations in Abbreviations for a
better reading experience.

2. Related Work
2.1. Traditional Shoreline Detection Method

Traditional shoreline detection methods detect the shoreline through image processing;
for example, Kristan et al. [24] proposed the imposition of weak structural constraints and
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a Markov random field to account for the semantic structure of the marine environment in
real time. At present, the accuracy of this method is relatively low. Kröhnert [6] proposed
the use of column-by-column logistic regression and polynomial spline modeling to detect
shorelines, which has a good detection effect for nearly straight shorelines but a relatively
poor effect for more curved shorelines. Wei and Zhang [5] used local binary patterns
and a gray-level co-occurrence matrix to calculate river texture information and used
structure detection to eliminate the effects of wind and light, which is also a suitable
method for more flat shorelines. Zhan et al. [7] calculated the vertical gradient on a gray
image with the background texture removed, obtained the water shoreline candidate points
from the vertical gradient of each column, and fitted the shoreline from the candidate
points using the RANSAC algorithm. The processing speed of this method is faster, but
it is susceptible to the influence of water reflection or texture. Feng et al. [8] computed
morphological gradients in HSV color space to highlight edges, then used the watershed
algorithm to segment the image area, combined with the use of a filtering operator to
detect a river shoreline, which achieved real-time shoreline detection but was still subject
to the influence of ambient lighting to some extent. Peng et al. [25] analyzed the differences
in the characteristics of images in HSV color space under different lighting conditions.
Different regions in the image were segmented, and the shoreline was detected based on
the differences in saturation and brightness between land and water areas. This method is
less stable and easily affected by environmental changes and lighting variations.

2.2. Deep-Learning-Based Shoreline Detection Method

The key to the deep-learning-based method is the segmentation of the water surface
area. After obtaining the segmented result, the corresponding shoreline can be obtained
using the edge detection algorithm, so it is essentially a semantic segmentation problem.
For example, Steccanella et al. [15] used a fully convolutional neural network to detect
the water surface area and obtained a high segmentation accuracy rate. However, this
method could not meet the requirement of real-time processing. Steccanella et al. [16]
further improved this method and achieved 98.8% pixel segmentation accuracy and 10 FPS
on a 160 × 160 image. To address the problem of an insufficient amount of data for water
surface segmentation training, Adam et al. [19] demonstrated that the use of a pretrained
backbone can significantly improve the network’s ability to segment water surface regions,
and Vandaele et al. [20] proposed the use of a transfer learning approach that completes
pretraining on the COCO dataset and is then fine-tuned on the water surface segmentation
dataset. Zhan et al. [21] combined a semantic segmentation network with conditional
random fields (CRFs) and superpixel mapping to propose an adaptive water surface
segmentation network that effectively solves the training problem on datasets with limited
labeled data. Shen et al. [18] used improved DeepLab v3+ to acquire water surface area
segmentation results combined with an edge detection algorithm to detect the shoreline,
which effectively overcomes the interference of factors such as reflection, although the
processing speed of this method is 8 FPS, which is far from meeting the demand for
real-time detection. Yao et al. [26] proposed ShrelineNet to detect shorelines for USVs,
which segments the entire image into sky, land, and water sections. Then, the shoreline is
detected based on the water region. Yin et al. [17] applied the improved PSPNet to the water
surface segmentation task and later used the Canny edge detection algorithm to detect the
shoreline, obtaining a segmentation MIoU of 96.87% on the USVInland dataset [27].

3. Method
3.1. U-Net Network

The U-Net network [28], which is a fully convolutional network (FCN) [29], achieves
outstanding segmentation performance on small sample datasets for the job of segmenting
medical images. As shown in Figure 1, the distinctive characteristic of U-Net is fully
symmetric encoder–decoder composition. The feature maps input at each stage of the
encoder and decoder are subjected to two consecutive 3 × 3 convolution processes without
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padding, while each downsampling in the encoder corresponds to a 2 × 2 upsampling in
the decoder. In addition, U-Net crops the feature maps of each layer of the encoder for the
decoding process by Crop and Copy operation to supplement part of the information lost
in the downsampling and upsampling process.
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Figure 1. U-Net network architecture [28]. The input is a gray image, and the output is the probability
that each pixel belongs to each category. The input image is downsampled four times to extract
features of different levels and upsampled an equal number of times to recover the original resolution.
Crop and Copy operation is used to first crop the feature map of different layers of the encoder, then
copy them to the decoder for semantic segmentation.

