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Abstract: Insufficient comprehension of the seismic impact of the reef terrain, geology, and material
properties of the reefs in the South China Sea still presents considerable impediments in studying
the seismic response of reef engineering sites and assessing their seismic safety. To surmount this
challenge, a seismic response analysis model of the reef-seawater system is established. This model
takes into account the fluid-solid interaction effect, the wave radiation effect of the infinite seawater
layer and the semi-infinite seabed, as well as the seismic wave input process of the reef-seawater
system. Through targeted parameter analyses, the impact of various factors, including the shear
wave velocity, thickness, and slope of distinct reef layers, the width of the reef flat, and the dynamic
coupling effect of seawater on the seismic response of reef sites, is thoroughly examined. It has been
determined that the seismic response of the reef site is markedly amplified as the shear wave velocity
decreases and the thickness of the uppermost reef layer increases. While the effects of the slope
gradient of the topmost reef layer and the width of the reef flat on the seismic response of the reef site
are chiefly observed in the edge area and the central area, respectively. The layer of seawater plays
a crucial role in radiation damping, serving as a medium for the dissipation of seismic energy and
thereby weakening the overall seismic response of the reef site.

Keywords: reef; seismic response; seawater; seismic wave input

1. Introduction

In recent years, impressive progress has been made in the construction of artificial
islands in the South China Sea [1]. These islands and reefs are located on the western
side of the Circum-Pacific seismic belt, at the intersection of the Pacific Plate, the Pacific
Plate, and the Indo-Australian Plate, with complex geological configurations and active
seismic activity [2]. Any unforeseen damage to these reef infrastructures, caused by
natural calamities such as earthquakes, could negatively impact the South China Sea’s
economic progress, scientific explorations, and regional security. Consequently, it is of great
significance to conduct comprehensive research on the seismic safety of the reef engineering
in the South China Sea.

Reef engineering projects typically rely on naturally formed reef islands that develop
from the seabed. The seismic response of such an offshore site differs from that of traditional
onshore engineering sites due to the unique geological features of the reef topography, the
mechanical properties of coral sand and reef limestone, and the wave radiation effects of
the seawater layer. Therefore, the seismic response mechanisms and laws of such areas
require specialized consideration.

Initially, the seismic response analysis of an ocean site primarily relied on analytical
methods. The generation and propagation of seismic waves in the ocean environment
were simplified into mathematical models, and the stress field or wave field was then
obtained through theoretical deduction. Scholars such as Lindsay [3], Brekhovskikh [4],
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Zheng et al. [5], Zhu [6], Feng [7], and Chen et al. [8] have conducted research in this
field, uncovering the laws of wave propagation and its influencing factors in open systems
involving fluid-solid interaction.

Some researchers have also studied the mechanical properties of the ocean engineering
site, particularly the marine coral sand, through physical tests. He et al. [9] investigated the
resilient modulus response of coral sand from the South China Sea under cyclic loading
and established a new prediction model to predict the resilient modulus of coral sand in the
whole stress interval. Liu et al. [10] investigated the cyclic behavior of calcareous sand from
the South China Sea through a series of undrained cyclic triaxial tests and found that cyclic
stress ratios and relative density had a notable effect on the cyclic behavior of calcareous
sand, which had higher liquefaction resistance than silica sand due to its angular nature.
Ma et al. [11] presented the results of a multi-stage strain-controlled undrained cyclic shear
test on saturated coral sand and proposed a new index to modify the prediction model
of the maximum shear modulus and reference shear strain under different consolidation
conditions, which shows an excellent prediction of shear modulus with a deviation within
±10%. Chen et al. [12] investigated the mechanical behavior of coral sand under different
saturation (Sr) levels, which is crucial for the stability of island-reef foundations. Results
showed that shear strength and internal friction angle decreased with increasing Sr, while
cohesion was not significantly affected. Particle breakage also increases with increasing Sr,
and 92.5% is suggested as the maximum Sr value for coral sand testing.

With the development and advancement of numerical calculation methods in re-
cent years, numerical simulation methods have increasingly been applied in site seismic
response analysis due to their effectiveness in solving complex models and boundary
conditions. Chen et al. [13] processed new multichannel reflection seismic profiles in
the continent-ocean transition zone of the northern South China Sea and developed ef-
fective techniques to attenuate different types of seismic multiples. Guo et al. [14] and
Tang et al. [15] employed the limit equilibrium method to examine the stability of Zhubi
Reef and Yongshu Reef in the South China Sea, respectively. Their findings indicate that
while the reef body has good stability under self-gravity, earthquakes can cause slope
instability and slumping, particularly in newly developed parts of the reef. Hu et al. [16]
delved into the amplification effect of coral reef sites on pulse-type seismic motions utilizing
a one-dimensional (1D) site seismic analysis model based on the geological structure of the
coral reef. They suggested that the amplification ratio of the ground motion on the reef flat
is between 1.6–2.4, and the notable period is between 0.2–0.8 s. Further, they established a
two-dimensional (2D) shallow reef model with a height of 40 m [17], simulated the coupling
effect of seawater using equivalent node forces, and investigated the seismic response of
reef sites when the seismic waves are vertically incident. Chen et al. [18] took into account
the dynamic nonlinear characteristics of coral sand and the wave radiation effect at the
near-field truncation. They developed a two-dimensional analysis model of a shallow coral
reef with a height of 20 m and analyzed the seismic amplification effect of the reef sites.
Their results showed that the peak accelerations at the coral sand site tend to increase with
elevation and are particularly strong in the lime-sand island and harbor basin regions. The
ground surface acceleration response spectra are significant for periods less than 0.7 s, and
the ground motion durations are closely related to the characteristics of seismic bedrock
motions and the topographical and geomorphic characteristics of the coral island.

