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Abstract: Multi-node wind speed forecasting is greatly important for offshore wind power. It is a
challenging task due to unknown complex spatial dependencies. Recently, graph neural networks
(GNN) have been applied to wind forecasting because of their capability in modeling dependencies.
However, existing methods usually require a pre-defined graph structure, which is not optimal for
the downstream task and limits the application scope of GNN. In this paper, we propose adaptive
graph-learning convolutional networks (AGLCN) that can automatically infer hidden associations
among multi-nodes through a graph-learning module. It simultaneously integrates the temporal and
graph convolutional modules to capture temporal and spatial features in the data. Experiments are
conducted on real-world multi-node wind speed data from the China Sea. The results show that
our model achieves state-of-the-art results in all multi-scale wind speed predictions. Moreover, the
learned graph can reveal spatial correlations from a data-driven perspective.

Keywords: multi-node wind speed forecasting; unknown complex dependencies; graph neural
networks; pre-defined graph; graph structure learning

1. Introduction

With the increase in energy consumption, the non-renewability of traditional energy
sources and the emission of greenhouse gases, among other reasons, more and more
countries are turning to renewable energy sources in industry [1–3]. Wind energy is
basically a transformation of solar energy, with large energy reserves and no pollution,
making it one of the best alternatives to fossil energy [4,5]. Therefore, mankind is actively
researching the application prospects of wind power, and now, offshore wind power has
become an important engine for green and sustainable development worldwide [6,7]. To
ensure an uninterrupted power supply in the grid, it is imperative to continuously monitor
and balance power generation and consumption, so an accurate and effective assessment
of offshore wind power is essential [8]. It has been observed in the literature that wind
power forecasting is typically based on wind speed forecasts [9,10]. Therefore, in order to
protect the grid from uncertainty, power system managers and wind power companies
need accurate forecasts of future wind speed [11]. On the time scale, wind speed forecasts
can be divided into very-short-term forecasts, short-term forecasts, medium-term forecasts
and long-term forecasts [12], where short-term wind speed forecasts are important for
improving wind turbine generation efficiency and economic load dispatch planning, while
medium- and long-term forecasts are mainly used for wind farm planning and generation
planning to control and reduce operating costs [13,14]. In addition, the accurate prediction
of wind speed is of great importance for climate analysis [15], biodiversity [16,17] and so
on, so accurate prediction of offshore wind is of great importance [18].

Offshore wind prediction is a challenging task due to the high volatility, uncertainty
and intermittency of offshore wind speed [19]. Wind speed prediction methods can fall into
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three main categories: physical, statistical machine-learning methods and deep learning
methods [10,20,21]. The physical approaches [22] are to build systems (numerical weather
prediction systems (NWP)). They use physical and meteorological variables to build a
system based on thermodynamics and fluid mechanics, which has high calculation costs
and is better suited to medium- and long-term planning [23]. The classical statistical
methods, auto-regression integrated moving average (ARIMA) [19], assume the linear
relationships of data. The machine learning methods, such as support vector regression
(SVR) [24] and k-nearest neighbors (KNN) methods [25] show good performance in very-
short-term and short-term wind forecasting. However, the statistical method ARIMA is
incapable of capturing data’s nonlinear relationships and the machine learning methods
actually simplify wind power prediction, which are unable to extract deep time series of
feature information from complex wind speed data [26]. To address the limitations of the
above methods, many scholars have begun to use a recurrent neural network (RNN) [27]
and long short-term memory (LSTM) network [28] to perform the prediction tasks of wind
speed with good results [29,30].

The above methods lead to inferior performance in multi-node wind speed prediction
because they overlook spatial dependencies, so it is critical to capture the unknown spatial
dependencies among multi-nodes. Z. Qiaomu et al. [31] proposed a predictive deep
convolutional neural network (PDCNN), which exploits convolutional neural networks
(CNN) to capture the spatial dependencies in wind data, to predict the wind speed of
multiple stations at the same time. However, this method does not model the pair-wise
dependencies among variables explicitly and cannot make full use of the spatial features
of wind farms, which weakens the prediction performance [7]. Recently, graph neural
networks (GNN) achieved great success in modeling relational dependencies of data due
to their permutation invariance and local connectivity [32,33]. M. Yu et al. [7] connected all
wind turbines in a certain range of wind farms by their geographical locations to form a
graph to extract the spatial features of wind data for prediction. X. Geng et al. [20] leveraged
the geographic distance information of offshore wind nodes to construct a graph to predict
multi-node offshore wind speed at the same time. These methods construct a predefined
graph structure, as shown in Figure 1a.
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node embedding. Then, the input and learned graph are entered into the temporal and graph con-
volution to extract a feature. Finally, the parameters of the model are optimized according to the 
prediction task. 

