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Abstract: Codends are the posterior components of trawl nets that collect the catch and play a
crucial role in the selectivity process. Due to the accumulation of catch and the variety of catch
types, the quality of catch and trawl selectivity can be negatively impacted. Therefore, this study
aims to investigate the effects of various catch configurations on the hydrodynamic characteristics,
geometrical profile, and fluttering motions of the codend in a flume tank. A codend structure was
designed and tested using various catch configurations, including grooved-type configurations
(canvas, green canvas, basketballs) and spherical configurations (table tennis balls filled with water,
balloons filled with water, and balls made of twine) in the flume tank. The sea trial data were
compared with the flume tank data. The results indicate that there were no significant differences in
the codend profiles between the different catch configurations. The drag of the codend with a grooved-
type configuration was 13.63% greater than that obtained using a spherical configuration as the catch.
The wavelet coefficient obtained from the codend drag revealed that the oscillations of the codend
with a grooved-type catch configuration began at a periodicity of 0.07 s and were more intense than
that of the codend with the spherical catch configuration. Moreover, these amplitudes increased as
the codend flow velocity increased. The wavelet analysis results showed that the dominant frequency
of the periodic high-energy coherent structures for the codend drag and codend displacements was
detected at a low-frequency. In terms of displacement oscillation characteristics, the table tennis
ball filled with water was an approximate substitute for real catch during the sea trial because the
difference in wavelet coefficients for the codend displacements in amplitude and the period between
the model codend with the table tennis ball filled with water and the full-scale codend was 91%
and 89%, respectively. The findings of this study confirm the feasibility of replacing real catch with
simulated catch configurations with similar shapes in model testing. They can provide basic scientific
data for improving the hydrodynamic characteristics and selectivity of the codend structure.

Keywords: codend; simulated catch; resistance characteristics; oscillation characteristics

1. Introduction

The codend structure, located at the rear of the trawl net, is a critical component of
the trawl net that is used to collect the catch during the trawling process, with a drag
that accounts for 10% of the total drag of the trawl net [1,2]. Thus, understanding its
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hydrodynamic behavior and fluttering motions is crucial for determining trawl stability,
improving catch performance, and comprehending the juvenile fish escape process in
codends. The underwater shape, selectivity, and hydrodynamic characteristics of the
codend are highly influenced by catch configurations inside the codend and dependent
on the structure’s flexible characteristics, mesh size, twine diameter, and fishing operation
parameters [3–5].

Indeed, depending on the catch type, catch accumulations, and catch shape, the
codend structure bulges and oscillates, resulting in a variation in the codend’s front mesh
opening, which affects the drag, shape, and stability of the codend [6]. Consequently,
the scientific community has been increasingly focused on addressing one of the primary
challenges, which is the development and innovation of codend design based on simulated
catch configurations that accurately emulate the shape of actual catches within a full-scale
codend. This development aims to enhance the selective properties of the codend and
promote greater sustainability within the fisheries sector [7,8].

Several studies have reported on experimental studies on the analysis of codend
behavior over the last few decades. O’Neill et al. [9] discovered that as catch accumulates,
the front mesh of the codend closes and the codend shape bulges, increasing codend
motions and codend drag. Therefore, when various types of fish enter in the codend, they
are gradually pressed and blocked at the end-part of the codend, causing a change in
codend volume, which then affects the trawl’s drag and water filtering performance [10].
Priour et al. [11] compared the shape of the T90 mesh and traditional T0 mesh on the codend
and discovered that the T90 codend is more conducive to juvenile fish escape, while the T90
codend with catch has a larger geometric configuration bulge and greater drag than the T0
codend [12]. Indeed, the presence of catch inside the trawl net will reduce the mesh opening
of the codend, which will limit the flow passage through the codend and lead to the creation
of vortex shedding behind the codend and turbulent flow due to the codend wake. Theses
turbulent flows will create a pressure gradient on the codend surface that will create intense
codend motions and may affect selectivity via the fish response, such as swimming speed
and maneuverability [13–15]. Thus, keeping the trawl system in a relatively stable state is
required to reduce codend oscillation, which causes skin damage to the fish and a decline
in quality [16,17]. As a result of flume tank experiments, some progress has been made in
the analysis of the complex interaction between a flexible fluttering trawl net and turbulent
flow. According to Priour and Prada [18], the codend oscillations and configurations are
primarily determined by the shape of catch and mesh, and as the catch obstructs the water
flow passage directly through the mesh, codend oscillations are produced [19]. Druault
and Germain [20] investigated the flow in the unsteady wake formed behind the fluttering
codend structure and discovered that the codend oscillations can be caused by the local
hydrodynamic effects that occur in the wake zone as well as the motion of the fluttering
codend. Thierry et al. [21,22] used an electromagnetic current meter to investigate the
distribution of the flow field inside and around the bottom trawl net model, revealing that
changes in the surrounding unsteady flow produced oscillations in different parts of the
trawl net, affecting catch quality and the overall trawl net performance.