In order to comprehensively consider the dynamic coupling effect of seawater, the
deep-sea topography of the reef, and the far-field wave radiation effect on the seismic
response of the reef site, the author’s team employed the fluid-structure interaction algo-
rithm to simulate the interaction between the reef and seawater [19]. They also developed a
spatially decoupled artificial boundary for the fluid medium [20] and proposed a boundary
substructure method (BSM) for seismic wave input [21], enabling the input of seismic P and
SV waves into the reef-seawater system at different angles. All these methods were then
integrated into general finite element software to establish a dynamic interaction model of
a two- or three-dimensional reef-seawater system [22,23].
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Although the seismic response analysis method for reef sites has gradually been re-
ported, the complex terrain and topography of the reefs in the South China Sea, coupled
with the significant variability in the material characteristics of the coral sand and reef
limestone, make it difficult to conduct on-site surveys and obtain material samples. Conse-
quently, the insufficiency of accumulated data on the reef terrain, geology, and material
characteristics impedes the thorough depiction of the terrain and geological features of the
reefs, which are fundamental factors in analyzing the seismic response of reef engineering
sites and assessing their seismic safety.

One feasible solution to address the aforementioned issue is to conduct sensitivity
analyses [24] or parameter analyses to identify the key parameters and evaluate their
influence on the seismic response of reef sites. The present study formulated a seismic
response analysis model for the reef-seawater system, in which the fluid-solid interaction
effect, the wave radiation effect of the infinite seawater layer and the semi-infinite seabed,
as well as the seismic wave input process of the reef-seawater system, are comprehensively
taken into account. Through targeted parameter analyses, the impact of various factors on
the seismic response of reef sites is meticulously investigated, including the shear wave
velocity, thickness, and slope of distinct reef layers, the width of the reef flat, and the dy-
namic coupling effect of seawater. Ultimately, the study seeks to provide valuable insights
into the seismic response characteristics of reef sites and the seismic safety evaluation of
artificial islands and reef engineering.

2. Seismic Response Analysis Methods of the Reef-Seawater System

The analysis of the seismic response of the reef-seawater systems is fundamentally a
dynamic problem of an open fluid-solid coupling system subjected to external excitation
sources. It necessitates a thorough examination of the dynamic interaction between the reef
and seawater, the wave radiation effects at the cutoff boundaries of fluid and solid media,
and the input of seismic waves.

2.1. Fluid Artificial Boundary

The size of far-offshore reef islands is enormous, with depths and reef flat widths
ranging from hundreds to thousands of meters [25]. In such circumstances, the wave
propagation in the seawater medium can have a significant impact on the seismic response
of the reef site. To account for this, Liu et al. [20] proposed a spatially decoupled fluid
artificial boundary to simulate the wave radiation effect of an infinite seawater layer.
They achieved this by transforming the partial differential equation of one-sided wave
motion in the fluid medium into an equivalent mechanical system. This fluid artificial
boundary ensures computational accuracy and is easily integrated with general finite
element software, making it applicable to large-scale dynamic analyses of reef-seawater
systems. The mechanical model of the fluid artificial boundary consists of dampers and
concentrated masses, as shown in Figure 1, and the corresponding physical parameters are
provided in Table 1.
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Table 1. Physical parameters of the fluid-artificial boundary.

Spatial Dimensions Physical Parameters Value

One-dimensional space Damping C ρcF∑i Ai

Two-dimensional space Damping C ρcF∑i Ai
Mass M 2ρrb∑i Ai

Three-dimensional space Damping C ρcF∑i Ai
Mass M ρrb∑i Ai

Where ρ and cF represent the density and wave velocity of the fluid, respectively. rb is the distance from the wave
source to the artificial boundary node and Σi Ai denotes the area represented by the artificial boundary node after
finite element discretization.

2.2. Solid Artificial Boundary

During seismic response analysis of reef sites, it is essential to consider the dynamic
interaction between the local terrain and the semi-infinite foundation. This involves
simulating wave radiation in the semi-infinite domain and seismic wave input in the near-
field domain. To achieve the former, viscoelastic artificial boundary elements [26] that are
widely used in the field of earthquake engineering can be employed.

The implementation method of the viscoelastic artificial boundary element is illus-
trated in Figure 2. A layer of equivalent elements is extended outward along the normal
direction of the solid domain’s cutoff boundary, with its outer boundary constrained. By
specifying the material properties of the equivalent elements, the extended element layer
can effectively absorb the outgoing scattered waves. For the 2D case, the shear modulus G̃,
Young’s modulus Ẽ, Poisson’s ratio µ̃, and material damping coefficient η̃ of the equivalent
element are given as follows:

G̃ = αTh
G
R

, Ẽ = αNh
G
R
· (1 + µ̃)(1− 2µ̃)

1− µ̃
, µ̃ =

α− 2
2(α− 1)

, η̃ =
ρR
2G

(
cS

αT
+

cP

αN

)
(1)

where h is the thickness of the equivalent element, and R is the distance from the scattering
wave source to the boundary node. G is the shear modulus of the solid medium, cS and cP
are the wave velocities of the S and P waves in the solid medium, respectively. α = αN/αT,
αT and αN are the parameters of the artificial boundary in the tangential and normal
directions, respectively, whose recommended values [26] are αT = 0.5 and αN = 1.
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2.3. Seismic Wave Input Method

In the seismic response analysis of reef engineering sites, due to the interception of
the near-field domain and the manipulation of the cutoff boundaries, the external seismic
waves can be directly input into the calculation domain. Thus, seismic wave input methods
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are necessary to input the seismic energy into the near-field computational domain without
affecting the absorption of the scattered waves by the artificial boundaries.