Figure 1. The workflow of the framework. (a) The workflow of a predefined graph. (b) The workflow
of adaptive graph learning. First, the graph structure is inferred based on input and trainable
node embedding. Then, the input and learned graph are entered into the temporal and graph
convolution to extract a feature. Finally, the parameters of the model are optimized according to the
prediction task.
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Though remarkable success has been achieved by generalizing GNN to the wind speed
forecasting domain, there are still several important problems that remain to be addressed:
(1) Unknown spatial dependencies. Existing GNN approaches [7,20] applied to wind speed
prediction rely heavily on a pre-defined graph structure in order to perform the forecasting
task. These methods construct the graph structure based on assumed geographic location
information. This method assumes that the spatial associations are equal to the geographic
distance of multi-nodes, which is not flexible and representative enough to describe the
correlations. The graph structure remains constant during the training of the network and
is independent of the downstream tasks, which is not optimal for the multi-scale wind
speed prediction task. (2) Graph structure learning and GNN learning. The current GNN
approaches ignore the fact that graph structures are not optimal and need to be learned
during training. How best to learn both graph structures of unknown associations and
GNNs in an end-to-end framework is a challenging task.

To cope with the above challenges, we propose an adaptive graph-learning convolu-
tional network (AGLCN). Specifically, for challenge 1, an adaptive graph-learning method
is proposed, which frees the need of GNN for a predefined structure. As shown in Fig-
ure 1, the graph structures are automatically inferred based on both dynamic wind speed
data and trainable node embedding [34]. For challenge 2, the proposed network is an
end-to-end framework, i.e., the parameters of the model can be learned via the gradient
descent method. As shown in Figure 1b, the model on the highest level consists of three
core components: graph learning, graph convolution and temporal convolution. Temporal
convolution is used to extract the temporal relationship of data. Moreover, to avoid the
gradient disappearance problems of RNN-based methods [35], we employ the CNN-based
method because of its stable gradients and low memory requirements [36,37]. Graph con-
volution is used to capture the spatial feature of data based on the learned graph structure.
Finally, the entire network is optimized based on predictive tasks. In summary, our main
contributions are as follows:

1. We propose a novel graph-learning method to learn hidden associations in data,
which does not require any prior knowledge as a guideline. It is more general than
the existing GNN for wind speed prediction because our method can handle arbitrary
multi-node time series without the need to pre-define the graph structure.

2. We design an end-to-end framework that integrates a graph structure learning module
with temporal and graph convolution to achieve joint optimization, where temporal
and graph convolution can efficiently extract temporal and spatial features.

3. Experiments on realistic multi-node wind speed forecasts show that our approach
achieves optimal results for all comparative forecast scales (short-, medium- and long-
term forecasts). Moreover, the graph structure learned by the model can be used to
explore the correlation between multi-node wind speed from a data-driven perspective.

The rest of the paper is structured as follows: Section 2 presents the problem formu-
lation and concept of GNN. The details of our framework are presented in Section 3. In
Section 4, our experimental results show the effectiveness and efficiency of the proposed
method. Section 5 presents the discussion. Section 6 offers conclusions of the paper.

2. Preliminary

Problem formulation. The target of multi-node offshore wind speed forecasting is to
predict future multi-node values by exploiting historical data. Let xt ∈ RN denote the wind
speed value monitored by N sensors at time step t, where xt[i] ∈ R denote the value of the
ith sensor at time step t. Given a sequence of historical H time steps of observations on
N sensors, X =

{
xt1 , xt2 , . . . , xth

}
∈ RN×h, and our goal is to predict the values of future

L-step for the N sensors, Y =
{

xth+1 , xth+2 , . . . , xth+L

}
∈ RN×l . We aim to build a map f(·)

from X to Y,
Y = f(X) (1)
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A graph describes the relationships between nodes in a network. Thus, in the follow-
ing, we provide a formal definition of graph-related concepts.

Definition 1. (Graph). A graph is formulated as G = (V, E) where V ∈ RN represents the set of
nodes, and E denotes the set of edges.

Definition 2. (Adjacency Matrix). The adjacency matrix is a mathematical representation of a
graph, denoted as A ∈ RN×N with Aij > 0 if

(
vi, vj

)
∈ E and Aij = 0 if

(
vi, vj

)
/∈ E.

Definition 3. (Node Embedding). The node embedding is denoted as M ∈ RN×d, where N is the
number of nodes, d represents the dimensions of node embedding and d << N. The node-embedding
vector of the ith node is expressed as Mi ∈ Rd. Node embedding is a low-dimensional representation
of a node of a graph that contains structural information [34].

From a graph-based perspective, the sensors in the wind speed data are considered as
nodes of a graph and the associations between the nodes are described by the graph structure.