3.2. RS-UNet Network

The RS-UNet network proposed in this paper is based on U-Net owing to the similarity
in nature between water surface area segmentation and medical image segmentation.
Medical image segmentation is essentially a binary segmentation task that segments lesion
regions or other regions of interest in the input images. The water surface area segmentation
problem that we wish to solve is also a binary segmentation task that involves segmenting
the water surface area in the input image. Both tasks are simultaneously plagued by
the problem of a limited quantity of training samples. For this reason, we think that in
this study, we can take design inspirations from U-Net to build a water surface region
segmentation network.

This network maintains the encoder–decoder architecture and employs equal amounts
of downsampling and upsampling, as shown in Figure 2. To ensure that the final segmenta-
tion result is consistent with the resolution of the input image and that the feature maps of
the corresponding stages of the encoder and decoder have the same spatial resolution, the
convolution operation of each stage is padded according to the filter size of the convolution
layer. This enables us to fully utilize the output of various stages of the encoder to make
up for the information loss caused by sampling and to make comprehensive use of the
contextual information at various scales to better complete the task of water surface area
segmentation by using a skip connection instead of Crop and Copy opreation as in the
original U-Net.

For the water surface area segmentation task, the effectiveness of the extracted features
from the input image directly affects the segmentation results. Natural images used for
this task are more complicated and contain more information than medical images, so
the 10 layer convolutional network in the original U-Net encoder is unable to extract a
sufficient amount of useful features from such complex scenes. To improve the feature
extraction capability of the encoder while controlling the FLOPs of the network, we use
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ResNet-34 [22] with the final average pooling layer and fully connected layer removed as
the backbone to extract features. Because of the deeper network architecture and fewer
FLOPs of the backbone, the encoder of RS-UNet can effectively extract more high-level and
richer contextual features, which lays a foundation for the network to better complete the
segmentation task with less inference time. In addition, the utilization of ResNet provides
conditions for the introduction of the transfer learning approach, which solves the problem
of insufficient training data and improves the training efficiency of the network.
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Figure 2. RS-UNet network architecture. S indicates the spatial resolution of the input image. The
input is an RGB image, and the output is the segmentation result. The Encoder is the pretrained
ResNet-34 and is fine-tuned during training. There are two input feature maps with different
resolutions for each layer in the decoder. The lower feature is upsampled by the UpConv block
and concatenated with the bigger larger feature through a skip connection. Then, interdependence
between channels is modeled through the SE attention block and processed by the Conv block. At the
end of the network, one UpConv block recovers the spatial resolution to the resolution of the input
image and classifies each pixel into a category.

Theoretically, the real-time processing capability means that the network has low
FLOPs. According to this theory, we built a very simple decoder for the network. The main
computational body of each layer contains only one transposed convolution operation and
one convolution operation; the former is responsible for recovering the spatial resolution,
and the latter is responsible for processing the concatenated feature map. This architecture
guarantees that the decoder contains low FLOPs, but it also leads to a loss of the computa-
tional capacity of the decoder. To overcome this weakness, the SE attention module [23]
is introduced to each layer of the decoder. By modeling the interdependence between
different channels of the concatenated feature map, this module can help the decoder focus
its limited computational capacity on important features to improve performance. The
additional computation required to introduce this kind of module is almost negligible.
Table 1 shows the details of the network architecture.
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Table 1. The architectural details of the network. Up: upsampling multiplier; Channels: the number
of channels of each input and output module; In and Out: spatial resolutions of the feature maps;
Input: input content of the module; ⊗: concatenation operation; S: spatial resolution of the original
image; F(B): the output corresponding to block B.

