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Abstract: The paper considers the visco-elastic response of the ice cover in a channel under an
external load moving with constant speed along the center line. The channel has a rectangular
cross-section with a finite depth and width. The fluid in the channel is inviscid and incompressible
and its motion is potential. The fluid is covered by a thin sheet of ice frozen to the channel walls.
The ice thickness varies linearly symmetrically across the channel, being lowest at the center of the
channel and highest at the channel walls. Ice deflections and strains in the ice cover are independent
of time in the coordinate system moving with the load. The problem is solved numerically using
Fourier transform along the channel and the method of normal modes across the channel. The series
coefficients for normal modes are determined by truncation for the resulting infinite systems of linear
algebraic equations. The ice deflections and strains in the ice plate are investigated and compared to
the case of constant mean ice thickness. It is shown that even a small variation of the ice thickness
significantly changes the characteristics of the hydroelastic waves in the channel.

Keywords: hydroelastic waves; moving load; frozen channel; linear thickness; ice deflections; strains

1. Introduction

The problem of waves on ice cover was considered for the first time by Greenhill [1]
and has been actively investigated since the sixties of the last century. The pioneering
works on hydroelastic waves and the response of ice to moving loads were published
in [2–4]. The main features of these waves were studied also later by Squire, V.A.; Hosking,
R. and their group [5,6]. Very good reviews of these studies were made by Squire [5,7].
Only unbounded ice covers were considered that time. The ice sheet was modeled by an
isotropic thin elastic plate. The water was assumed to be inviscid and incompressible. The
dynamic equations describing this ice–water system were solved within the linear theory
of hydroelasticity. This theory is relevant to this day. Models of thin elastic plates predict
well the behavior of ice sheets with small thicknesses in the case of hydroelastic waves of
small amplitude.

During the last 25 years, interest in ice cover has increased considerably, due to global
warming as well as the possibility of wider use of the Arctic territories and natural reserves
as well as use of the Northern Sea Route around of the year (see, for example [8]) on the
one hand and the development of the Antarctic on the other.

Recent studies are focused on more specific problems of interaction between ice cover
and coastal structures, such as walls (breakwaters), columns (supports of bridges and oil
platforms), complex bottom topography, and channel walls. The problems of load moving
near the ice sheet edge along the edge, between two ice sheets, on the liquid surface along
the ice sheet edge, and many others have been considered, see in example [9,10]. Non-linear
models of fluid–ice interactions have been studied numerically and analytically in [11,12].
Models that take into account the compressibility of ice were studied in [13–15]. These
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models are used not only to describe the ice cover but also other floating elastic structures
such as floating breakwaters and wave energy converters [16,17].

The behavior of an ice sheet with cracks has been studied during the last years. The
solution for the scattering of an obliquely incident flexural–gravity wave by a narrow
rectilinear crack separating two semi-infinite thin elastic plates floating on water of finite
depth was obtained in [18]. The existence of localized edge waves traveling along the crack
was discussed. The same authors generalized their solution to the case of a large number
of cracks [19]. The problem of flexural–gravity waves in an ice sheet with a rectilinear crack
generalized by a uniformly moving load was studied in [20]. The analytical solution was
constructed. It was shown that in the case of both the plates having the same thickness and
for the plate with the free edge near the vertical wall, at given special speed, there exist two
edge wave modes with different wavenumbers. One of these waves propagates behind the
load, and another one ahead of the load. The problem of a load moving along the frozen
channel with a crack was studied in [21,22]. The main focus of the study was on the effect
of a crack in the ice cover of a channel on strains and deflections of the ice sheet. The crack
was placed at the center of the channel. It was shown that the ice deflections and strains
along the crack are strongly dependent on the speed of the load and its relation to critical
speed, i.e., minimum phase speed of the periodic hydroelastic waves propagating along
the channel.

Models with damping (such as Kelvin–Voight models of ice) in the problems of load
moving on an ice sheet were used by Zhestkaya and Kozin [23,24], by Brocklehurst [25]
(chapter 5), and by Shishmarev et al. [26]. The dissipation effects, which are characterized
by the retardation time in the Kelvin–Voigt viscoelastic model of an ice plate, were very
strong in the numerical analysis by Zhestkaya and Kozin [24]. Investigation of the influence
of retardation time on flexural–gravity waves in an ice channel with moving loads was
done in [26]. There, you can find a good review of advantages and disadvantages of the
Kelvin–Voigt model.

The present paper is about how ice with linearly changing thickness behaves under
a moving load in a channel. The cross-section of the channel is rectangular because the
majority of scientific and technical experiments with ice cover are conducted in ice tanks
with such cross-sections. For this reason, studying the features of waves in channels and
how they differ from waves in unbounded sheets is highly important. The boundary
conditions at the channel walls significantly change the mathematical statement of the
problem and affect the results of these studies. Investigations of waves in channels and
their differences from the waves of the infinite extend as well as the hydroelastic behavior
of the ice under the moving load were performed in the papers [26–29]. In contrast to the
two-dimensional waves in the ice cover of infinite extend, there exists not only a system of
propagating waves but also a number of sloshing waves across the channel. These waves
have their own propagation speeds and critical speeds, which affect the waves system in
the ice with moving loads.

In [30], the case of flexural–gravity waves propagation when ice thickness varies
linearly across the channel was considered. The problem was solved by the normal mode
method, where modes of plates with linear thickness were present analytically by functions
found in [31]. Dispersion relations, profiles of flexural–gravity waves across the channel,
and distributions of strain in the ice cover have been determined. It was shown that the
behavior of flexural–gravity waves very much depends on the inclination parameter of the
ice thickness and is different compared with those for a constant-thickness plate.