Furthermore, various catch configurations have recently been used to simulate catches
inside the codend rather than actual catches such as fish to avoid adverse effects on precision
instruments and water quality. O’Neill and O’Donoghue [16] used small polystyrene
nettings of sufficient size as the simulated catch to measure the geometric shape of the
trawl codend and analyze its shape and pressure distribution. In the codend selectivity
experiments, O’Neill et al. [23] used water-filled balloons instead of real catch, indicating
that the codend oscillations were rather obvious. Bouhoubeiny et al. [13] used Particle
Image Velocimetry (PIV) technology to measure the wake effect and flow field around
the codend with a hemispherical cap and water-filled balloon instead of the actual catch,
and discovered that the oscillating motion of the codend model was very significant.
Madsen et al. [24] used the small plastic bags filled with water in the flume tank to analyze
the behavior of different codends, revealing that the drag of two-panel T90 codends was
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lower than that of other codends, while indicating that the T0 codend oscillation effects
were greater than those of other codends. Thierry et al. [2] used an elliptical-shaped piece
of polyvinyl chloride canvas attached to the posterior of the codend and positioned slightly
over the top of the codend, similar to Kim [14], to analyze the motions of the shaking
codend in the flume tank. Thierry et al. [2] and Liu et al. [7] used the table tennis balls
filled with, on average, 0.045 kg of water each to simulate the fish catch inside the gear and
demonstrated that the codend with catch created more instabilities of the codend motion,
which can influence both the catch quality and the whole trawl performance compared to
the codend without catch.

However, despite the existing work on the subject and the available data, there is no
relevant conclusion from the experimental studies evaluating the effect of geometric catch
configuration on the hydrodynamic characteristics of codend linked to its fluttering motion
and comparing them to real fish in the sea trial in order to solve the problem of selectivity
and better understand fish behavior. Furthermore, in previous studies, the different types
of catches in the study of codend oscillation were not taken into account in order to reliably
improve the drag and understand the catch process and fish selectivity.

This study aims to evaluate the effects of the geometric catch configuration on codend
oscillation motions, drag, and the geometrical shape of the codend. Thus, a model codend
was designed and assembled based on the full-scale codend used in midwater trawl fish-
eries and was tested in the flume tank using six kinds of simulated catch configurations,
such as grooved and spherical types. The measurements were conducted under five flow
velocities, and the measured data were compared with those obtained using the sea trials
in order to discuss the relevant information that could be used to improve codend selectiv-
ity, reduce energy consumption, and understand fish behavior. The continuous wavelet
transform was used to analyze the time-frequency characteristics of the temporal codend
drag and fluttering codend motions. The findings of this study will assist researchers in
selecting the most appropriate simulated catch types and will provide basic scientific data
for optimizing the codend structure.

2. Materials and Methods
2.1. Evaluation of the Full-Scale Prototype and Data Collection

The Antarctic krill trawl net selected and designed for this study was a four-panel
midwater trawl net commonly used by Chinese fishing vessel “Long Teng” of China
National Fisheries Corp. The main specifications and characteristic parameters of the vessel
are listed in Table 1. The circumference of the trawl net at the mouth was 300 m, the trawl
length was 132.8 m, the headline length was 55.38 m, and the fishing line length was 54.88 m.
The trawl was made of 6.0 mm and 4.0 mm polyethylene (PE) twine diameters, with mesh
sizes ranging from 400 mm in the wing (total length of 20 m) and the 1st trawl body section
to 200 mm in 2nd to 7th trawl body sections, and 144 mm in the remaining trawl body
(total length of 88.8 m) sections and the codend (30 m). The liner was made of polyamide
(PA) with a mesh size of 16 mm and twine diameter of 2.0 mm. The vertical opening
was maintained by floats distributed on the headline and providing a total buoyancy of
21.462 kN as well as 300 kg chains on the fishing line and two 300 kg heavy bobs attached
to each wing-end (Figure 1).

Table 1. Main dimension of Antarctic krill trawler “Long Teng”.

Total Length
(m)

Main Engine
Power (kW)

Total
Tonnage (t)

Max
Speed (kn)

Moulded
Depth (m)

Moudeld
Breadth (m)

120.7 5296 7765 13 12 19
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Full-scale observation of the Antarctic krill trawl in action was carried out in the South
Orkney Islands, the Antarctic Peninsula, and the South Shetland Islands (60◦ S; 45◦ W
and 64◦ S; 59◦ W, respectively) during the fishing operation conducted between February
and March of 2020. The towing speeds were recorded based on the data displayed by the
vessel’s GPS radar and ranged from 2 to 3 knots. The data related to the codend depths
(the distance from the sea surface) were obtained using DR (Dr-1050 bathymetric meter,
Canada) hydroacoustic trawl monitoring sensors attached to the fishing gear on the upper
middle point of the codend. According to the manufacturer’s specifications, this instrument
had a measuring range of 0–750 m and a specified accuracy of ±0.05%. The total operating
time was longer and varied between 254 and 7254 s according to the Antarctic krill school
size, which was convenient for data recording and analysis accuracy setting. The data were
evaluated every 6 s to obtain information about the entire process, such as towing speed
and codend depth.
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Figure 1. The schematic diagram of the full-scale codend and the model codend structure.

2.2. Codend Design

The model trawl codends were selected and designed in model scale based on modified
Tauti’s law, with particular attention to the Antarctic fisheries. This codend model was
designed based on a 1:20 scale (λ = 10) in the length scale of the codend model, a 1:3.6 small-
scale (λ’ = 3.6) in mesh size and twine diameter, and a 1:10.54 time ratio (τ = 10.54) using
Tauti’s law [25–27]. The codend was designed by assembling four pieces of netting using
a mesh size of 40 mm and a twine diameter of 1.11 mm using polyethylene (PE) twine
materials with diamond-shaped meshes. The codend’s overall length was 1.5 m. Each piece
of netting was joined by a codend with a circumference of 72 meshes and an extension with
a circumference of 48 meshes (Table 2 and Figure 1).