Currently, the commonly used seismic wave input methods, such as the domain re-
duction method (DRM) [27,28] and wave method [29], convert the incident waves into
equivalent seismic loads. However, both methods require solving the motion equations
to obtain the equivalent input seismic loads, and the directions of the seismic loads on
different cutoff boundaries must be manually determined, making implementation rela-
tively complex. Recently, Liu et al. [30] proposed a boundary substructure method (BSM)
for seismic wave input. This method directly obtains the equivalent input seismic loads
through the dynamic analysis of the artificial boundary substructure model, significantly
simplifying the implementation process while ensuring computational accuracy. In this
study, we use this method to implement seismic wave input for the reef-seawater system.
The computational process is illustrated in Figure 3, and the implementation steps are
as follows:

(1) To begin, we establish a finite element model of the reef-seawater system and subse-
quently remove all elements except those connected to artificial boundary nodes. This
yields the model of the artificial boundary substructure.

(2) Next, for a given incident seismic wave, free-field analysis based on wave propagation
theory can be conducted to obtain the distribution of the free-wave field. The free-
field wave motions are then applied to corresponding nodes in the artificial boundary
substructure model. Through dynamic analysis of the substructure model, the reaction
force at the boundary nodes can be obtained, which serves as the equivalent input
seismic load for seismic wave input.

(3) With the equivalent input seismic loads in hand, we can now establish the overall
reef-seawater model and apply these loads to the corresponding artificial boundary
nodes. Then perform a dynamic analysis, and the seismic response of the reef site can
be obtained.
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2.4. Seismic Response Analysis Model of the Reef-Seawater System

A numerical model of the finite near-field domain encompassing the reef, seabed, and
surrounding seawater is established, as depicted in Figure 4. The FSI algorithm, based on
the acoustic fluid finite element method [19], is used to calculate the dynamic interaction
between the reef and seawater. Artificial boundary conditions for fluid [20] and solid
media [26] are applied at the cutoff boundaries of the reef-seawater model. The free-field
analysis of the ocean site is performed to obtain the corresponding free-wave field under
different incident seismic waves [21]. Subsequently, we use the BSM [30] to transform
the free-wave motions into equivalent seismic loads, which are then applied to the cutoff
boundaries of the reef-seawater model for dynamic calculations. Through this process, a
seismic response analysis model of the reef-seawater system can be established.
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It should be noted that this study is an extending research with our previous work [21,22]
as a basis. In the previous articles, the accuracy and effectiveness of the key numerical
techniques involved in the reef-seawater model, including the fluid artificial boundary, the
seismic wave input method, and the integrated reef-seawater finite element model, have
been validated.

This proposed model provides a promising approach for analyzing the seismic re-
sponse of large-scale open systems characterized by fluid-solid coupling effects, as repre-
sented by the reef-seawater system. Moreover, the application of this model enables a more
in-depth seismic response analysis of other reef islands.

3. Topographic and Geological Parameters of the Reef-Seawater Model

Figure 5 depicts a schematic diagram of the Yongshu Reef, which exhibits a narrow
spindle shape [2]. The reef construction is mainly concentrated on the southwestern flat,
which is 3.9 km in length and nearly 1.3 km in maximum width. The reef is characterized by
a mountain-shaped structure, with the average slope gradient of the offshore slope ranging
between 20◦ and 30◦, within the range of 0–800 m beneath the sea level. The upper slope,
particularly within 20 m, is much steeper, with slope gradients ranging from 45◦ to 60◦ and
even reaching up to 90◦ in some parts [31]. Given the large geometric scale of Yongshu
Reef and the fact that the length of the long axis is much greater than that of the short axis,
the stress state of the reef body is approximately in a plane strain state when subjected to
seismic loads vibrating along the short axis direction. Therefore, typical two-dimensional
cross-sections can be extracted along the short axis of the reef for modeling and analysis.
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In recent years, there has been a growing need for the development and utilization of
reef resources, prompting researchers to investigate the engineering characteristics of coral
sand on reef sites [32,33]. However, the mechanical properties of reef limestone remain
understudied due to the challenges of conducting on-site surveys and sampling. Currently,
most of the available data on reef limestone are based on the 152-meter geological drilling
conducted at Yongshu Reef in the 1990s [34]. Figure 6 illustrates the variation of wave
velocity with burial depth obtained from the drill core samples, which generally increases
with depth but exhibits significant dispersion. Moreover, the complex environmental condi-
tions such as ocean currents, tides, self-weight, and geothermal energy during the growth
and development of coral reefs may lead to variations in the wave velocity distribution of
reef limestone at different locations on the reef islands.
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In general, publicly available literature on reef islands in the South China Sea lacks
comprehensive information on their geometric and material features. To address this issue,
this study first establishes a 2D layered seismic response analysis model of the reef-seawater
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system, utilizing the general finite element software ANSYS, as depicted in Figure 7. The
model incorporates the estimated geometry and material parameters presented in Table 2.
Using this model as a reference, this study investigates the effects of key morphology and
material parameters of the reef site on its seismic response through parameter analyses.
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Figure 7. Seismic response analysis model of the reef-seawater system.

Table 2. Geometry and material parameters of the reference model.

Parameters Reef Layer 1 Reef Layer 2 Reef Layer 3 Seabed

Velocity of S wave vs (m/s) 500 1800 2200 2200
Velocity of P wave vp (m/s) 1225 4485 5000 5000

Mass density ρ (kg/m3) 2000 2400 2700 2700
Material damping ζ 0.05 0.05 0.025 0

Thickness H (m) 20 80 700 600
Slope gradient θ 60◦ 30◦ 30◦ 0◦

Length of the reef site L (m) 1000
Length of the fluid domain LF (m) 800

The analysis utilizes a pulse wave with a duration of 0.2 s as well as three artificial
seismic waves obtained by Dr. Li and the team from the Institute of Geophysics, China
Earthquake Administration. These seismic waves are tailored to match the acceleration
response spectrum parameters of the South China Sea bedrock, as depicted in Figure 8. The
boundary substructure method introduced earlier is employed to introduce these seismic
waves into the reef-seawater model.
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Figure 8. Time histories and Fourier spectra of incident pulse waves and artificial seismic waves
(a) Time histories of incident waves; (b) Fourier spectra of incident waves.