The present paper is concerned with the viscoelastic response of the ice cover in a
channel caused by an external load moving with constant speed along the center line of
the channel in the case when thickness of ice is linearly changed. The paper consists of
several sections. In Section 2, the statement of the problem is formulated and the equations
and variables are non-dimensionalized. The problem is solved within the linear theory of
hydroelasticity. The formulation of the problem is similar to the one used in [28], but now
the ice thickness linearly varies symmetrically across the channel, being the smallest at the
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center of the channel and the largest at the channel walls. All considered cases of linear
ice thickness satisfy the conditions of linear theory. The problem is formulated in such a
way that the solution is sought in the coordinate system moving together with the load and
does not depend on time. In Section 3, the solution method is described. The solution is
based on the method of normal modes, into which the profile of ice oscillations across the
channel is decomposed. The final solution for the ice deflections is obtained in the form of
integrals using the inverse Fourier transform. Numerical results are described in Section 4.
The ice deflections and strains in ice plates are investigated and compared with the case of
a constant mean thickness of ice.

2. Formulation of the Problem

The response of a viscoelastic ice cover to a load moving along a frozen channel is
considered. The channel is of rectangular section with a finite depth H (−H < z < 0) and a
finite width 2b (−b < y < b), and the channel is of infinite extent in the x direction. Here,
Oxyz is a Cartesian coordinate system. The problem is studied within the linear theory of
hydroelasticity (see, e.g., [5]). Liquid in the channel is inviscid, incompressible, and covered
with ice. The ice cover is modeled by a thin viscoelastic plate with given constant density
ρi and rigidity D(y), where D(y) = Eh3

i (y)/[12(1− ν2)], E is the Young’s modulus for ice,
ν is the Poisson’s ratio for ice, and hi(y) is the thickness of the ice cover. The ice thickness
hi(y) is linear across the channel and symmetric with respect to a center line of the channel.
The ice thickness is constant along the x direction.

The Kelvin–Voigt model of viscoelastic ice is used in this study. The constitutive
equation of this model is σ = E(ε + τ∂ε/∂t), where σ is the stress, ε is the strain, τ is the
so-called retardation time, and t is the time. Ice oscillations are caused by a load moving
along the center line of the channel with constant speed U. The load is modeled by a
localized smooth pressure distribution. Flow beneath the plate caused by ice deflections is
potential. The scheme of the problem is shown in Figure 1.

Figure 1. Scheme of the problem.

The ice deflection w(x, y, t) satisfies the equation of a thin viscoelastic plate

M(y)
∂2w
∂t2 +

(
1 + τ

∂

∂t

)
Λw = p(x, y, 0, t) + P(x, y, t) (−∞ < x < ∞,−b < y < b, z = 0), (1)

where Λ is a differential operator,

Λ = D(y)∆2 + 2Dy

(
∂3

∂y3 +
∂3

∂x2∂y

)
+ Dyy

(
∂2

∂y2 + µ
∂2

∂x2

)
,

∆2 = ∂4/∂x4 + 2∂4/∂x2∂y2 + ∂4/∂y4, M(y) = ρihi(y) is the mass of the ice plate per unit
area, P(x, y, t) is the external pressure caused by the moving load, and p(x, y, 0, t) is a



J. Mar. Sci. Eng. 2023, 11, 1045 4 of 18

liquid pressure at the ice/liquid interface. If the ice thickness is constant, then Λ = D∆2.
The external pressure P(x, y, t) moves along the center line of the channel with constant
magnitude P0 and is described by

P(x, y, t) = −P0P1((x−Ut)/b)P2(y/b) (−∞ < x < ∞, −b < y < b), (2)

P1(x̃) =
(

cos(πc1 x̃) + 1
)
/2 (c1|x̃| < 1), P1(x̃) = 0 (c1|x̃| ≥ 1), x̃ = (x−Ut)/b,

P2(ỹ) =
(

cos(πc2ỹ) + 1
)
/2 (c2|ỹ| < 1), P2(ỹ) = 0 (c2|ỹ| ≥ 1), ỹ = y/b,

where c1 and c2 are non-dimensional parameters of the external load characterizing the
size of the pressure area. The hydrodynamic pressure p(x, y, 0, t) at the ice–liquid interface
is given by the linearized Bernoulli equation,

p(x, y, 0, t) = −ρ`ϕt − ρ`gw (−∞ < x < ∞, −b < y < b), (3)

where g is the gravitational acceleration, ρ` is the density of the liquid, and ϕ(x, y, z, t) is
the velocity potential of the flow beneath the ice cover. The velocity potential ϕ(x, y, z, t)
satisfies Laplace’s equation in the flow region and the boundary conditions

ϕy = 0 (y = ±b), ϕz = 0 (z = −H), ϕz = wt (z = 0). (4)

We consider a case where the ice cover is frozen to the walls, which is modeled by the
clamped conditions

w = 0, wy = 0 (−∞ < x < ∞, y = ±b). (5)

Other boundary conditions for the ice cover at the walls could be studied in the same way.
The term with τ∂/∂t in the equation of the viscoelastic plate (1) describes the damping of
ice plate oscillations so they decay far away from the moving load

w, ϕ→ 0 |(x−Ut)| → ∞. (6)

Linear change in the ice thickness is considered: the ice thickness varies symmetrically
across the channel, being the smallest at the center of the channel and the largest at the
channel walls, see Figure 2. The main parameters of the thickness are its average h∗ value
and non-dimensional slope ratio α describing linear change of the ice thickness. Then, hi(y)
can be written in the form

hi(y) = h0(1 + α|y/b|), (7)

where h0 is minimum and h1 is maximum values of the ice thickness

hi(0) = h0, hi(±b) = h1, h1 = 2h∗
1 + α

2 + α
h0 =

h1

1 + α
.

Figure 2. Shape of the ice cover across the channel.

The formulated problem is solved in non-dimensional variables denoted by tilde. The
half-width of the channel b is taken as the length scale, the ratio b/U as the time scale, and
the pressure magnitude P0 as the pressure scale. The non-dimensional depth of the channel



J. Mar. Sci. Eng. 2023, 11, 1045 5 of 18

H/b is denoted by h. The moving coordinate system (x̃, ỹ, z̃) with the origin at the center
of the load is introduced by

ỹ = y/b, x̃ = (x−Ut)/b, z̃ = z/b, t̃ = Ut/b.