3. Framework of AGLCN

We will first elaborate on the general framework of our model. As illustrated in
Figure 2, SDGL on the highest level consists of a graph-learning layer, k temporal convolu-
tion modules (TCN) and k graph convolution modules (GCN). The input to the model is a
sequence of historical H time steps of observations on N sensors, X =

{
xt1 , xt2 , . . . , xth

}
∈

RN×h. To discover hidden associations between nodes, the graph-learning method con-
structs a graph adjacency matrix based on input time window data, which are used as
the input to the GCN. The TCN adopt a gated structure, which consists of two parallel
temporal modules, to extract the temporal dependencies. The graph convolution and tem-
poral convolution modules are interleaved to capture the spatial and temporal correlation,
respectively. To better train the model, we added a residual connection from the input TCN
to output of GCN. Finally, the output module projects the hidden features to the desired
output dimension to obtain the final output. Figure 2 shows how each module collaborates
with each other.
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Figure 2. Workflow of AGLCN. First, the input X goes through the graph-learning layers to obtain the
graph structure. Then, raw data X and the inferred graphs go through the TCN and GCN for feature
transformation. The features extracted by the TCN at each layer are linked to the output module by
skipping connections to obtain the prediction results. Finally, the network is jointly optimized via
prediction loss and graph regularization. The number 1©– 5© mean the nodes of graph.
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3.1. Adaptive Graph Learning

Existing gcn-based wind speed prediction models require a pre-defined adjacency
matrix A to perform the graph convolution operation. These methods are very intuitive and
cannot contain complete information about spatial correlations. In addition, this method is
not directly related to the prediction task, which can lead to considerable bias. Furthermore,
these methods cannot be applied without proper knowledge, rendering existing gcn-based
models invalid.

To address this problem, we propose an adaptive graph-learning (AGL) method, which
automatically infers hidden interdependencies from the data. Spatio-temporal correlations
in multi-node wind speed data are non-linear and dynamic, as wind speed is influenced
by multiple factors at the same time and changes over time [31], i.e., the dependencies
are different in winter and summer. Therefore, the graph matrix should be constructed
based on the wind data, but the data are characterized by randomness, volatility and
intermittency [38], which makes the model hard to converge by relying only on the data for
graph construction. Therefore, our approach consists of two main parts: information fusion
of static node embedding and dynamic node-level input and a graph-learning module.

Information Fusion: The graph-learning method (AGL) in this work is based on both
node embedding and dynamic node-level input, where node embedding [34] is introduced
for the easier convergence of the learning method. We first randomly initialized a learnable
node-embedding dictionary M ∈ RN×d, where d denotes the dimension of node embedding.
To adaptively fuse the two types of information, we introduced a gated mechanism [39].
Given the node embedding M ∈ RN×d and dynamic input X ∈ Rn×h, we firstly used a
linear layer transform, X to XT, which has the same dimension as M. Then, the information
fusion formula was as follows:

rT= σ(Wre ·M + Wru ·XT)
zT= σ(Wze ·M + Wzu ·XT)

∼
hT= tan h(Whu ·XT + Whe(rT ·M))

hT= (1− zT)·M + zT ·
∼
hT

(2)

where W in Equation (2) are weight matrices which need be updated. In the informa-
tion fusion module, node embedding is long-term information and node-level input X
is short-term information. Finally, we obtained the fusion result hT ∈ RN×d of the input
time window.

Graph Learning: In this paper, we treat the graph structure learning problem as
similarity-measure learning that will be trained jointly with a prediction model for down-
stream tasks. We used cosine similarity because of the learnability and powerful expres-
siveness. After Equation (2), we obtained hT ∈ RN×d, where each row of hT represents
the fusion result of embedding information and dynamic input of the node, and d is the
dimension of the fusion result. Then, we inferred the dependencies between each pair of
nodes using Equation (3):

Â = So f tMax(ReLU(hT ·hT
ᵀ)) (3)

ReLU(f ) = max(0, f ) (f is any variable or matrix) ensures the non-negativity of the
graph matrix [40]. The softmax function was used to normalize the adaptive matrix. The

graph convolution operation was based on the Laplacian matrix, I −D−1/2
∼
AD−1/2, where

∼
A denotes the graph matrix, I denotes the identity matrix and D denotes the degree matrix
of vertices. Recently, the state transition matrix [41] has been shown to be effective in

spatial–temporal modeling, that is D−1
∼
A. Here, we directly generated Â = D−1

∼
A using the

softmax function to avoid unnecessary and repeated calculations in the iterative training
process. During training, hT is updated automatically to learn the representation vectors
of different nodes and obtain the adaptive matrix according to Equation (3). In this way,
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the parameters θ in the AGL and the graph matrix Â are updated together based on the
gradient information returned by the loss function, which adaptively learns the appropriate
graph structure based on the downstream task.