4. Influence of Topographic and Material Features on the Seismic Response of the
Reef Site

According to a previous study [21], the seismic amplification effect on the island
reef site is most pronounced when the waves are vertically incident, which is considered
the most unfavorable load case for the seismic response of the reef site. Moreover, since
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the peak ground acceleration (PGA) of seismic ground motion is a crucial parameter for
seismic design and site seismic response evaluation, this study primarily concentrates on
the acceleration seismic response of reef sites under the vertically incident SV wave and
investigates the impact of various factors.

4.1. Shear Wave Velocity of the Top Reef Layer

In this section, we explore the impact of the shear wave velocity of the topmost reef
layer vs1 on the seismic response of the reef site. The shear wave velocity of reef layer one
vs1 is varied between 300 m/s, 400 m/s, 500 m/s, 600 m/s, and 700 m/s, while keeping
the other model parameters in Table 2 unchanged. The pulse wave and three artificial
seismic waves shown in Figure 8 are then vertically input into the finite element model of
the reef-seawater system for analysis.

To evaluate the seismic amplification effect of the reef sites, the peak acceleration ratio
Ra is defined with the seismic response of the elastic homogeneous half space as a basis:

Ra(x) =
max(|a(x, t)|)
max(|a0(t)|)

(2)

where a denotes horizontal acceleration; the variable x is the horizontal coordinate of
different locations on the reef flat; t is the time; and the subscript 0 denotes the horizontal
seismic response on the surface of a homogeneous half space under the same seismic SV
wave incident vertically.

The spatial distributions of Ra on the reef flat under different vs1 are compared in
Figure 9. Table 3 presents the mean values of Ra along the reef flat calculated by differ-
ent models.
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Table 3. Average peak acceleration ratio on the reef flat under different shear wave velocities of the
top reef layer.

Incident Wave
Shear Wave Velocity of Reef Layer 1 (m/s)

300 400 500 600 700

Pulse wave 1.53 1.79 1.89 1.81 1.62
Seismic wave A 4.75 3.23 2.81 2.36 2.04
Seismic wave B 4.14 3.39 2.79 2.26 1.88
Seismic wave C 4.88 3.44 2.76 2.32 1.96

The results presented in Figure 9 and Table 3 reveal that the influence of the shear
wave velocity of the top reef layer on the spatial distribution of the horizontal acceleration
response is limited under the incident pulse wave. As shear wave velocity increases,
the average peak acceleration ratio first slightly increases and then decreases. However,
when the reef site is subjected to artificial seismic waves, the acceleration response is
significantly amplified with the decrease of the shear wave velocity of the topmost reef
layer, and this trend is more pronounced in the region near the edge of the reef flat. For
example, the average horizontal peak acceleration ratio on the reef flat can increase by
149% when the shear wave velocity of the top reef layer decreases from 700 m/s to 300 m/s
under the incidence of artificial wave C. This significant increase in acceleration response
poses a considerable risk to the safety of artificial islands and other constructions on
the reef engineering site. Furthermore, the distribution of the peak acceleration ratio on
the reef flat exhibits a similar tendency under the incidence of pulse and seismic waves.
The peak seismic response in the central region of the reef flat is relatively diminutive,
and progressively amplifies towards the edge of the reef flat. It is important to take
this distribution pattern into account when designing and locating structures on a reef
engineering site. Structures located closer to the edge of the reef flat may need to be
designed and constructed with greater attention to seismic resistance.

To investigate the influence of different factors on the seismic response in the frequency
domain, the acceleration Fourier spectrum ratio Ha is defined as follows: The Ha can help
identify the frequency-dependent seismic response characteristics, and its value reflects
the amplification and attenuation effects of the engineering site on different frequency
components. Similarly, the site seismic response of the homogeneous half-space model is
taken as a basis.

Ha(x, f ) =
F(x, f )
F0( f )

(3)

where f is the frequency; F(x, f ) is the Fourier amplitude of the horizontal accelerations on
the reef flat; and F0(f ) is the Fourier amplitude of the acceleration response on the surface
of the homogeneous half space under the same incident wave.

The acceleration spectral ratios of the models with various vs1 are calculated. The
results are presented in a 3D figure that uses frequency and the normalized parameter
x/L as the horizontal coordinates, as shown in Figure 10, where x is the x-coordinate
of the observation point and L is the length of the reef site. This 3D figure provides a
comprehensive visualization of the acceleration response of the reef site to seismic waves
across a range of frequencies and locations.

As the vs1 decreases, the acceleration spectral ratio near the edge of the reef site
significantly increases, and the peak component shifts towards the low-frequency direction.
This indicates that the seismic response of the reef site in the frequency domain is sensitive
to vs1. This sensitivity can be explained by the change in the dynamic characteristics of
the reef site. Specifically, as the shear wave velocity decreases, the top reef layer becomes
weaker, resulting in a lower natural frequency of the reef site. This lower natural frequency,
combined with the amplification effect of the reef site, leads to larger seismic responses
when subjected to low-frequency loads. This is because the lower natural frequency makes
it easier for the reef site to resonate with the seismic waves. The amplification effect occurs
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because the reef site acts as a natural filter for seismic waves, with certain frequencies
being amplified while others are attenuated. These results emphasize the importance of
considering the shear wave velocity of the topmost reef layer in the seismic design of
constructions on the reef engineering site, especially near the edge of the reef flat.
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4.2. Thickness of the Top Reef Layer

Next, we turn our attention to the thickness of the top reef layer H1 and its impact
on the seismic response of the reef site. The top weak layer on reefs in the South China
Sea typically ranges between 9 and 28 m in thickness. To explore this further, we keep
all other parameters in Table 2 constant and vary the thickness of the top reef layer in
5 m increments: 10 m, 15 m, 20 m, 25 m, and 30 m. Using these values, we establish the
corresponding reef-seawater models and input a pulse wave and three artificial seismic
waves for calculation and analysis.