We are concerned with a steady-state solution in the moving coordinate system,

w(x, y, t) = w(x̃L + Ut, Lỹ, t) = wsc w̃(x̃, ỹ),

ϕ(x, y, t) = ϕ(x̃L + Ut, Lỹ, t) = ϕsc ϕ̃(x̃, ỹ, z̃),

where wsc and ϕsc are the scales of the ice deflection and the velocity potential, correspond-
ingly. The scales are chosen as wsc = P0/(ρ`g) and ϕsc = (UP0)/(ρ`g).

In the non-dimensional variables, the problem reads (tildes are omitted further)

m0hFr2hiwxx + β
(

1− ε
∂

∂x

)[
h3

i∇
4w + 6h2

i hi,y(wyyy + wxxy) + 6hih2
i,y(wyy + νwxx)

]
+ w

= hFr2 ϕx − P1(x)P2(y) (−∞ < x < ∞, −1 < y < 1, z = 0), (8)

∇2 ϕ = 0 (−∞ < x < ∞, −1 < y < 1, −h < z < 0), (9)

ϕz = −wx (z = 0), ϕy = 0 (y = ±1), ϕz = 0 (z = −h), (10)

w = 0, wy = 0 (y = ±1), w, ϕ→ 0 (|x| → ∞). (11)

Here, β = D0/(ρl gb4), D0 = Eh3
0/[12(1 − ν2)], ε = (τU)/b, m0 = (ρih0)/(ρ`b), and

Fr = U/
√

gH is the Froude number.
The method for studying strains in the ice cover involves calculating the maximum

strains in a plate. In the linear theory of hydroelasticity, strains change linearly with the
thickness of the ice plate, and they are zero at the center of the plate [32]. Therefore, with
respect to the plate thickness, the maximum strains occur at either the upper or lower
surface. Only positive deformations, corresponding to elongation and stretching of the ice
cover, are considered in this work. The strain tensor for the plate is

E(x, y) = −ζ

(
wxx wxy
wxy wyy

)
, (12)

where ζ is a dimensionless coordinate along the thickness of the ice, with −1− αy < ζ <
1 + αy. Tensor (12) describes the strain field in the ice cover. To find the maximum strains,
one needs to determine the eigenvalues of tensor (12) and select the maximum. In the linear
theory of hydroelasticity, this method of analysis is correct if the condition w2

x + w2
y � 1

is satisfied and the strains do not exceed the critical value εcr. The critical value, or yield
strain, of the material is defined as the value of deformation ε = εcr at which the material
starts to deform plastically. In this study, the value εcr = 8× 10−5 is used. This value of the
yield strain has been used before, in particular in [25,26].

According to the introduced dimensionless variables, strains are scaled by the value
of h0wsc/b2. Therefore, for different values of α, the value of h0 and the scale of the strains
will be different. Hence, all calculated dimensionless strains will be scaled by the value of
hr, where hr = h0/h∗. Thus, in any case, the dimensionless strains in the ice cover will be
of the same scale equal to h∗wsc/b2, and the results for different cases of linear ice thickness
can be compared in one figure.

The solution of the problem (8)–(11) depends on seven non-dimensional parameters, h,
m, β, ε, Fr, c1, and c2, and on the parameters of the ice thickness h∗ and α. These parameters
describe the aspect ratio of the channel and characteristics of the ice and of the applied load.
We shall determine the deflection w and strain distribution in the ice cover for given values
of these parameters. A major aspect of the problem is the linear ice thickness. We shall
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study the effect caused by the linearity of the thickness on the ice deflections and strains
distribution. We keep average thickness h∗ in all our calculations equal to one given value.
Note that the scale of the ice thickness is equal to h0 and will change in the calculations for
different values of α. However, the scales of ice deflections and strains distribution do not
depend on the scale of ice thickness, so they can be comparable while we do not change
other scales.

3. Method of the Solution

The coupled problem (8)–(11) is solved with the help of the Fourier transform in the x
direction. After applying the Fourier transform to (8)–(11), the plate Equation (8) provides

β(1− iξε)
[

hi

[
h2

i wF
yyyy + 6hihi,ywF

yyy + 6h2
i,ywF

yy

]
+h3

i (ξ
4wF − 2ξ2wF

yy)− 6h2
i hi,yξ2wF

y − 6hih2
i,yνξ2wF

]
+ (1−m0hFr2ξ2hi)wF = iξhFr2 ϕF − PF(ξ, y), (13)

where

wF(ξ, y) =
1√
2π

∞∫
−∞

w(x, y)e−iξxdx, w(x, y) =
1√
2π

∞∫
−∞

wF(ξ, y)eiξxdx. (14)

Here, ξ is the parameter of the Fourier transform.
It is convenient to seek the Fourier image of ice deflections, wF(ξ, y), in the form of an

infinite series of special spectral functions ψn(y)

wF(ξ, y) =
∞

∑
n=1

an(ξ)ψn(y). (15)

The spectral functions ψn(y) are called normal modes of oscillations of a beam with linear
thickness. They were calculated in [30] for consideration in this article for the case of the
shape of ice thickness. The functions ψn(y) are solutions of the spectral problem

h2
i ψn + 6hihi,yψn + 6h2

i,yψn = λ4
nψn (−1 < y < 1), ψn(±1) = ψn,y(±1) = 0. (16)

The analytical solution of the differential equation in (16) can be obtained for polynomially
varying thickness along the beam (l + γy)k. It was shown that for this varying thickness
and rigidity of a beam behaving as (l + γy)3k, equations of oscillating plates can be reduced
to Bessel’s equations or Euler’s equation [31]. For k = 1, the general solution is

ψn(y) =
1
ζ
[An J1(ηnζ) + Bn Y1(ηnζ) + Cn I1(ηnζ) + Dn K1(ηnζ)], n = 1, 2, 3 . . . (17)

where ηn = 2θn/α, ζ =
√

hi(y), and J, Y, I, and K are Bessel functions. Parameters An, Bn,
Cn, and Dn are determined from the boundary conditions and the normalization condition
for the functions ψn.