Table 2. Specifications and parameters of experiment codend.

Twine
Materials

Mesh Size
(mm)

Knot
Direction

Codend
Length (mm) Cutting Ratio

Extension
codend

PE
PE

40
40

T0
T0

480
1500

4:1(/NBNBN/3)
AN
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2.3. Design of the Simulated Catch Configurations

The physical fishing net can accommodate catch with a diameter of approximately
2.4 m. For the experiment, simulated catch with a diameter of D = 24 cm was used to
maintain consistency in size. The size of the catch determines the geometric configuration
of the codend, which can be divided into different shapes such as grooves, semicircles, and
spheres. Based on the simulated catch configurations, this study divided them into two
categories: grooved simulated catch (canvas, green canvas, and basketball) and spherical
simulated catch (table tennis ball filled with water, balloons filled with water, and balls
made of twine). The simulated catches had different water filtration properties. The weights
of the two types of simulated catch were quite different in air, but only slightly different
in water. Table 3 shows the specific weights. While the upstream surface of the grooved
simulated catch was concave and that of the spherical simulated catch was convex, both
types ensured that the simulated catch in water had the same upstream surface area.

Table 3. Simulated catch weights in air and water.

The Type of The
Simulated Catch

Grooved Type Simulated Catch Spheroidal Simulated Catch

Canvas Green
Canvas Basketball Table Tennis

Ball
A Ball Made

of Twine Balloon

Material (cotton content) Cotton
(85–95%)

Cotton
(81–90%) polyurethane Carbon nitride Polyethylene Latex

Thickness (mm) 0.4 0.9 1.5
Weight in air (N) 0.25 0.51 1.04 10.6 6.03 14.5

Weight in water(N) 0.16 0.30 0.57 2.7 0.92 2.1

2.4. Experimental Setup and Procedures

The physical experiments were carried out in the flume tank at the National Center
for Ocean Fishing Engineering Technology Research of the Shanghai Ocean University
(NERCOF). The tank’s test section was 15.0 m in length, 3.5 m wide, and 2.3 m deep,
holding 530 tons of freshwater. The flume tank was a horizontal and circular water channel,
and the flow was driven by four contra-rotating impellers using constant-speed hydraulic
delivery pumps with a rated power of 132 kW, a maximum water depth of 2.0 m, and a flow
velocity range of 0–1.5 m/s. A side-viewing window on one side of the flume tank allowed
users to observe and record a video of the codend’s behavior during testing. The codend
behavior was recorded using a camera with a frequency of 59 Hz per frame image and a
resolution of 1920 × 1080 pixels2. During the experiments, the water temperature in the
flume tank was kept constant at 17.6–18.4 ◦C. Figure 2 depicts the specific settings of each
test’s instruments and equipment. To accurately measure hydrodynamic forces, the codend
model was attached to a circular rigid frame with a diameter of 36 cm and submerged in
water to a depth of 10 cm. A current meter was installed approximately 2.0 m upstream
of the codend model to detect the flow velocity. The hydrodynamic force signals were
measured using a six-component load cell with a capacity of 5 kgf each and a specified
accuracy of 2%. As measured using the load cell, these hydrodynamic force signals were
amplified using a dynamic strain amplifier (DPM-6H). Afterwards, these signals were sent
to an A/D converter and thereafter to a computer. During the experiment, we recorded the
mean of 240 data points obtained at a frequency of 4 Hz over a period of 60 s.

The drag force of the rigid frame was first measured before conducting experimental
measurements on different codends. Firstly, the drag force of the rigid frame was measured
at five different flow velocities. Secondly, the codend opening was wrapped around the
rigid frame, and the drag force of the codend and frame was measured in the empty
stage using the same method. Finally, the combined drag force of the codend, frame,
and simulated catch was measured after adding six different catch configurations. The
measurements were taken using flow velocities of 0.5, 0.6, 0.7, 0.8, and 0.9 m/s.
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2.5. Data Extraction and Methods
2.5.1. Data Processing of the Shape of Codend

During the experiments, a series of videos describing the codend fluttering motions
were recorded from the front view of the flume tank observation port using a video camera
that was fixed in position and zoomed in and out (Figure 3). Video cameras were used
to capture the trawl actions and net shape geometry. From the recorded video footage,
a series of images separated by 0.25 s were selected and imported into graph digitizing
software to extract the coordinates of the model net’s characteristic points based on a
plane-coordinate system.

Following that, the coordinates representing the codend behaviors were interpolated,
allowing the temporal motions of the different codends to be determined. Initially, a series
of 240 images were acquired from the recorded video footage at a frame rate of 4 Hz. These
images were used to extract the coordinates of the distinctive points of the codend model
with different catch configurations based on a plane-coordinate system. A reference bar
was used to calibrate the measurements and reduce the impact of camera lens stresses,
water refraction, and parallax on the extraction of these coordinates.
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2.5.2. Pearson Correlation Test

In this study, we utilized the Pearson correlation test to investigate the relationship
between the oscillation period and amplitude of the actual codend and those of the model
codend containing varied simulated catch. The Pearson product-moment correlation
coefficient can be calculated using Equation (1):

ρXY =
Cov(X, Y)√
D(X)

√
D(Y)

=
E{[X− E(X)][Y− E(Y)]}√

D(X)
√

D(Y)
(1)

where E is the mean, D is the variance, and are the standard deviation of variables X and Y,
and E{[X-E(X)] [Y − E(Y)]} is the covariance of variables X and Y, denoted by Cov(X, Y),
i.e., Cov(X, Y) = E{[X − E(X)] [Y − E(Y)]}.