The spatial distributions of the peak acceleration ratio under different thicknesses of
the top reef layer are compared, as shown in Figure 11. Furthermore, the average values of
the peak acceleration ratio along the reef platform of different models are calculated, and
the results are given in Table 4.
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Table 4. Average peak acceleration ratio on the reef flat under different thicknesses of the top
reef layer.

Incident Wave
Thickness of Top Reef Layer (m)

10 15 20 25 30

Pulse wave 1.47 1.92 1.89 1.60 1.43
Seismic wave A 1.68 2.31 2.81 3.04 3.54
Seismic wave B 1.62 2.12 2.79 3.05 3.28
Seismic wave C 1.64 2.27 2.76 3.09 3.52

An initial increase and subsequent decrease in the peak acceleration ratio on the reef
flat with increasing thickness of the top reef layer can be observed under the incidence
of the pulse wave. The peak value of the average seismic response at a thickness of 15 m
suggests that there exists an unfavorable thickness of the top reef layer for the load case of
a pulse wave, over or under which the seismic response of the reef site decreases. Under
artificial seismic wave incidences, the acceleration peak ratio exhibits a significant increase,
particularly in the region near the reef edge, with increasing thickness of the top reef
layer. The 115% increase in the average acceleration peak ratio on the reef flat when H1
is increased from 10 m to 30 m in the case of the artificial wave 3 incident highlights the
sensitivity of the reef site seismic response to the height of the top reef layer.

Figure 12 presents the distributions of the acceleration spectral ratios of the models
with different thicknesses of the top reef layer.
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Figure 12. Influence of the thickness of the top reef layer on the acceleration Fourier spectrum ratio
of the reef site.

It can be seen that with the increase of H1, the peak value of the acceleration spectrum
ratio significantly increases, and the peak component gradually shifts towards the low-
frequency direction. Similarly to Section 4.1, the increase in thickness of the soft layer
can result in a lower natural frequency of the site model, making it more susceptible to
resonance under low-frequency loading and resulting in larger site seismic responses. This
effect could also contribute to the observed trend in Figure 11, where the peak acceleration
ratio increases with the thickness of the top reef layer. The results suggest that the thickness
of the top reef layer should be carefully considered in the seismic design of construction on
reef engineering sites. Specifically, an increase in the thickness of the top reef layer can lead
to a significant increase in the acceleration peak ratio on the reef flat, particularly under
low-frequency loading conditions.
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4.3. Slope Gradient of the Top Reef Layer

A previous study [31] showed that the slope of Yongshu Reef, especially those shal-
lower than 20 m, is steep, with the gradient ranging from 45◦ to 60◦ and even reaching up
to 90◦ in some areas. To assess the impact of this shallow slope gradient on the seismic
response of the reef site, a series of reef-seawater models with a slope gradient θ1 of 30◦, 45◦,
60◦, 75◦, and 90◦, respectively, are established. The pulse wave and three artificial seismic
waves are input into the numerical model through the BSM, and the spatial distributions
of the peak acceleration ratio on the reef flat are calculated and compared, as shown in
Figure 13. Furthermore, we also calculated the average peak acceleration ratios along the
reef flat, which are presented in Table 5.
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Figure 13. Influence of the slope gradient of the top reef layer on the acceleration response of the 
reef site (a) pulse wave; (b) seismic wave A; (c) seismic wave B; (d) seismic wave C. 
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Figure 13. Influence of the slope gradient of the top reef layer on the acceleration response of the reef
site (a) pulse wave; (b) seismic wave A; (c) seismic wave B; (d) seismic wave C.

Table 5. Average peak acceleration ratio on the reef flat under different slope gradients of the top
reef layer.

Incident Wave
Slope Gradient of Top Reef Layer

30◦ 45◦ 60◦ 75◦ 90◦

Pulse wave 1.83 1.90 1.89 1.89 1.88
Seismic wave A 2.80 2.83 2.81 2.78 2.90
Seismic wave B 2.80 2.83 2.79 2.76 2.89
Seismic wave C 2.82 2.80 2.76 2.71 2.81

The results of the comparison reveal that, on the whole, the impact of θ1 on the seismic
response of the reef flat is relatively minor. It primarily affects the region near the edge
area, while the central part of the reef flat remains relatively unaffected; namely, the slope
gradient of the top reef layer has a localized effect on the seismic response of the reef site,
with the impact being more pronounced near the edges of the reef flat. Specifically, as
θ1 increases, the seismic response near the edge of the reef flat experiences an increase.
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However, when moving towards the middle of the reef flat, the seismic response tends to
decrease slightly.

The distribution of acceleration spectral ratio calculated by the models with different
θ1 is shown in Figure 14. Similar to the influence rule found in the time-domain seismic
response analysis, the effect of the slope gradient of the top reef layer on the frequency-
domain seismic response of the reef site is relatively limited. However, it is worth noting
that as the slope gradient increases, the acceleration spectral ratio near the edge of the reef
flat slightly increases, and the peak component shifts towards the low-frequency direction.
Furthermore, for the central region of the reef site, it was observed that the models with
slope gradients of 75◦ and 90◦ generate slightly larger spectral ratio values when the
frequency is lower than 4 Hz. However, when the frequency is greater than 6 Hz, the
influence of the top-slope gradient on the acceleration spectral ratio is significantly reduced.
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Figure 14. Influence of the slope gradient of the top reef layer on the acceleration Fourier spectrum
ratio of the reef site.