It could be shown that both even and odd functions ψn are solutions of the differential
equation in (16). Since we consider the load symmetric in y, we need to find only even
modes. These modes satisfy conditions of zero slope and zero transverse shears of a beam
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with linear thickness at its center. Therefore, these conditions and (16) give a system of
equations for An, Bn, Cn, Dn, and ηn

An J1(ηnζ1) + Bn Y1(ηnζ1) + Cn I1(ηnζ1) + Dn K1(ηnζ+) = 0, (18)

An J0(ηnζ1) + Bn Y0(ηnζ1) + Cn I0(ηnζ1)− Dn K0(ηnζ1) = 0, (19)

An J1(ηnζ0) + Bn Y1(ηnζ0) + Cn I1(ηnζ0) + Dn K1(ηnζ0)− ηnψ0n(ζ0)/2 = 0, (20)

ψ1n(ζ0)− ηnψ2n(ζ0)/2 = 0, (21)

where ζ1 =
√

hi(1), ζ0 =
√

hi(0), and

ψ0n(ζ0) = An J0(ηnζ0) + Bn Y0(ηnζ0) + Cn I0(ηnζ0)− Dn K0(ηnζ0),

ψ1n(ζ0) = −An J1(ηnζ0)− Bn Y1(ηnζ0) + Cn I1(ηnζ0) + Dn K1(ηnζ0),

ψ2n(ζ0) = −An J0(ηnζ0)− Bn Y0(ηnζ0) + Cn I0(ηnζ0)− Dn K0(ηnζ0).

This system of Equations (18)–(21) is used to derive three of the four constants through
the last one and find the spectral parameter ηn. This parameter is calculated as a value at
which the corresponding matrix changes its sign. The functions ψn(y) are orthogonal with
respect to a weighted inner product, where the weight function is equal to hi(y)

1∫
−1

(1 + αy)ψn(y)ψm(y)dy = 0 (n 6= m) (22)

and An, Bn, Cn, and Dn are normalized in such a way that the integral in (22) is equal to 1
for n = m.

Using the transformed kinematic condition, ϕF
z (ξ, y, 0) = −iξwF(ξ, y), we seek the

Fourier image of the flow velocity potential in the form ϕF(ξ, y, z) = −iξΦ(ξ, y, z),

Φ(ξ, y, z) =
∞

∑
n=1

an(ξ)φn(ξ, z, y), (23)

where φn(ξ, z, y) is the solution of the following boundary problem

∂2φn

∂y2 +
∂2φn

∂z2 = ξ2φn,
∂φn

∂z
(ξ, y, 0) = ψn(y),

∂φn

∂z
(ξ, y,−h) = 0.

By substituting (15) and (23) into (13), multiplying both sides of the result by ψm(y), and
integrating over y, we arrive at an infinite system of equations for principal coordinates
an(ξ)

β(1− iξε)

[
am(λ

4
m − 6h2

i,yξ2ν) + 2ξ2
∞

∑
n=1

anSnm + ξ4
∞

∑
n=1

anKnm

]

−amm0hFr2ξ2 +
∞

∑
n=1

an M(1)
nm − hξ2Fr2

∞

∑
n=1

an M(2)
nm = Pm, m = 1, 2, 3, . . . (24)

where

Snm =

1∫
−1

h3
i ψ′nψ′mdy, Knm =

1∫
−1

h3
i ψnψmdy, M(1)

nm =

1∫
−1

ψnψmdy,

M(2)
nm =

1∫
−1

φn(ξ, y, 0)ψmdy, Pm = −
1∫
−1

PFψmdy.
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Algebraic problem (24) can be written in the matrix form(
β(1− iξε)

[
D + 2ξ2S + ξ4K

]
−m0hFr2ξ2I + M(1) − hξ2Fr2M(2)

)
~a = ~P, (25)

where D is a diagonal matrix with elements (λ4
m − 6h2

i,yξ2ν), S = {Snm}, K = {Knm},

M(1) = {M(1)
nm}, M(2) = {M(2)

nm}, I is an identity matrix, and ~P is a vector with elements Pm.
It can be shown that all matrices in (25) are symmetric. To solve matrix equation (25), we
reduce the number of modes ψn(y) to a finite number Nmod and distinguish the real and
imaginary parts of the vector~a,~a =~aR + i~aI . All vectors and elements of the matrices in the
obtained equation are real, which provides the system with two non-homogeneous matrix
equations with respect to~aR and~aI . In the present problem, PF

1 (ξ) is an even function of ξ.
It can be shown that aR

n (ξ) are even and aI
n(ξ) are odd functions of ξ.

The ice deflection w(x, y) is obtained by the inverse Fourier transform, see the second
equation in (14),

w(x, y) =
√

2√
π

Nmod

∑
n=1

ψn(y)
∞∫

0

aR
n (ξ) cos(ξx)− aI

n(ξ) sin(ξx)dξ. (26)

The area of integration in (26) is limited by Nξ , and the number of integration steps is equal
to N. Functions aR

n (ξ) and aI
n(ξ) are approximated by linear functions, and the resulting

integrals are calculated analytically for each mode. The convergence of the numerical
solution is checked by varying the number of modes and the integration parameters. For a
plate of constant thickness, the solution method is similar to the method used in [26].