2.5.3. Wavelet Analysis

The wavelet transform is an effective tool for analyzing non-periodic signals. It is
critical in the context of codend motion analysis to detect coherent structures emerging
from fluttering motions and to associate unsteady turbulent flow. In this study, the wavelet
analysis method was used to determine the time-periodicity of the codend oscillation
and codend drag. The wavelet analysis was carried out using MathWorks’ Matlab 2019B
software package and its wavelet toolbox. The following is the analysis procedure:

The wavelet function is the foundation of wavelet analysis. It refers to a class of
oscillating functions that can quickly decay to zero, such as the wavelet function ψ(t)∈L2(R),
and satisfy: ∫ +∞

−∞
ψ(t)dt = 0 (2)

where ψ(t) is the basic wavelet function, which can be expanded and translated on the time
axis to form a family of function systems:

ψa,b(t) = |a|−1/2ψ(
t− b

a
) in a, b ∈ R, a 6= 0 (3)

where a and b are the scale and the position parameter, respectively. In Morlet mother
wavelet, a is roughly equal to 1/f or period in numerical value.

In the sub-wavelet given by Equation (3), for a given energy-limited signal f(t) ∈ L2(R),
its wavelet transform is:

W f (a, b) = |a|−1/2
∫

R
(t)ψ(

t− b
a

)dt (4)

where Wf (a,b) is the wavelet transform coefficient of a signal or square integrable function
f(t) at the scale a and the location b, and ψ( x−b

a ) is the complex conjugate function of ψ( x−b
a ).

The Morlet wavelet was chosen as the complex wavelet in this study, and the phase
difference between its real and imaginary parts is π/2. The modulus represents the number
of a certain scale component, and the phase can be used to study the singularity and
real-time periodicity of the signal.

3. Results
3.1. Morphological Changes of Codend

As illustrated in Figure 4, the shape of the codend structure tends to tighten as
flow velocity increases. The results showed that the outlines profiles of codends with
different simulated catch were essentially similar, and the horizontal length of the codend
structure increased as flow velocity increased. Under the same flow velocity conditions,
the horizontal length increase in the codend containing the canvas is 0.013% greater than
the original codend length, while the horizontal length increase in the codend containing
the ball made of twine is 0.009% greater than the original codend length. There are some
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differences between the codend filled with grooves and the spherical simulated catch as
flow velocity increases. The end bulge of the codend with grooved catch configuration was
approximately 23.54 cm, and the end bulge of the codend with spherical catch configuration
was approximately 25.13 cm.
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3.2. Morlet Wavelet Transform of Codend Resistance of Different Types of Simulated Catch

In this study, a flow velocity of 0.7 m/s (corresponding to the actual towing speed of
2.4 knots at sea) was chosen as the basic flow velocity of the codend model. According to
Figure 5 the drag force of the codend with a grooved catch configuration was about 22.17 N
on average, while that of a spherical catch configuration was about 19.20 N. Moreover, the
drag force of the codend filled with green canvas was the greatest (22.7 N), while the drag
force of codend with balloons filled with water was the lowest (17.9 N). Wavelet coefficients
of codend drag with the grooved catch configuration mainly oscillated intensively between
30 and 60 s and were observed at the frequency of 1.3–2.2 Hz for canvas and green canvas,
except for the codend with the basketball, in which the high wavelet spectrum coefficient
were observed at a high frequency of 2.9–4 Hz at t = 38–42 s. For the case of codends with
a spherical catch configuration, the drag oscillation was slower, and the larger wavelet
spectrum was obtained at a frequency varying from 1.84 to 2.87 Hz at t = 10–40 s, 2.14 to
2.87 Hz at t = 35–50 s, and 1.04 to 2.87 Hz at t = 0–30 s for the oscillation of a table tennis
ball filled with water, balloons filled with water, and balls made of twine, respectively. It
was observed that the codend containing the basketball oscillated the most violently, while
the codend containing the table tennis ball filled with water oscillated evenly throughout
the process. The wavelet coefficient of the codend drag with grooved catch configuration
began to oscillate at the frequency of 0.87 Hz first, then oscillated more intensively than the
codend containing the spherical catch configuration.
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3.3. The Oscillation Characteristic of the Codend Drag Force Based on Main Period Morlet
Wavelet Transform

Figure 6 depicts the oscillation of the main periodicity wavelet coefficients of codend
drag with various catch configurations plotted according to the time scale of the codend
drag oscillation. On average, the oscillation periodicity of wavelet coefficients of the codend
drag using grooved catch configuration was about 2.49 s, while that of the spherical catch
configuration was about 2.83 s, indicating that the oscillation frequency of the codend
with grooved catch configuration was faster. It was observed that the codend with green
canvas has the fastest oscillation frequency (0.51 Hz) compared to other catch types. The
average amplitude of the wavelet coefficient of the codend drag with grooved catch config-
uration was approximately 0.98, while the average amplitude of the wavelet coefficient of
the codend drag with spherical catch configuration was approximately 0.4. The average
amplitude of the wavelet coefficient of the codend drag filled with the grooved catch con-
figuration was approximately 2.4 times greater than that of the codend drag with spherical
catch configuration, indicating that the codend filled with the grooved catch configuration
is more oscillatory. In addition, the largest amplitude of the wavelet coefficient (1.3) was
observed on the codend drag-filled basketball (Table 4).
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Table 4. Oscillation period amplitude of wavelet coefficient of codend drag with simulating catch.