4.4. Shear Wave Velocity of the Middle Reef Layer

As depicted in Figure 6, the wave velocity of the reef limestone exhibits a significant
variation with an increase in burial depth. In Section 4.1, we examined the impact of the
shear wave velocity of the top reef layer on the seismic response of the reef site. In this
section, we shift our focus towards the variability of the shear wave velocity of the middle
reef layer and its influence on the site’s seismic response.

Keeping all other model parameters constant, we set the shear wave velocity of the
middle reef layer vs2 to 1400 m/s, 1600 m/s, 1800 m/s, 2000 m/s, and 2200 m/s, respectively,
and establish corresponding numerical models of the reef-seawater system. Subsequently,
the pulse wave and three artificial seismic waves are vertically input into the models, which
conduct dynamic analyses.

The spatial distributions of the peak acceleration ratio on the reef flat under different
vs2 are compared with each other, as shown in Figure 15. The average values of the
horizontal acceleration peak ratio along the reef flat are calculated and given in Table 6.

The results presented in Figure 15 and Table 6 highlight that vs2 has a complex influence
on the seismic response of the reef site. Specifically, a substantial increase in the acceleration
response near the edge of the reef flat with an increase in vs2 can be observed. However, an
opposite trend is found in the central area of the reef site.
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Figure 15. Influence of the shear wave velocity of the middle reef layer on the acceleration response 
of the reef site (a) pulse wave; (b) seismic wave A; (c) seismic wave B; (d) seismic wave C. 
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Table 6. Average peak acceleration ratio on the reef flat under different shear wave velocities of the
middle reef layer.

Incident Wave
Shear Wave Velocity of Middle Reef Layer (m/s)

1400 1600 1800 2000 2200

Pulse wave 1.75 1.83 1.89 1.92 1.93
Seismic wave A 2.93 2.85 2.81 2.80 2.74
Seismic wave B 2.91 2.90 2.79 2.73 2.76
Seismic wave C 3.00 2.87 2.76 2.62 2.59

The results also reveal that the average peak acceleration ratio increases with vs2
when subjected to a pulse wave input. By contrast, under the incidence of a seismic wave,
the average peak acceleration ratio of the reef site exhibits a decreasing trend with the
increase of vs2. However, it is important to note that the maximum variation observed in
the acceleration response when changing vs2 does not exceed 16%. Overall, the findings
indicate that the influence of vs2 on the seismic response of reef sites is relatively complex,
and the effect varies depending on the location and type of seismic input.

The spatial distribution of the acceleration spectrum ratio when changing the value of
vs2 is calculated. The results are shown in Figure 16.

With the increase of vs2, the acceleration spectral ratio near the reef edge gradually
increases, and the peak component in this area slightly shifts towards the high-frequency
direction. In the central area of the reef flat, it is observed that the horizontal acceleration
spectral ratio obtained by the low-velocity model is relatively large when the frequency
is less than 4 Hz. However, when the frequency exceeds 6 Hz, the horizontal acceleration
spectral ratio calculated by models with different shear wave velocities alternately reaches
the maximum value in local regions from the edge area to the central area of the reef site.
These findings indicate that the seismic response of the reef site is affected not only by
the shear wave velocity of the topmost layer but also by the middle layer. The complex
behavior observed in the acceleration spectral ratio highlights the importance of specific
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topographical surveys and deep material properties testing when investigating the detailed
dynamic behavior of important reef engineering sites.
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spectrum ratio of the reef site.

4.5. Slope Gradient of Middle and Bottom Reef Layers

Influenced by complex growth and development conditions and hydrodynamic envi-
ronments, the reef body exhibits an irregular geometric structure, and the seaward slope
varies at different locations. In this section, we further investigate the effect of the steep
slope on the seismic response of the reef site. Existing literature [31] suggests that the sea-
ward slope gradient is typically between 20◦ and 30◦ for a depth less than 800 m. Therefore,
with other parameters in Table 2 remaining unchanged, we set the slope gradient of middle
and bottom reef layers θ2,3 as 20◦, 25◦, 30◦, 35◦, and 40◦, respectively, and establish the
corresponding models of the reef-seawater system. The pulse wave and three artificial
seismic waves are then input into the numerical models to evaluate the seismic responses.

The spatial distributions of the peak acceleration ratios on the reef flat are calculated
and shown in Figure 17, while Table 7 displays the average peak acceleration ratios along
the reef flat.
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Figure 17. Influence of the slope gradient of the middle and bottom reef layers on the acceleration 
response of the reef site (a) pulse wave; (b) seismic wave A; (c) seismic wave B; (d) seismic wave C. 

Table 7. Average peak acceleration ratio on the reef flat under different slope gradients of the mid-
dle and bottom reef layers. 

Incident Wave 
Slope Gradient of Middle and Bottom Reef Layers 

20° 25° 30° 35° 40° 
Pulse wave 1.62 1.73 1.89 1.84 1.69 

Seismic wave A 2.27 2.57 2.81 2.65 2.44 
Seismic wave B 2.28 2.64 2.79 2.62 2.34 
Seismic wave C 2.20 2.62 2.76 2.54 2.32 

Both Figure 17 and Table 7 show that the seismic response of the reef site shows an 
increasing trend followed by a decrease as the slope gradient θ2,3 increases. Interestingly, 
we observed that the acceleration response was most pronounced at a slope gradient of 
30°, particularly in the region near the edge of the reef flat, which suggests that a slope 
gradient of 30° may be the most unfavorable for the seismic response of the reef engineer-
ing site under the vertical incidence of seismic SV waves. 

To further explore the above findings, we calculated the three-dimensional distribu-
tions of the acceleration spectral ratio Ha with respect to the frequency and the dimen-
sionless coordinates of the measuring points x/L. The results are illustrated in Figure 18. 