4. Numerical Results

Calculations of the ice response were carried out for parameters of the problem
corresponding to the experimental ice tank at the Sholem Aleichem Amur State University
in Birobidzhan (see [33]): H = 1 m, 2b = 3 m, ice thickness in the tank is chosen to be equal
to 0.0035 m. The parameters of ice and liquid in the calculations were ρi = 917 kg/m3,
ρ` = 1024 kg/m3, µ = 0.3, E = 4.2× 109 Pa, and τ = 0.1 s. The slope ratio of the linear
change of ice thickness α and the speed of the load U change in the calculations. The
average thickness h∗ in all calculations did not change and is equal to 0.0035 m. All results
presented further are shown in non-dimensionless variables unless otherwise specified,
and tildes are omitted.

Precision of calculations depends on the parameter of integration, Nξ , N, and number
of modes Nmod. A series of test calculations show that Nmod = 10 is enough to obtain the
numerical results with visual accuracy. A sufficient range of the parameters of integration
were tested on a series of calculations with successively increasing the number of steps and
the interval of integration. When the slope ratio of the ice thickness α tends to 0, the ice
plate with linear thickness becomes more flattened, being a plate with constant thickness
at the limit. Small amounts of α lead to high values of ηn in (17), and ηn → ∞ as α → 0.
Therefore, it is impossible to calculate the spectral parameters ηn, modified Bessel functions
In, and, correspondingly, the ice deflections w(x, y) for small α. It is expected that all results
for a plate with linear thickness tend to results for a plate with constant thickness as α→ 0.
The results for a plate with constant thickness can be calculated by the method described
in [26]. Convergence of characteristics of periodic hydroelastic waves propagating along a
frozen channel was investigated in [30].
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Comparison of the results for the plate with slowly changing linear thickness and for
the plate with constant thickness are shown in Figure 3. Non-dimensional ice deflections
along the center line of the channel are shown in Figure 3a, and strains are shown in
Figure 3b. The results for the plate with linear thickness are shown by a dashed red line,
and for the plate with constant thickness by a black solid line. The results in the figures are
calculated for U = 1.5 m/s and α = 0.05. This slope ratio corresponds to h0 ≈ 0.0034 m
and h1 ≈ 0.0036 m, which is a very small change in the ice thickness over the 1.5 m length
of the plate. The ice deflections and strains for both cases are visually matched. There are
few deviations near the center of the load, x = 0. In general, the ice plate with a very small
change in linear thickness can be approximated by the plate with constant thickness.

However, when making such an approximation, one must be careful with the cal-
culation error of the strains. The accuracy of the strain distribution calculation is more
important than the accuracy of the ice deflections due to the estimation of possible ice
breaking. The maximum difference in strains, |ε(c) − ε(l)|, calculated as a function of U,
is shown in Figure 4a for strains along the central line of the channel and in Figure 4b
for strains at the walls. Notation (c) means strains calculated for a plate with constant
thickness and (l) is for a plate with linear thickness with α = 0.05. Since we are discussing
the accuracy of approximating an ice plate with nearly constant linear thickness by a plate
with constant thickness, in this paragraph, we will refer to the difference in calculated
strains as the calculation error. Overall, the error in dimensionless values is small. The first
critical speed at which the load begins to generate hydroelastic waves in the ice cover is
slightly less than 2 m/s. Once the hydroelastic waves start to contribute to the reaction of
the ice cover to the load (values at U ≥ 2 on the graphs), the error in the calculated strains
at the walls increases. The error in strains along the central line of the channel where the
load is located is generally at the level of 0.07 dimensionless values with small fluctuations.

The maximum absolute error in the calculated strains for the plate approximated by
one with constant thickness depends on the parameters of the strain scale, εsc. For example,
at a speed of U = 2 m/s, the maximum dimensionless strains in the ice cover with linear
thickness are reached in the area near the load and are approximately equal to 2.45. The
critical value of P0 at which the ice will begin to break, i.e., the dimensional strains reach
the value of εcr, is approximately 377 Pa. Therefore, the maximum error in dimensionless
strains when approximating a plate with constant thickness is 0.085. For the given load
amplitude, the value of this error will be no more than 3.5 percent of the critical value. Note
that this is the maximum possible error; in other cases, the error will be smaller. Therefore,
taking into account this error estimate, the strains distribution in the ice plate with nearly
constant linear thickness can be approximated by the strains distribution for the plate with
constant thickness.

Figure 3. Non-dimensional ice deflections (a) and strains (b) along the center line of the channel for
U = 1.5 m/s and α = 0.05. The results for the plate with linear thickness are shown by a dashed red
line and for the plate with constant thickness by a black solid line.
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Figure 4. Maximum of |ε(c)(x, 0)− ε(l)(x, 0)| as a function of U (a) and maximum of |ε(c)(x, 1)−
ε(l)(x, 1)| as a function of U (b), where notation (c) means strains calculated for a plate with constant
thickness and (l) is for the plate with linear thickness with α = 0.05.

The first series of calculations for the ice deflections and strains in the ice cover
were performed for the thickness parameters of the ice cover specified in Table 1 and for
U = 1.5 m/s. This speed is less than the minimum phase speed of periodic hydroelastic
waves propagating along the ice cover with a constant thickness. In this case, the presence
of hydroelastic waves that form deflections in the ice cover is not expected, and the ice
deflections are usually formed only in a small area under the load. Dimensionless ice
deflections are shown in Figure 5a. Here and further, on graphs plotted along the x-axis,
the center of the external load is located at x = 0 and the load moves from left to right.
Dimensionless and scaled by the maximum absolute value, the ice deflections across the
channel are shown in Figure 5b. Dimensionless strains are shown in Figure 6a along the
center line of the channel and in Figure 6b at the walls. Note that dimensionless strains for
ice with a linear thickness are scaled by the value h0/hz so that the scale of the dimensionless
results coincides. The results for an ice cover with a constant thickness are shown by black,
and the results for an ice cover with a linearly changing thickness by colored lines (see
Table 1). The ”Red” case is a slight change in thickness, wherein the ice thickness increases
linearly by two times. Qualitatively, the shapes of the ice deflections and strains have not
changed. The amplitudes of the ice deflections and strains along the line of motion of the
load have increased slightly, approximately by two times. At the walls, away from the load,
the strains have not changed, despite the fact that the thickness of the ice at the walls has
increased by 1.3 times. In the “Violet” case, the ice thickness increases by 11 times. In this
case, the ice deflections have a wave profile. This is due to the fact that for a channel with
such a thickness, dispersion relations and phase speeds of hydroelastic waves possibly
propagating along the channel have changed. At the same time, the wave is observed only
behind the load. Waves in front of it are damped due to the relatively high viscosity of
the considered ice, τ = 0.1 s. Increasing the α parameter (increasing the change in the ice
thickness) narrows the area of oscillations across the channel, i.e., the ice oscillates with
larger amplitudes where its thickness becomes smaller and oscillates less in sections with
increased thickness, in the considered case, at the walls. At the same time, the curvature
of the ice deflections (see Figure 5b) and, therefore, the strains in the ice cover increase at
the bend. In the transverse profile of the ice deflections, the contribution of the first mode
ψ1(y) is clearly observed. The corresponding values of the external load magnitude, P0,
required to break the ice are 337 Pa in the black case, 182 Pa in the “Red” case, and 33 Pa in
the “Violet” case.