Encoder

Block Filter Size Stride Channels In Out Input

conv1 7 × 7 2 3/64 S S/2 Input image

MaxPooling 2 × 2 2 64/64 S/2 S/4 F(conv1)

layer1 3 × 3 1 64/64 S/4 S/4 F(MaxPooling)

layer2 3 × 3 2 64/128 S/4 S/8 F(layer1)

layer3 3 × 3 2 128/256 S/8 S/16 F(layer2)

layer4 3 × 3 2 256/512 S/16 S/32 F(layer3)

Decoder

Block Filter Size Up Channels In Out Input

de4upconv
de4se

de4conv

2 × 2

3 × 3

2
1
1

512/256
512/512
512/256

S/32
S/16
S/16

S/16
S/16
S/16

F(layer4)
F(de4upconv ⊗ layer3)

F(de4se)

de3upconv
de3se

de3conv

2 × 2

3 × 3

2
1
1

256/128
256/256
256/128

S/16
S/8
S/8

S/8
S/8
S/8

F(de4conv)
F(de3upconv ⊗ layer2)

F(de3se)

de2upconv
de2se

de2conv

2 × 2

3 × 3

2
1
1

128/64
128/128
128/64

S/8
S/4
S/4

S/4
S/4
S/4

F(de3conv)
F(de2upconv ⊗ layer1)

F(de2se)

de1upconv
de1se

de1conv

2 × 2

3 × 3

2
1
1

64/64
128/128
128/64

S/4
S/2
S/2

S/2
S/2
S/2

F(de2conv)
F(de1upconv ⊗ conv1)

F(de1se)

upconv 3 × 3 2 64/2 S/2 S F(de1conv)

The semantic segmentation task is essentially a pixel-level classification task, so the
most commonly used loss function is the cross-entropy loss function. However, considering
the potential positive and negative sample imbalance problem in the water segmentation
task, a joint loss function (Equation (3)) based on Dice loss (Equation (1)) and focal loss
(Equation (2)) is constructed in this paper to replace the cross-entropy loss function to
supervise the training of the network.

Ldice(X, Y) = 1 −
K

∑
k=0

2ωk ∑H
i=1 ∑W

j=1 p(X(i, j), k)g(Y(i, j), k)

∑H
i=1 ∑W

j=1 p(X(i, j), k) + ∑H
i=1 ∑W

j=1 g(Y(i, j), k)
(1)

where H and W denote the height and width of the image, respectively; X and Y denote the
predicted result of the network and the ground truth, respectively; K denotes the number
of categories except the background; wk represents the weight of each category; p(X(i, j), k)
denotes the probability of X(i, j) being predicted as category k; and g(Y(i, j), k) denotes the
truth label of Y(i, j) corresponding to category k.

L f ocal(X, Y) = − 1
H × W

H

∑
i=1

W

∑
j=1

K

∑
k=1

(1 − pt(X(i, j), k))γg(Y(i, j), k) log (pt(X(i, j), k)) (2)

where pt(X(i, j), k) denotes the probability of X(i, j) being predicted as category k, and γ is
the focusing parameter.

L(X, Y) = ωdiceLdice(X, Y) + ω f ocal L f ocal(X, Y) (3)
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where ωdice and ω f ocal denote the weight coefficients of Dice loss and focal loss in the loss
function, respectively.

3.3. Shoreline Detection

The flow chart of our shoreline detection method is shown in Figure 3. We define
shoreline detection as the combination of water surface segmentation and edge detection.
The shoreline, which is the edge of the water surface area, can be obtained using the
eight-neighborhood Laplace edge detection algorithm [30] based on the results of water
surface segmentation. The extracted shoreline is then superimposed on the original picture
for display. The outcome of shoreline detection is shown in Figure 4, demonstrating
that a simple eight-neighborhood Laplace operator can effectively detect the complete
shoreline based on the segmentation results, with only a small amount of additional
computation generated.
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Figure 3. Flow chart of shoreline detection; from left to right: (a) input image; (b) semantic seg-
mentation; (c) obtained segmentation result; (d) process executed by the Laplacian edge detection
algorithm; (e) display of the detected shoreline.

(a) Original image. (b) Detected shoreline.

Figure 4. Shoreline detection results. (a) The original image; (b) the detected shoreline (green lines).