Figure 17. Influence of the slope gradient of the middle and bottom reef layers on the acceleration
response of the reef site (a) pulse wave; (b) seismic wave A; (c) seismic wave B; (d) seismic wave C.
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Table 7. Average peak acceleration ratio on the reef flat under different slope gradients of the middle
and bottom reef layers.

Incident Wave
Slope Gradient of Middle and Bottom Reef Layers

20◦ 25◦ 30◦ 35◦ 40◦

Pulse wave 1.62 1.73 1.89 1.84 1.69
Seismic wave A 2.27 2.57 2.81 2.65 2.44
Seismic wave B 2.28 2.64 2.79 2.62 2.34
Seismic wave C 2.20 2.62 2.76 2.54 2.32

Both Figure 17 and Table 7 show that the seismic response of the reef site shows an
increasing trend followed by a decrease as the slope gradient θ2,3 increases. Interestingly,
we observed that the acceleration response was most pronounced at a slope gradient of 30◦,
particularly in the region near the edge of the reef flat, which suggests that a slope gradient
of 30◦ may be the most unfavorable for the seismic response of the reef engineering site
under the vertical incidence of seismic SV waves.

To further explore the above findings, we calculated the three-dimensional distribu-
tions of the acceleration spectral ratio Ha with respect to the frequency and the dimension-
less coordinates of the measuring points x/L. The results are illustrated in Figure 18.
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Figure 18. Influence of the slope gradient of the middle and bottom reef layers on the acceleration
Fourier spectrum ratio of the reef site.

According to Figure 18, for almost any frequency greater than 3 Hz, the acceleration
spectral ratio calculated by the model with a slope gradient of 30◦ reaches a local maximum
value in the region near the edge of the reef flat, which is consistent with the spatial
distribution of the peak acceleration ratio in Figure 17. In the middle area of the reef flat,
when the frequency is lower than 7 Hz, the acceleration response increases, and the peak
component slightly moves towards the high-frequency direction with an increase of θ2,3.
When the frequency is higher than 7 Hz, the acceleration spectral ratios calculated by the
models with slopes of 25◦ and 30◦ are larger than those obtained by other models. It is worth
noting that the complex behavior observed in Figure 18, where the acceleration spectral
ratio calculated by the model with a slope gradient of 30◦ reaches a local maximum value
for almost any frequency greater than 3 Hz, can be attributed to the interplay of multiple
factors, including the natural frequency of the site model, the attenuation characteristics of
the soil layers, and the incident wave frequency content.
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4.6. Width of the Reef Flat

Due to the influence of ocean currents and tides, the reef flats in the South China
Sea normally exhibit elongated spindle shapes. Consequently, the width of the 2D cross-
sectional models varies at different intercepted locations. It is necessary to study the effect
of reef flat width on the seismic response of reef sites. Given that the maximum width of
the southwest reef flat at Yongshu Reef is less than 1300 m, we set the width of the reef flat L
to be 600 m, 800 m, 1000 m, 1200 m, and 1300 m, respectively, while keeping all other model
parameters in Table 2 constant, and establish the corresponding reef-seawater models. The
pulse wave and three artificial seismic waves are vertically input into the numerical model
for dynamic analysis.

The spatial distribution of the peak acceleration ratios of different models is compared
in Figure 19. The average peak acceleration ratios along the reef flat are calculated and
presented in Table 8.
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Figure 19. Influence of the length of the reef site on the acceleration response of the reef site (a) 
pulse wave; (b) seismic wave A; (c) seismic wave B; (d) seismic wave C. 

Table 8. Average peak acceleration ratio on the reef flat under different lengths of the reef site. 

Incident Wave 
Length of Reef Flat (m) 

600 800 1000 1200 1300 
Pulse wave 2.08 1.97 1.89 1.83 1.81 

Seismic wave A 3.22 3.01 2.81 2.70 2.66 
Seismic wave B 3.11 2.95 2.79 2.68 2.60 
Seismic wave C 2.99 2.81 2.76 2.63 2.57 

Figure 19 reveals that changes in reef flat width have a negligible effect on the accel-
eration response near the edge of the reef flat. However, the peak acceleration ratio in the 
central area of the reef flat notably increases as the reef flat width decreases, corroborating 
the trend observed in the average peak acceleration ratio with changes in reef flat width, 
as presented in Table 8. When subjected to SV waves, the sloping topography generates 
scattering waves, whose amplitudes gradually decrease as they propagate. With decreas-
ing reef flat width, the attenuation of scattering wave amplitudes becomes less pro-
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wave; (b) seismic wave A; (c) seismic wave B; (d) seismic wave C.

Table 8. Average peak acceleration ratio on the reef flat under different lengths of the reef site.

Incident Wave
Length of Reef Flat (m)

600 800 1000 1200 1300

Pulse wave 2.08 1.97 1.89 1.83 1.81
Seismic wave A 3.22 3.01 2.81 2.70 2.66
Seismic wave B 3.11 2.95 2.79 2.68 2.60
Seismic wave C 2.99 2.81 2.76 2.63 2.57

Figure 19 reveals that changes in reef flat width have a negligible effect on the acceler-
ation response near the edge of the reef flat. However, the peak acceleration ratio in the
central area of the reef flat notably increases as the reef flat width decreases, corroborating
the trend observed in the average peak acceleration ratio with changes in reef flat width,
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as presented in Table 8. When subjected to SV waves, the sloping topography generates
scattering waves, whose amplitudes gradually decrease as they propagate. With decreasing
reef flat width, the attenuation of scattering wave amplitudes becomes less pronounced
as they reach the central area of the reef flat. Consequently, the superposition of waves
leads to a more significant amplification effect, resulting in a more pronounced seismic
peak amplification effect in this region.