The Type of The
Simulated Catch

Grooved Type Simulated Catch Spheroidal Simulated Catch

Canvas Basketball Green
Canvas

Table Tennis
Ball Balloon A Ball Made of

Twine

Frequency (Hz) 0.48 0.29 0.51 0.37 0.29 0.42
Amplitude 0.81 1.3 0.85 0.51 0.37 0.34

3.4. Morlet Wavelet Transform Characteristics of Spatial Displacement of Codend with Different
Types of Simulated Catch

Figure 7 depicts the Morlet wavelet transform performed on the transverse (x-direction)
and longitudinal (z-direction) displacements of the codend with various simulated catch
configurations. According to the findings, the average transverse length of the codend with
grooved catch configuration was approximately 217.60 cm, which was greater than that
of the codend with spherical catch configuration (~213.67 cm). The amplitude of trans-
verse displacement for the codend with all the simulated catch configurations varied little,
ranging from −2 to 2 cm. The wavelet spectrum coefficient of all the codend oscillations
in the transverse direction varied slightly. During time intervals of 0–15 s and 45–60 s,
dominant periodic positive and negative peaks were observed at frequencies ranging from
2.06 to 4 Hz, indicating the presence of strong periodic oscillations. This indicated that
the simulated catch configurations had a low effect on the transverse displacement of
the codend.
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Figure 8 displays the time evolution of the codend oscillations in the z-direction.
The codend motions in the longitudinal direction were influenced by the simulated catch
configuration and characterized by quasi-periodic oscillations. The oscillation amplitude
in the z-direction of the codend with a grooved catch configuration was greater than that
of the codend with a spherical catch configuration. Additionally, the amplitude of the
longitudinal oscillations of the codend with green canvas was much higher compared to
those of the codend with other catch configurations.
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The wavelet coefficient of the longitudinal displacement of the codend with a grooved
catch configuration began to oscillate at approximately 0.1 s, and its oscillations were
relatively intense. However, the wavelet spectrum energy of the codends with spherical
catch configuration in the z-direction was lower compared to those obtained on the codend
with grooved catch configuration. A higher wavelet spectrum coefficient of the codend
oscillations in the z-direction was obtained at a frequency of 1.4–2 Hz for the catch config-
urations. Furthermore, it was observed that the codend containing the table tennis ball
filled with water oscillated more violently, while the codend containing the filled-twine
ball oscillated more smoothly.

3.5. The Oscillation Characteristic of the Codend Spatial Displacement Based on Main Period
Morlet Wavelet Transform

Figure 9 depicts the oscillation of the main periodicity wavelet coefficients for codend
displacement in both directions for all the simulated catch configurations. The amplitudes
of the wavelet coefficients for codend displacement in the x-direction were relatively small
and basically remained in the range of −1–1. Among them, the codend with the green
canvas had the greatest amplitude (1.29), while the codend with the table tennis ball had
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the least amplitude (0.35). The average amplitude of the wavelet coefficients of the codend
with a grooved catch configuration was about 0.91, which is about 2.86 times that of the
codends with a spherical catch (~0.32). The average amplitudes of the wavelet coefficients
for the codend with grooved catch configuration was ~8.79 in the z-direction, which was
7.57 times greater than that of the codends with spherical catch configuration (Table 5).
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Figure 9. Oscillations of principal period wavelet coefficients of simulated catch displacement of
codend (upper: x-direction; lower: z-direction).

Table 5. Oscillation period amplitude of wavelet coefficient of simulated catch codend displacement.

The Type of The
Simulated Catch

Grooved Type Simulated Catch Spheroidal Simulated Catch

Canvas Basketball Green Canvas Table Tennis
Ball Balloon A Ball Made

of Twine

X
Frequency (Hz) 0.74 0.61 0.53 0.9 1.25 0.67

Amplitude 0.35 1.08 1.29 0.26 0.32 0.37

Z
Frequency (Hz) 0.52 0.54 0.61 0.5 0.63 0.61

Amplitude 8.91 4.54 13.72 1.94 0.78 0.69

3.6. Longitudinal Displacement of Codend in Sea Trials

During fishing operations, the codend depth decreased as flow velocity increased
(Figure 10). Indeed, at the lower flow velocity (0.5 m/s), the codend depth was the greatest
(147.59 m), while at the higher flow velocity (0.9 m/s), it was the smallest (38.58 m). At
0.5 < V ≤ 0.7 m/s, the depth of the codend changed greatly; this depth decreased by 35.5%
each time the flow velocity increased by 0.1 m/s.



J. Mar. Sci. Eng. 2023, 11, 1026 13 of 20

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW  13  of  21 
 

 

3.6. Longitudinal Displacement of Codend in Sea Trials 

During fishing operations,  the codend depth decreased as flow velocity  increased 

(Figure 10). Indeed, at the lower flow velocity (0.5 m/s), the codend depth was the greatest 

(147.59 m), while at the higher flow velocity (0.9 m/s), it was the smallest (38.58 m). At 0.5 

< V ≤ 0.7 m/s, the depth of the codend changed greatly; this depth decreased by 35.5% 

each time the flow velocity increased by 0.1 m/s. 

 

Figure 10. Longitudinal displacement of codend measured at sea. 