4. Results and Discussion
4.1. Experimental Implementation

Dateset and Evaluation Metrics According to our definition of shoreline detection
introduced in Section 3.3, the key to shoreline detection is the semantic segmentation of
water surface areas, the accuracy of which can be equivalent to the accuracy of shoreline
detection. To enhance the water segmentation capability of the network and its adaptability
to different scenes, a new dataset was constructed for the water surface segmentation
task. The dataset consists of 433 images of various scenes; the resolutions of these images
range from 220 × 165 to 5792 × 4344. These images were collected through the Internet
or photographed by ourselves. The dataset includes a wide range of shooting angles and
lighting conditions to make the dataset more representative and more widely applicable.

As the accuracy of shoreline detection can be equivalent to the accuracy of water sur-
face segmentation, we directly quantitatively evaluated the performance of our shoreline
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detection method using the metrics of semantic segmentation, that is, the Dice coeffi-
cient (Dice), mean intersection over union (MIoU), category mean pixel accuracy (MPA),
and pixel accuracy (PA).

Training Setting For network training, the dataset is divided into a training set and a
test set according in a 9-to-1 ratio. We set ωk =

1
K+1 in Equation (1), γ = 2 in Equation (2),

and ωdice = ω f ocal = 1 in Equation (3) according to the theory that Dice loss (Equation (1))
and focal loss (Equation (2)) constrain the network updating toward the same target from
different perspectives and that their equal status benefits the capability of the network and
saves on computation during training. We used adaptive moment estimation (Adam) [31]
for optimization. Since pretraining weights were introduced, the combination of freeze
training and unfreeze training was adopted. In a total of 150 epochs of the training process,
we first went through 30 epochs of freeze training, in which the weights of the backbone
were not updated, with an initial learning rate of 10−3 and a batch size of 4. The following
120 epochs trained the backbone, together with the rest of the network, with an initial
learning rate of 10−4 and a batch size of 2. In addition, a learning rate decay coefficient of
0.96 was used throughout the whole training process.

For data augmentation, we employed some fundamental data augmentation tech-
niques, such as random flipping, random scaling, and augmentation through HSV color
space. Specifically, each input image was rescaled to between 25% and 200% of its original
resolution, then horizontally flipped with a probability of 50%. Finally, its hue, saturation,
and value were randomly adjusted to between 50% and 150% of the original value. All
these processes were executed automatically and randomly.

Training was conducted on one NVIDIA GeForce RTX 3080 GPU.

4.2. Ablation Studies

We hypothesized that the potential imbalance of positive and negative samples in
the segmentation task would affect the training effect of the network, so the joint loss
function of Dice loss, which measures the similarity of segmentation results, and focal
Loss, which boosts the weights of small samples, was employed in training to replace
the cross-entropy loss function. In this section, experiments were conducted to compare
the impact of different loss functions on the training of the network, which used only the
cross-entropy loss function or the joint loss function. As shown in Table 2, the semantic
segmentation performance of the network trained with the joint loss function is better.
This indicates that considering the positive and negative sample imbalance problem is
more beneficial to training semantic segmentation networks than simply measuring the
pixel-level classification accuracy in the water surface area segmentation task.

Table 2. The impact of different loss functions on the training of the network. Best results are in bold.

Loss Function Dice MIoU (%) MPA (%) PA (%)

Cross-entropy loss 0.9748 96.65 98.27 98.37
Joint loss 0.9763 97.05 98.49 98.56

The effect of introducing attention mechanisms at different nodes on the network’s
performance is shown in Table 3. The two networks, RS-UNet-1 and RS-UNet-2, are de-
picted in Figure 5 as Figure 5a,b, respectively. RS-UNet-1 adds the attention mechanism to
the pretrained backbone used for feature extraction, while RS-UNet-2 adds the attention
mechanism to the decoder (ours). For training, the same hyperparameters are employed.
According to the experimental results, integrating the attention mechanism into the pre-
trained decoder is preferable to integrating it into the backbone in an interpolated manner.

Owing to this phenomenon, we found that because the backbone was pre-trained on
ImageNet, while the added SE attention module was not pre-trained but only initialized,
this kind of interleaved combination of pre-trained module and non-pre-trained module
destroyed the consistency of weight in the encoder. When training the network, the same
learning rate cannot have a uniform effect on both parts, making the network converge to
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a local optimum instead of a global optimum, which results in a suboptimal final output.
During training, the convergence speed of RS-UNet-1 also lags behind that of RS-UNet-2,
which is considered to have the same cause.