Table 1. Parameters of the ice thickness used in the calculations.

Case Type α h0 h1 hz

Black Constant thickness 0 0.0035 m 0.0035 m 0.0035 m
Red Linear thickness 1 0.0023 m 0.0047 m 0.0035 m

Violet Linear thickness 10 0.00058 m 0.0064 m 0.0035 m
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Figure 5. Non-dimensional ice deflections along the center line of the channel (a) and normalized
ice deflections across the channel (b) for U = 1.5 m/s. The results for the plate with linear thickness
are shown by colored lines, for the plate with constant thickness—by a black line (for the legend see
Table 1).

The behavior of the ice cover strongly depends on the speed of the load and its
relationship to the phase speeds of periodic hydroelastic waves propagating along the
ice cover. The deflection of the ice cover typically consists of the local ice response to
the moving load and a system of hydroelastic waves propagating from the load. The
number of such waves is equal to the number of periodic waves whose phase speed equals
to the speed of the moving load. Linear changes in ice thickness can greatly affect the
characteristics of these periodic waves. Therefore, the number of waves contributing to
the formation of ice deflection can vary. The first three phase speeds for symmetric waves
propagating along the channel with the lowest frequencies are shown in Figure 7 for the
black and “Violet” cases from Table 1. If a horizontal line denoting the speed of the load,
in this case U = 1.5 m/s, is drawn, it can be seen that the intersection points of the phase
speeds and load speed exist in the “Violet” case, but are absent in the black case. This
explains the qualitative change in the shape of the ice deflections in Figure 5. Despite a
large change in the ice thickness in non-dimensional variables, in dimensional variables,
the angle of inclination of the ice surface is only ≈ 0.0019◦. In reality, such a change in the
ice thickness is difficult to notice visually, but the characteristics of the ice response to the
moving load change significantly (see Figures 5 and 6a). Another important characteristic is
the critical speed of the moving load, which is equal to the minimum of phase speed. When
the load moves at this speed, within the framework of linear theory without damping, the
deflections of the ice will be unbounded. In the framework of theory with viscosity, it is
expected that the deflections and strains of the ice will have the largest amplitude when
the load moves at the critical speed. The linear thickness of the ice cover also changes the
values of critical speeds. The corresponding critical speeds as functions of the parameter
α are shown in Figure 7b. It can be seen that with an increase in the linear change in the
ice thickness, the critical speeds decrease due to the appearance of thin sections in the ice
cover. The critical speeds change faster for small values of α. As α increases, the rate of
change of critical speeds decreases.

Figure 6. Non-dimensional strains along the center line of the channel (a) and at the walls (b) for
U = 1.5 m/s. The results for the plate with linear thickness are shown by colored lines and for the
plate with constant thickness by a black line (for the legend, see Table 1).
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Figure 7. Phase speeds of the first three symmetric hydroelastic waves propagating along the channel
with the lowest frequencies (a). The corresponding critical speeds as functions of the parameter α (b).
Black and violet lines correspond to “Black” and “Violet” cases, see Table 1.

Results similar to those presented in Figures 5 and 6 but for the speed of the load
U = 2.5 m/s are shown in Figures 8 and 9. These results also correspond to the cases
described in Table 1. The speed U = 2.5 m/s is a supercritical speed for the considered
channel. The supercritical speed means that it is greater than the first minimum phase
speed of the periodic hydroelastic waves propagating in the considered channel. However,
for the considered ice with constant thickness, this speed is less than the second minimum
phase speed. In the “Violet” case, where the linear change in thickness is largest, the speed
U = 2.5 m/s is higher than both the first and second minimum phase speeds (see Figure 7).
Non-dimensional ice deflections along the central line of the channel are shown in Figure 8a.
It is known that when a load moves in the channel, it can generate hydroelastic waves, and
long waves propagate behind the load, while short waves propagate ahead [26]. In the
considered case, only long waves behind the load are observed, see Figure 8a. The observed
ice deflections correspond to a hydroelastic wave propagating with a phase speed c1, i.e.,
the first hydroelastic wave with the lowest frequency. The phase speeds and wavelengths
of these waves change very slightly for the considered cases of the linear ice thickness,
see Figure 7 for c1 when k < 3 m−1. However, in the last figure, it can be seen that for
the same speed, the wave number k is slightly higher in the “Violet” case. Therefore,
the wavelength of the wave generated by the load in the “Violet” case should be slightly
smaller than that of the wave in the ice cover with constant thickness. Accordingly, this
change in wavelength is observed in Figure 8a for x < −2. It should be noted that it is
visually impossible to observe the appearance of short waves ahead of the load. It is also
hard to note the appearance of the second long hydroelastic wave behind the load in the
“Violet” case, except for small oscillations of the ice deflections near the load at x = −1. It is
assumed that the absence of short waves ahead and the second long wave behind the load
in the distance (at x < −2) corresponding to the second hydroelastic wave are caused by
the large damping of oscillations for the considered characteristics of the ice cover. Due to
the reduction of ice thickness at the center of the channel, the maximum strains increase
directly under the load. Note that the reduction of ice thickness in the considered linear
symmetric case does not significantly affect the amplitudes of hydroelastic waves at a
distance from the load.