3.7. The Oscillation Characteristic of the Codend Longitudinal (z‐Direction) Displacement based 

on Morlet Wavelet Transform in Sea Trials 

The  higher wavelet  spectrum  coefficient  of  the  codend  oscillations  in  the  depth-

direction was obtained at the frequency of 0.13–0.17 Hz at t= 25–30 s and 5–10 s for v = 0.5, 

0.6, and 0.9 m/s. However, when v = 0.7 and 0.8 m/s, two large events were visible on the 

codend depth oscillation. For the first even, a higher wavelet coefficient was observed at a 

frequency of 0.08–0.09 Hz at the times of 0.1 s, 5 s, and 13 s during the fishing operation. 

In  addition,  for  the  second  even,  a  higher  wavelet  coefficient  was  observed  at  the 

frequency of 0.13–0.17 Hz at t = 23–28 s(Figure 11). These findings imply that flow velocity 

has  an  impact  on  the  codend  depth  oscillation  and  that  it  has  evolved  into  a  higher 

periodicity  structure with much more  energy  than  small-scale  structures. The wavelet 

analysis  results  revealed  that  alternate  strong  positive  and  negative  peaks  of wavelet 

coefficients appeared. The wavelet coefficients of the depth displacement of the codend 

oscillated most intensely when the flow velocity was v = 0.7 m/s, while at v = 0.8 m/s, the 

wavelet coefficients of the depth displacement of the codend oscillated slowly. 

Figure 10. Longitudinal displacement of codend measured at sea.

3.7. The Oscillation Characteristic of the Codend Longitudinal (z-Direction) Displacement Based
on Morlet Wavelet Transform in Sea Trials

The higher wavelet spectrum coefficient of the codend oscillations in the depth-
direction was obtained at the frequency of 0.13–0.17 Hz at t = 25–30 s and 5–10 s for
v = 0.5, 0.6, and 0.9 m/s. However, when v = 0.7 and 0.8 m/s, two large events were
visible on the codend depth oscillation. For the first even, a higher wavelet coefficient was
observed at a frequency of 0.08–0.09 Hz at the times of 0.1 s, 5 s, and 13 s during the fishing
operation. In addition, for the second even, a higher wavelet coefficient was observed at the
frequency of 0.13–0.17 Hz at t = 23–28 s (Figure 11). These findings imply that flow velocity
has an impact on the codend depth oscillation and that it has evolved into a higher period-
icity structure with much more energy than small-scale structures. The wavelet analysis
results revealed that alternate strong positive and negative peaks of wavelet coefficients
appeared. The wavelet coefficients of the depth displacement of the codend oscillated
most intensely when the flow velocity was v = 0.7 m/s, while at v = 0.8 m/s, the wavelet
coefficients of the depth displacement of the codend oscillated slowly.

As shown in Figure 12, at the flow velocity of 0.5 m/s, the oscillation frequency
of wavelet coefficients of the longitudinal displacement of the codend was the slowest,
and it increased as the flow velocity increased. The oscillation frequency was the fastest
at v = 0.8 and 0.9 m/s. When the flow velocity was v ≤ 0.7 m/s, the amplitude of the
measured longitudinal wavelet coefficients increased as the flow velocity increased, and
when v > 0.7 m/s, it decreased as the flow velocity increased (Table 6).

Table 6. Oscillation period amplitude of wavelet coefficient measured longitudinal (z-direction)
displacement of codend.

Flow Velocity (m/s) 0.5 0.6 0.7 0.8 0.9

Measured
Frequency (Hz) 0.03 0.04 0.04 0.05 0.05

Amplitude 1.72 1.85 2.33 0.81 2.02
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at sea.
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Figure 12. Oscillations of principal period wavelet coefficients of measured longitudinal (z-direction)
displacement of codend.

3.8. Contrast and Analysis of Measured and Test Results at Sea

Both the sea measurement and flume test flow velocities range from 0.5 to 0.9 m/s, and
there is an obvious up-and-down vibration in the longitudinal position at the end of various
types of simulated catch codend structures (Table 7). Figure 13 shows the analysis of dis-
placement fluctuation using the wavelet transform, and the Pearson correlation coefficient
is used to test the correlation between the analysis results and the actual codend oscillation.
Based on the test results, the oscillation periods of the codend wavelet coefficients for both
measured and simulated catches are highly correlated (50%), strongly correlated (16.7%),
and extremely weak. Furthermore, the oscillation periods of the codends with canvas,
green canvas, and table tennis balls are highly correlated, with correlation coefficients of
90%, 90%, and 89%, respectively.
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However, the amplitudes of the wavelet coefficients of the codend measured at sea
and simulated catches measured in the flume tank were extremely strongly correlated in
33.3%, and extremely weakly correlated in 50%. The amplitudes of the codends containing
the table tennis ball filled with water and balloons filled with water are highly correlated
among them, with correlation coefficients of 91% and 89%, respectively.

Table 7. Oscillation period amplitudes of measured and tested codend wave coefficients.