Table 3. Effect of adding the attention mechanism to different locations on network performance. The
network architectures of RS-UNet-1 and RS-UNet-2 are shown in Figure 5. Best results are in bold.

Architecture Dice MIoU (%) MPA (%) PA (%)

RS-UNet-1 0.9735 96.66 98.26 98.37
RS-UNet-2 0.9763 97.05 98.49 98.56
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(b) RS-UNet-2

Figure 5. RS-UNet-1 and RS-UNet-2 network architectures. RS-UNet-1 adds the attention mechanism
in the encoder (integrated into the backbone), and RS-UNet-2 adds the attention mechanism in the
decoder. All symbols are the same as in Figure 2.

4.3. Experimental Results and Analysis of Water Surface Segmentation

The comparison between our network and some mainstream convolution-based se-
mantic segmentation networks for water surface segmentation performance and parameters
is shown in Table 4. All the networks compared here were retrained on our dataset with its
best hyperparameters. Note that all the networks were trained on one NVIDIA GeForce
RTX 3080 GPU and tested on one NVIDIA GeForce RTX 3050Ti GPU; the spatial resolution
of the images used in the test of processing speed was uniform, at 640 × 320. The improve-
ment over [28,32,33] validates the effectiveness of introducing the attention mechanism.
The improvement over [32–35] favorably validates the effectiveness of integrating con-
textual information at all scales using a skip connection. In summary, the combination
of the attention mechanism and skip connection help the network successfully overcome
the influence of inherent properties of the water surface, such as reflection and irregular
boundary shapes. We can see that the processing speed of our network is the fastest due to
the concise network architecture.

Table 4. Comparison of the water surface segmentation performance and parameters of different
networks. We compare our network against some mainstream segmentation networks. All the
numbers reported here are from our experiment. Best results are in bold.

Network Params (M) Dice Coefficient MIoU (%) MPA (%) Pixel Accuracy (%) FPS

U-Net [28] 31.0 0.8791 80.16 88.24 89.60 9.5
PSPNet [32] 65.6 0.9052 88.83 93.82 94.36 20

DeepLab v3+ [33] 59.3 0.9449 92.22 95.90 94.36 35
DANet [34] 66.6 0.9705 95.61 97.70 97.93 34

CondNet [35] 44.1 0.9664 95.36 97.67 97.80 37
RS-UNet(ours) 23.7 0.9763 97.05 98.49 98.56 40
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In addition to the quantitative comparison, some qualitative results are also presented
in Figure 6 to visually show the differences between these networks after being trained on
the same dataset. The first column is the original input image, the associated ground truth
is displayed in the second column, and the following columns are the segmentation results
corresponding to different methods. The result of our network is the closest to the ground
truth. Other networks have obvious incorrect segmentation problems due to the inherent
properties of the water surface.

(a) Input Image (b) Ground Truth (c) U-Net (d) PSPNet (e) DeepLab v3+ (f) DANet (g) CondNet (h) RS-UNet

Figure 6. Some qualitative results of water surface segmentation of different networks. The first
column is the input image, the second column is the corresponding ground truth, and the other
columns are the segmentation results of the water surface area obtained by different methods. This
figure visually shows the performance differences between different networks after training on the
same dataset. Our results match the ground truth best.

4.4. Comparison with Other Shoreline Detection Methods

In addition to the comparison of water surface area segmentation results with those
of mainstream segmentation methods, we also compared our shoreline method with
other shoreline detection methods in the professional field. Due to the lack of open-
source resources, here, our method was only compared with that of Yin et al. [17], one
of the newest and best shoreline detection methods, on the USVInland dataset [27]. We
trained our network on this dataset with the same hyperparameters as in Section 4.1
and followed their dataset division strategies. The results reported in [17] were directly
used here. For fairness, this experiment was conducted on one RTX2080Ti. Because in
these two methods, the segmentation performance is directly related to the shoreline
detection performance, Table 5 only shows the comparison of these two methods in water
surface segmentation.

Table 5. Comparison with other shoreline detection methods in segmentation performance and
inferring speed. The data reported in the first row are from [17]. Best results are in bold.