Normalized ice deflections in the cross-section of the channel, scaled by their maximum
value and plotted through the center of the moving load, y = 0, are shown in Figure 8b.
A similar narrowing of the ice deflections closer to the center line, where the ice becomes
thinner, is noted as in the previous case for U = 1.5 m/s. The obtained results show that
the main contribution to the formation of the ice deflections across the channel is made by
the normal mode ψn(y), corresponding to the hydroelastic wave, whose minimal phase
speed, among other minimum phase speeds, is closest to the speed of the load. In the case
of U = 1.5 m/s, this normal mode is ψ1(y), and in the case of U = 2.5 m/s, this is ψ2(y).
This conclusion holds for both the ice cover with constant thickness and the ice cover with
linearly varying thickness.

The maximum dimensionless strains are shown along the center line of the channel
and at the walls in Figure 9a,b. The strains along the center line of the channel increase with
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increasing parameter α, which is in good agreement with the previous case for U = 1.5 m/s.
Considering the values of strains in both cases of the speed of the load, the strains will
be maximum for the “Violet” case for U = 1.5 m/s. Note that for the speed U = 1.5 m/s,
in this case, hydroelastic waves appear and propagate in the ice cover due to large linear
changes in the ice thickness. The relative reduction of these strains in the “Violet” case
for U = 2.5 m/s, in which hydroelastic waves are also generated by the load, shows the
importance of the first mode in the considered problems. The opposite situation is observed
for the strains at the walls. The maximum strains here are observed for the ice cover with
constant thickness. The strains at the walls for the speed U = 2.5 m/s are greater than
those for U = 1.5 m/s. However, strains along the center line of the ice cover with linearly
varying ice thickness are one order of magnitude greater than the strains at the walls for
both cases of the speed of the load.

Figure 8. Non-dimensional ice deflections along the center line of the channel (a) and normalized ice
deflections across the channel (b) for U = 2.5 m/s. The results for the plate with linear thickness are
shown by colored lines and for the plate with constant thickness by a black line (for the legend, see
Table 1).

Figure 9. Non-dimensional strains along the center line of the channel (a) and at the walls (b) for
U = 2.5 m/s. The results for the plate with linear thickness are shown by colored lines and for the
plate with constant thickness by a black line (for the legend, see Table 1).

The maximum positive and minimum negative dimensionless ice deflections along
the central line of the channel are shown in Figure 10a. Results for U = 1.5 m/s are shown
by blue lines. Results for U = 2.5 m/s are shown by red lines. The results for the subcritical
speed, U = 1.5 m/s, show a monotonic increase in the absolute values of deflections with
an increase in the linear change in ice thickness. In the case of supercritical speed, the
amplitudes of deflections increase much more slowly. The maximum absolute deflections
are always observed under the load and, in the considered cases, are always negative.
Note that for the speed U = 1.5 m/s, there is a value of α at which U(α) = min(c1),
where α∗ ≈ 5.5, see Figure 7b. Despite the appearance of hydroelastic waves in the case
of U = 1.5 m/s at α > 5.5, the amplitudes of deflections continue to increase faster than
in the case of U = 2.5 m/s. The minimum magnitudes of the external load P0 that lead to
the destruction of the ice cover as a function of the parameter α are shown in Figure 10b.
The magnitudes decrease with an increase in the parameter α. The behavior of magnitudes
is the same for both considered cases, U = 1.5 m/s and U = 2.5 m/s. Magnitudes are
smaller for the first, subcritical case. Note that the values of P0 are inversely proportional
to the dimensionless strains ε. With an increase in the parameter α, the magnitudes visually
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begin to approach an asymptotic value. This is due to the fact that the parameter α
is inversely proportional to the value of the ice thickness at the center of the channel h0,
h0 = 2h∗/(2+ α). Therefore, the larger the value of the parameter α, the lower the thickness
of the ice in the center and, consequently, the bending rigidity of the ice decreases. This
confirms the fact that strains and stresses in the ice cover change more significantly for
the initial segment of α. The maximum dimensionless strains are shown as functions of
the parameter α in Figure 11. The maximum strains along the central line of the channel
monotonically increase in both cases. In the case of U = 1.5 m/s, the growth is faster.
At the walls, the strains are changed very slowly with an increase in the parameter α.
Overall, since the external load moves along the central line, where the ice becomes thinner,
and away from the walls, where the ice becomes thicker, the strains at the walls have an
insignificant role. For all considered values of the parameter α, the strains at the walls in
the supercritical case of U = 2.5 m/s are greater than in the subcritical case of U = 1.5 m/s.

Figure 10. Maximum positive and minimum negative ice deflections along the center line of the
channel as functions of α (a). Minimum magnitude P0 possibly leading to ice breaking as function
of α (b). Results for U = 1.5 m/s are shown by blue lines. Results for U = 2.5 m/s are shown by
red lines.

Figure 11. Maximum non-dimensional strains along the center line of the channel as functions of α

(a). Maximum non-dimensional strains at the walls of the channel as functions of α (b). Results for
U = 1.5 m/s are shown by blue lines. Results for U = 2.5 m/s are shown by red lines.