Flow Velocity
(m/s) Measured Canvas Green

Canvas Basketball Tennis Ball Balloon A Ball Made
of Twine

Frequency (Hz)

0.5 0.03 0.43 0.42 0.45 0.43 0.48 0.56
0.6 0.04 0.45 0.43 0.47 0.48 0.56 0.60
0.7 0.04 0.52 0.54 0.61 0.50 0.63 0.61
0.8 0.05 0.57 0.63 0.41 0.60 0.33 0.63
0.9 0.05 0.63 0.63 0.32 0.58 0.49 0.72

Amplitude

0.5 1.72 13.03 15.41 5.04 1.32 0.9 0.53
0.6 1.85 10.59 7.58 6.84 1.4 0.71 1.13
0.7 2.33 8.91 13.72 4.54 1.94 0.78 0.69
0.8 0.81 8.67 11.44 1.78 0.79 2.69 0.77
0.9 2.02 9.44 11.36 4.26 2.06 1.21 0.93
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4. Discussions
4.1. Effects of Simulated Catches on the Morphology of Codend

The main factors influencing the motion of the flexible codend and its shape were the
towing speed, ship motion caused by wave or wind, and the catch inside. As a result, it
was discovered in this study and that of O’Neill et al. [23] that due to catch accumulation
inside the codend and under flow velocity, the codend front meshes closed and the tail
swelled. This was due to the fact that the more the catches accumulated in the codend, the
more the length of the codend increased and the width narrowed, which was consistent
with the finding of Meyler et al. [28].
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However, Cui et al. [29] observed changes in codend morphology using underwater
cameras, and the results revealed that as towing speed increased, the oncoming surface
curved into an arc in the horizontal direction. The bending degree of the panel increased
as the towing speed increased. This is consistent with the findings of this study, which
showed that the horizontal length of codends with each catching configuration increased as
flow velocity increased. Furthermore, the findings of this study showed that the contour of
the codend with different simulated catch configurations were essentially the same, which
contradicts the conclusion by Hermann et al. [30] that a change in catch types would result in
a change in the codend shape, providing a spherical bottom with a continuous accumulation
of catches. However, due to the different materials used in the catch configurations as
mentioned above, and the water filterability through the codend, as flow velocity increased,
the channel between the codend narrowed and the horizontal length increased, with no
discernible length difference, indicating that the simulated catch configuration had little
influence on the length of the codend.

4.2. Effect of Simulated Catch Configuration on the Drag Force and Codend Motions

It was demonstrated in this study that the main factors that influenced the codend
drag were the flow velocity and catch factors such as catch configurations, in addition
to the wave and wing during fishing operations at sea. However, the change in codend
hydrodynamic characteristics, as an important component of the trawl system, determines
the hydrodynamic characteristics and stability of the trawl system [31]. Nevertheless, it was
demonstrated in this study that codend drag with different simulated catch configurations
increased as flow velocity increased. This was because the presence of the catch in the
codend caused reflux, resulting in a pressure difference, and the greater the flow velocity, the
greater the drag force. It was found in this study that drag forces obtained on the codend
with grooved catch configurations was greater compared to those obtained using the
spherical catch configuration. This difference in drag was attributed to the material density
of the catch types. Another plausible explanation is that the grooved catch configuration
made the codend more unstable, unlike the spherical catch configuration, during the flume
tank experiment. This instability led to a decrease in water flow velocity and an increase in
pressure on the codend surface. This increase in pressure allows the codend with grooved
catch configurations to oscillate more than codend with spherical catch configuration,
which decreases its mesh opening, limits the flow passage, and thus increases its drag. The
wavelet results on the codend drag showed that the wallet coefficient spectrum peak shifted
from low frequency (large-scale structures) to high frequency (small-scale structures). This
was more pronounced on the codend with grooved catch and was in agreement with
finding of Liu et al. [7] and Thierry et al. [2].

The codend oscillated in both the longitudinal and transverse directions during the
experiments, which is because the codend attached to a trawl oscillated in both the longitu-
dinal and vertical directions in response to the dynamic interaction of a fishing vessel under
trawling conditions [9,23]. These codend oscillations occurred because the presence of the
catch inside the codend reduced the mesh opening of the front part of the codend, limiting
the flow through the codend and resulting in vortex shedding. This vortex shedding
created vertical pressure on the codend, resulting in codend oscillations. However, the
results of this study revealed that the longitudinal displacement of the codend filled with
various simulated catch configurations changed little, and the spatial wavelet positive and
negative oscillations were not visible in the time-frequency domain. This is because of the
catch and the effect of water flow; the mesh closure may have been close to the maximum.
Thus, it was found that the codend oscillations and codend morphology changed with
the catch size and mesh size. However, it was found that the codend with grooved catch
configurations oscillated with greater amplitude compared to the codend with spherical
catch configuration. The reason for this phenomenon can be explained by the fact that the
grooved catch configurations weighed less in comparison to the spherical catch configura-
tion. After comparing the wavelet results of the codend oscillations obtained during the
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sea trial and the motions of the model codend with the spherical catch configuration, it was
observed that there was a similarity between the two. However, the codend oscillations
during the sea trial were influenced by factors such as warp length and towing speed.
Therefore, it is reasonable to believe that the spherical catch configuration would be the
better choice to replace the real catches during the model experiment.

The morphological features of the catch inside the codend can impact its selectiv-
ity. Due to the limited space and the limited stamina of the fish inside the codend, it
is commonly believed that most of the fish entering the codend are already exhausted.
During trawling operations, the codend often undergoes oscillation, inducing panic among
fish when they collide with the netting and disturbing the balance of the school, leading
to collisions between individuals and ultimately compromising the quality of the catch.
Moreover, the oscillation of the codend can obstruct the escape of smaller fish through
the mesh, causing them to accumulate in the back of the codend and thus affecting the
selectivity of the gear. During fishing operations, vessels require a significant amount
of energy, and most modern fishing vessels rely on fossil fuels. In general, resistance in
fishing gear can lead to increased energy consumption. Optimizing fishing gear can reduce
gear resistance, leading to increased profitability for the fishery and promoting maximum
ecological sustainability.