Method MIoU (%) PA (%) FPS

Yin et al. [17] 96.87 98.49 -
Ours 97.21 98.60 32

It can be seen that when compared with the other methods in the professional field,
our method still shows a more favorable result. The inferring speed of our method is
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very attractive, which satisfies the need for real-time shoreline detection. Furthermore,
comparison of the improvements in MIoU and PA also demonstrates the effectiveness of
the use of joint loss during training.

4.5. Experiment on Generalization Capability

As discussed in Section 4.3, the inherent properties of the water surface, such as
reflection, and irregular boundary shapes, have a significant impact on the detection result.
However, these common features are easily influenced by the environment; for example,
the landscape on the shore affects the reflection. This causes the same feature to behave
differently in different environments, which challenges the generalization capability of the
network. To verify the generalization ability of our method in different scenes, we tested
it on the USVInland dataset [27] and the port scenes collected by our team without any
fine tuning. The segmentation performance of RS-UNet on these two datasets is shown in
Table 6. Obviously, our network generalizes well on the two datasets.

As for the shoreline detection performance, some qualitative results on the USVInland
and port datasets are shown in Figures 7 and 8, respectively. The green line indicates
the shoreline detected by our method, the red line is the artificially delineated reference
shoreline, and the yellow line indicates the overlap of the two. It can be seen that, al-
though there are reflection interference problems in the USVInland dataset [27] and the port
scene is not included in the training data, the shoreline detected by our method matches
the reference shoreline closely in both environments. This excellent result demonstrates
that our shoreline detection method can generalize well in various environments.

Table 6. The performance of RS-UNet on other datasets. The network was not re-trained on these
datasets, just use the weights trained in Section 4.3.

Dateset Dice MIoU (%) MPA (%) PA (%)

USVInland [27] 0.9763 95.60 97.73 97.75
Port 0.9830 97.26 98.68 98.76

(a) Original Image (b) Detected Shoreline (c) Original Image (d) Detected Shoreline

Figure 7. The results of our method on the USVInland dataset for shoreline detection. The green line
is the detected shoreline, the red line is the reference shoreline, and the yellow portions represent the
overlap between the two.
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(a) Original Image (b) Detected Shoreline (c) Original Image (d) Detected Shoreline

Figure 8. The results of our method on the port dataset for shoreline detection.The green line is
the detected shoreline, the red line is the reference shoreline, and the yellow portion represents the
overlap between the two.

5. Conclusions

In this paper, we discussed the current state of research in the field of shoreline
detection and analyzed the reasons for the shortcomings of these methods in accurately
detecting shorelines in real time. Accordingly, we constructed a more accurate and real-
time shoreline detection method based on the proposed RS-UNet network. Our method
defines shoreline detection as the combination of water surface area segmentation and edge
detection. As the key of our method, we proposed RS-UNet as the water segmentation
network, which can segment the water area accurately and in real time. Experiments
show that our RS-UNet achieves a 97.05% MIoU and 40 FPS processing speed in the task
of segmenting the water surface area, which is better than some existing mainstream
semantic segmentation methods and deep-learning-based shoreline detection methods. We
also demonstrated the generalization capability of our method through experiments. In
summary, our shoreline detection method can accurately detect shorelines in real time and
in various environments.

Although our method performs well in shoreline detection, it is still to some limitations.
The main limitation is the insufficient amount of training data with annotations, which
limits the generalization ability of our method. Our future work will be focused in two
directions. The first direction is exploring training our network in an unsupervised manner.
By employing an unsupervised training process, we can use a large number of images
without annotations for training and significantly reduce the impact of a lack of training
data. Another direction is to treat this work as a foundation, integrating the proposed
method with other downstream tasks. such as obstacle detection on the water surface,
automatic visual positioning, and the monitoring of distance between USVs and the shore,
in order to provide guarantees for the safety of navigation of USVs.
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Abbreviations
As there is a large number of acronyms and terms in our manuscript, we provide an abbreviations

list here for a better reading experience.

Abbreviation Full Name
MIoU Mean intersection over union
FPS Frames per second
USV Unmanned surface vehicle
RANSAC Random sample consensus
HSV Hue saturation value
SE Squeeze and excitation
RS-UNet Residual squeeze-and-excitation U-Net
CRF Conditional random fields
FCNs Fully convolutional Networks
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