In the linear theory for the speed of the load U = min(c1), it is predicted that the
ice deflections and strains in the ice cover will be unbounded. In the case of an ice cover
with viscous effects, it is expected that the ice deflections and strains will be maximum
for this speed of the load. These conclusions were obtained for an ice cover of constant
thickness. As mentioned earlier, α ≈ 5.5 when U = min(c1). Therefore, maximum ice
deflections and strains shown in Figures 10 and 11 were expected to be observed at α = α∗
if the critical velocity theory works for an ice cover of variable thickness. However, all the
presented results are monotonic for 0 < α < 10. This may be due to the high viscosity
of the considered characteristics of the ice cover. Results for τ = 0.1 s and τ = 0.01 s are
shown in Figures 12 and 13 for U = 1.5 m/s. Results for τ = 0.1 s are shown by solid lines.
Results for τ = 0.01 s are shown by dot-dashed lines. Indeed, maximum ice deflections,
strains, and minimum amplitudes of external load required to break the ice are observed
in the vicinity of α ≈ 5.5. Visually, ice deflections begin to differ at α > 2, and strains and
magnitudes differ for all α. Further increase in α, despite the fact that the ice at the line
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of load motion becomes thinner, does not lead to such ice deflections and strains whose
amplitudes are higher than in the critical case of α = α∗.

Figure 12. Maximum positive and minimum negative ice deflections along the center line of the
channel as functions of α (a). Minimum magnitude P0 possibly leading to ice breaking as function of
α (b). Results for τ = 0.1 s are shown by solid lines. Results for τ = 0.01 s are shown by dot-dashed
lines. Results presented here are for U = 1.5 m/s.

Figure 13. Maximum non-dimensional strains along the center line of the channel as functions of
α (a). Maximum non-dimensional strains at the walls of the channel as functions of α (b). Results
for τ = 0.1 s are shown by solid lines. Results for τ = 0.01 s are shown by dot-dashed lines. Results
presented here are for U = 1.5 m/s.

5. Conclusions

The problem of an external load moving with constant speed along the central line
of a frozen channel was investigated. The ice thickness was varying symmetrically across
the channel by a linear law, being smallest at the center of the channel and highest at the
channel walls. The external load was modeled by a smooth, localized pressure spot. The
problem was solved within the linear theory of hydroelasticity. The problem parameters
were chosen in such a way that the dimensions of the channel and ice characteristics
correspond to the experimental ice tank described in [33]. The problem was solved by the
coordinate system moving together with the load. The ice deflections and strains, which
were assumed independent of time in this coordinate system, were investigated.

The main parameter whose influence on the ice response was investigated in the
present study was the parameter α describing the slope of the profile of the ice thickness in
dimensionless variables. Increasing this parameter gives a decrease in the ice thickness at
the center of the channel and an increase in the thickness at the walls. When α = 0, the ice
thickness is constant. The normal modes for a linear thickness plate presented here, cannot
be constructed at α = 0. In this case, the modes that were used for the constant thickness
plate in [26] must be applied. The results obtained in the present paper have been verified
by comparing them at small alpha with the results received by modes from [26].

It is known that the response of the ice cover to a moving load is formed as a sum of
local deflections under the load and a system of hydroelastic waves propagating from the
load [28]. A change in the parameter α changes the characteristics of these hydroelastic
waves. New hydroelastic waves propagating from the load may appear as the linear change
in ice thickness increases. For the considered conditions, the hydroelastic waves in the
channel become shorter when α increases. The ratio of the speed of the load to the critical
speeds (minimum phase speeds of periodic hydroelastic waves) is of great importance.
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Changing the ice thickness can change this ratio, as increasing the parameter α reduces
the minimum phase speeds. Therefore, if the load was moving at a subcritical speed over
an ice cover of constant thickness, the current speed of the load may become critical or
even supercritical when it enters an area of varying ice thickness. Then, hydroelastic waves
propagating from the load will appear in the ice cover, and the ice deflections and strains
in the ice will change significantly.

The load speeds 1.5 m/s and 2.5 m/s have been used in calculations. For the ice
cover with constant thickness hice = 3.5 mm, these speeds are subcritical and supercritical,
respectively. The ice deflections and strains in the ice cover were investigated for 0 < α ≤ 10
and mean thickness hz = 3.5 mm. It has been shown that for both speeds, the maximum
deformation is achieved along the center line of the channel, where the ice thickness is
minimal. Deformation on the walls is higher in the subcritical case, despite the increase in
ice thickness on the walls, and lower in the supercritical case. However, in both cases, the
strains along the center line are still an order of magnitude greater than they are near the
walls. The maximum strains among all considered cases were observed in the subcritical
case for large α. In the supercritical case, increasing α reduces the length of hydroelastic
waves propagating from the load but has almost no effect on the amplitude of the waves
far from the load.

Investigation of the deflection profiles across the channel showed the expected shrink-
ing of oscillations towards the center of the channel, where the ice becomes thinner. Despite
the increased curvature of the deflections, maximum strains are always expected under the
load, in the region of the smallest ice thickness. The minimum external load magnitudes
required for the ice to break are inversely proportional to the parameter α. For α = 10, the
magnitudes can decrease by 10 times.

The effect of damping within the Kelvin–Voight model in combination with linearly
varying ice thickness is investigated. It is expected that as the α parameter increases, the
minimum phase speeds will decrease and, at some instant, reach the speed of the load.
In this case, the linear theory predicts that the ice deflections and strains in the ice cover
will be maximal. For the considered channel, the value of the retardation time parameter
τ = 0.1 s turned out to be very large. There is an increase of parameter α, up to the moment
when the minimum of the first phase velocity min(c1) becomes equal to U = 1.5 m/s,
which further leads only to monotonic increase of the ice deflections and strains in the ice
cover. For τ = 0.01 s, the maximum deflections and strains in the ice cover are observed at
α ≈ 5.5, and further increase in α leads to a decrease in the deflections and strains.

The possibility of approximating a plate with linear varying thickness by a plate with
constant thickness in problems with moving loads was investigated. For very small values
of parameters of linearity, α = 0.05, the deflections and strains are visually equal to those
for the constant mean thickness case. The error in dimensional strains depends on the
magnitude of the external load and can be no more than three percent. For larger values
of the external load magnitude, the error will be larger but the linear theory is no longer
applicable.
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