4.3. Simulated Catch Selection

Due to difficulties in controlling the actual catch during model tests, which can sig-
nificantly affect the precision of flume instruments and water quality, Meyler et al. [28],
O’Neill et al. [23], Bouhoubeiny et al. [11], and other researchers utilized simulated catch.
However, it is important to acknowledge that there were significant differences between
the flume model test and the sea test. While the sea test was conducted on the trawl system
under varying and complex sea and operation conditions, the model test had its limitations.
The complexity of the sea conditions and operation environment also had a significant
impact on the codend, and the actual catch varied from the simulated catch used in the
model tests. The experimental model used in this study is based on the way the actual
catch accumulates in the sea. When the real catch is smaller, it resembles a grooved shape
attached to the inner wall of the codend meshes, but as the catch continues to accumulate,
it eventually assumes a hemispherical or spherical shape. The simulated catch in the
codend model can be categorized into two types based on its contour: the grooved catch
configuration (canvas, green canvas, and basketball) and the spherical catch configuration
(table tennis ball filled with water, balloons filled with water, and balls made of twine).
During the experiment, a simulated catch configuration was used in the form of a ball made
of polyethylene twine instead of real catch. The results showed that the polyethylene twine
ball had no significant effect on the drag and displacement oscillation of the codend. This
finding is consistent with the study conducted by O’Neill and Donoghue [16], in which
polystyrene small nettings of sufficient size were used as a simulated catch configuration
to measure the geometric shape of the trawl codend and the pressure distribution on it.
However, differences were observed in the material and shape of the simulated catch. The
reason why the catch configuration did not affect the drag and motion of the codend was
that the ball made of polyethylene twine had a porous structure that allowed water to flow
freely through the codend, resulting in a decrease in vertical pressure due to the reduction
in vortex shedding effects. Another simulated catch configuration used in this study was
water-filled balloons, and the results showed that the codend oscillations obtained with
these water-filled balloons, rather than real catch, were less significant than those of other
catch configurations. This could be due to two reasons: firstly, the water flow was able to
easily pass through the smooth surface of the balloon, causing a small vortex to form around
it, and secondly, the weight of the water-filled balloons in the water reduced the oscillation
amplitude. However, these results were different from the findings of O’Neill et al. [23],
who also used water-filled balloons instead of real catch and found that there was an
obvious codend oscillation effect (p < 0.05). This study showed that using a grooved catch
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configuration allowed greater and easier oscillation of the codend compared to a spherical
configuration (p < 0.05). The reason for this finding is that the grooved catch configuration
had poor water filtration, which significantly modified the mesh opening and resulted in a
decrease in flow passage. This decrease led to the development of greater vortex shedding
around the codend, which increased transverse motions and codend drag [8,32]. In contrast
to the grooved catch configuration, the smooth surface of the spherical catch configuration
and the small spacing between the catches reduced vortex shedding around the codend,
resulting in the weaker oscillation amplitude of the codend.

The wavelet transform was utilized in this study to demonstrate that the codend
drag and motions with different simulated catch configurations were out of equilibrium,
indicating the presence of coherent structures that were identified. The Pearson correlation
coefficient was then used to test the correlation between codend oscillations obtained on the
codend during the physical model test and during the sea trial. The higher the correlation
coefficient was, the closer the measurement results were to each other. The results showed
that the oscillation period of the wavelet coefficients of the codend at sea had a strong
correlation (50%) and the amplitude had a strong correlation (33.3%), indicating that the
codend of the simulated catch was close to the measured period, but the amplitude was
not necessarily close to the measured amplitude.

5. Conclusions

This study was carried out to experimentally evaluate the impact of simulated catch
configurations on hydrodynamic characteristics, codend shape, and codend motions, with
the aim of choosing the better simulated catch to replace the real catch during flume tank
experiments. To this end, a model codend was designed and tested in the flume tank using
six different simulated catch types, including grooved and spherical types. The results
were compared to sea trial measurements. The wavelet transform method was used to
analyze the non-stationary time series of the oscillatory phenomena of the drag force and
codend motions. The main conclusions are as follows:

(1) The horizontal length of the codends with different simulated catch configurations
increased with increasing flow velocity, but the range of the increase was not obvious,
and the simulated catch configuration had little effect on the overall longitudinal
displacement (codend motion in x-direction) of the codends (p > 0.05).

(2) The drag and displacement oscillations of the codend with grooved catch configura-
tion were obvious, and the oscillations were more severe than those of the codend with
spherical catch configuration. Additionally, the longitudinal displacement amplitude
of the codend with grooved catch configurations was approximately 8.79 times greater
than that of the codend with spherical catch configuration.

(3) The findings of the wavelet transform analysis on the codend drag and codend
motions showed that the wavelet coefficients of the codends with grooved catch
configurations were greater than those of codends with spherical catch configura-
tions. Additionally, intense oscillations were observed in the low frequencies for all
simulated catch configurations.

(4) The correlation coefficient of the codend period with the water-filled table tennis ball
was 89%, with an amplitude of 91%, which was closer to the actual measurement.
The simulated catch used in the flume test is an approximation within a certain range
rather than a catch set that fully matches the actual law of change. Therefore, this
study suggests using the tennis ball as the simulated catch because it provided the
oscillations that were consistent with those obtained during the sea trial.
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