4.7. Fluid-Solid Interaction Effect

The current technical methods and data accumulation regarding site seismic response
and safety evaluation are predominantly geared towards onshore engineering sites. How-
ever, research on the seismic response of offshore engineering sites remains relatively
limited. One of the key differences between mechanical models of offshore sites and on-
shore sites is whether to consider the dynamic coupling effect of the surrounding seawater
layer. To gain a better understanding of the dynamic response characteristics of the reef-
seawater system, it is imperative to analyze the influence of FSI on the seismic response of
reef sites.

The onshore site model (non-FSI model) corresponding to the reef-seawater model
(FSI model) established in this study can be obtained by removing the fluid elements and
fluid artificial boundaries in the finite element model of the reef-seawater system. Then, by
using the BSM, the selected seismic waves can be input into the non-FSI model, and then
the dynamic analysis can be conducted.

The peak acceleration ratios of the FSI and non-FSI models are calculated and com-
pared, as shown in Figure 20. The average peak acceleration ratios of these two models
and their relative deviations are calculated and presented in Table 9.
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Table 9. Average peak acceleration ratios on the reef flat, considering or ignoring the fluid-solid
interaction effect.

Incident Wave FSI Model Non-FSI Model Relative Difference

Pulse wave 1.89 1.93 2.12%
Seismic wave A 2.81 3.00 6.76%
Seismic wave B 2.79 2.96 6.09%
Seismic wave C 2.76 2.93 6.16%

The results in Table 9 show that, on average, the seismic response of the non-FSI model
is slightly higher than that of the FSI model. For the pulse wave incidence, the relative
deviation of the average peak acceleration ratio between the two models is 2.12%, while for
the three seismic wave incidences, the relative deviation ranges from 6% to 7%. Figure 20
reveals that the difference between the calculation results of these two models is most
pronounced near the edge of the reef flat, where the maximum local relative deviation can
be as high as 20%. Furthermore, it is observed that the local acceleration seismic response
of the FSI model is greater than that of the non-FSI model in the central area under pulse
wave incidence and in the edge area under seismic wave C incidence. This finding indicates
that although the FSI effect generally reduces the site seismic response on average, the local
seismic response in some areas may be amplified.

Figure 21 shows the distributions of the acceleration spectral ratio of the site models
considering and ignoring the FSI effect. The distribution patterns of the acceleration Fourier
spectrum ratios are similar for both the FSI and non-FSI models. The primary components
of Ha obtained from these two models are situated in the frequency range of 2 Hz to 8 Hz.
However, for most frequency intervals, the acceleration response of the onshore site is
higher than that of the reef site, which is in line with the distribution patterns observed in
the time domain.
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In the near-field finite element model of the reef-seawater system, seismic energy is
input from the bottom of the model, and a portion of it is reflected and scattered by the
interlayer interfaces and reef terrain before being finally absorbed by the solid artificial
boundaries. Due to the coupling effect between the reef and seawater, the remaining
portion is transmitted into the fluid medium in the form of compression waves, propagating
outward until being absorbed by the fluid’s artificial boundaries at the cutoff positions.
To elaborate further, the seawater layer acts as a radiation damping mechanism, which
absorbs and dissipates a significant amount of seismic energy as it propagates outward
from the reef. This leads to a reduction in the amplitude of seismic waves that reach the reef
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flat, which in turn reduces the overall seismic response of the reef site. Additionally, the
seawater layer also affects the dynamic characteristics of the reef site, such as the resonance
frequency and amplification factor, by altering the spatial distribution of the seismic waves
on the reef flat.

5. Conclusions

Insufficient data accumulation and inadequate knowledge of the seismic impact of
reef terrain, geology, and material characteristics of the reefs in the South China Sea remain
major obstacles in studying the seismic response of reef engineering sites and evaluating
their seismic safety. To overcome this challenge, a seismic response analysis model of
the reef-seawater system is constructed in this study. This model takes into account a
comprehensive range of factors, including the fluid-solid interaction effect, the wave
radiation effect of the infinite seawater layer and semi-infinite seabed, as well as the seismic
wave input process of the reef-seawater system. We select several key parameters that
influence the seismic response of reef sites, establish a series of finite element models of the
reef-seawater system, and conduct targeted parameter analyses. Based on the results of
this study, the following conclusions can be drawn:

(1) The seismic response of the reef site is significantly amplified near the edge of the reef
flat when the shear wave velocity of the topmost reef layer decreases from 700 m/s to
300 m/s and its thickness increases from 10 m to 30 m, resulting in average acceleration
peak ratios that can be amplified by 149% and 115%, respectively.

(2) The slope gradient of the middle and bottom reef layers at 30◦ has the most adverse
impact on the seismic response of the reef site under the vertical incidence of seismic
SV waves.

(3) The amplitude attenuation of scattering waves generated by the sloping topography
decreases as the propagation distance increases. The reduction in reef flat width leads
to a more significant wave superposition effect, resulting in a more significant seismic
peak amplification effect.

(4) Accounting for the fluid-structure interaction effect, the average seismic response of
the reef site can be reduced by approximately 6–7% compared to that of the non-FSI
model, with the maximum local relative deviation reaching up to 20% near the edge
of the reef flat.

Overall, the obtained numerical results provide important insights into the seismic
response of reef engineering sites, with specific quantitative values and trends that highlight
the significance of various factors.

It is important to note that the numerical models employed in this study primarily
focus on the seismic response of the reef limestone site and therefore do not account for the
complex nonlinear behavior of the coral sand. Additionally, the reef structure is assumed to
be vertically layered, and any potential horizontal inconsistency is disregarded. Therefore,
to investigate the detailed dynamic behavior of important reef engineering sites, specific
topographical surveys and deep material property testing are required. Based on these
investigations, further seismic response studies can be conducted using the proposed
analytical model of the reef seawater system.
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