3.2. Temporal Convolution Module

The temporal convolution module in this paper takes a cnn-based method, which
enjoys the advantages of parallel computing, stable gradients and low memory require-
ment [42]. In addition, in this module, a gating mechanism was employed because they
have been shown to be powerful at controlling information flow for temporal convolution
networks [43]. To capture multi-scale information simultaneously, we used inception con-
volutions [44]. In addition, dilated convolutions were employed to expand the receptive
field of the network [45].

Gated TCN: As shown in Figure 2, the gated temporal convolutional network (TCN)
consists of two temporal convolution modules (TCN) [46]. One of these extracts features
from the data via a Tanh activation function, and the other layer controls the amount of
information that can be passed to the next module via a Sigmoid activation function. The
formula is defined as follows:

W = tanh(Θ1 ∗ χ + b1)
⊙

sigmoid(Θ2 ∗ χ + b2) (4)

where Θ1,Θ2,b1 and b2 are model parameters,
⊙

is the element-wise product. Gated TCN
only contains an output gate with the same input χ ∈ RN×d×s, where χ is obtained by
dimensionally transforming the original input with 1× 1 convolution, as shown in Figure 2.

Dilated inception convolutions: In each TC, we used multiple convolutional kernels
in one perceptual layer at the same time to capture various temporal patterns in the data, as
shown in Figure 3a. Inspired by the work in [47], we adopted an inception layer consisting
of four filter sizes, viz. 1 × 2, 1 × 3, 1 × 6 and 1 × 7. Given a 1D sequence input x ∈ RT and
filters consisting of f1×2 ∈ R2, f1×3 ∈ R3, f1×6 ∈ R6 and f1×7 ∈ R7, the dilated inception
layer took the form,

H= concat(H ∗ f1×2, H ∗ f1×3, H ∗ f1×6, H ∗ f1×7 (5)

where the outputs of the four filters are truncated to the same length according to the
largest filter and concatenated across the channel dimension, and the dilated convolution
denoted by H ∗ f1×r is defined as

H ∗ f1×r(t) = ∑r−1
s=0 f1×r(s)H(t− d× s) (6)

where d is the dilation factor.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 6 of 26 
 

 

different nodes and obtain the adaptive matrix according to Equation (3). In this way, the 
parameters 𝜃 in the AGL and the graph matrix A are updated together based on the gra-
dient information returned by the loss function, which adaptively learns the appropriate 
graph structure based on the downstream task. 

3.2. Temporal Convolution Module 
The temporal convolution module in this paper takes a cnn-based method, which 

enjoys the advantages of parallel computing, stable gradients and low memory require-
ment [42]. In addition, in this module, a gating mechanism was employed because they 
have been shown to be powerful at controlling information flow for temporal convolution 
networks [43]. To capture multi-scale information simultaneously, we used inception con-
volutions [44]. In addition, dilated convolutions were employed to expand the receptive 
field of the network [45].  

Gated TCN: As shown in Figure 2, the gated temporal convolutional network (TCN) 
consists of two temporal convolution modules (TCN) [46]. One of these extracts features 
from the data via a Tanh activation function, and the other layer controls the amount of 
information that can be passed to the next module via a Sigmoid activation function. The 
formula is defined as follows: 𝑊 = tanh(𝛩 ∗ 𝜒 + 𝑏 ) ⨀ sigmoid(𝛩 ∗ 𝜒 + 𝑏 ) (4)

where 𝛩  , 𝛩  , 𝑏   and 𝑏   are model parameters, ⨀  is the element-wise product. Gated 
TCN only contains an output gate with the same input 𝜒 ∈ 𝑅 × × , where 𝜒 is obtained 
by dimensionally transforming the original input with 1 × 1 convolution, as shown in 
Figure 2. 

Dilated inception convolutions: In each TC, we used multiple convolutional kernels 
in one perceptual layer at the same time to capture various temporal patterns in the data, 
as shown in Figure 3a. Inspired by the work in [47], we adopted an inception layer con-
sisting of four filter sizes, viz. 1 × 2, 1 × 3, 1 × 6 and 1 × 7. Given a 1D sequence input x ∈𝑅 and filters consisting of 𝑓 × ∈ 𝑅 , 𝑓 × ∈ 𝑅 , 𝑓 × ∈ 𝑅  and 𝑓 × ∈ 𝑅 , the dilated in-
ception layer took the form, 𝐻 = concat(𝐻 ∗ 𝑓 × , 𝐻 ∗ 𝑓 × , 𝐻 ∗ 𝑓 × , 𝐻 ∗ 𝑓 × ) (5)

where the outputs of the four filters are truncated to the same length according to the 
largest filter and concatenated across the channel dimension, and the dilated convolution 
denoted by 𝐻 ∗ 𝑓 ×  is defined as 𝐻 ∗ 𝑓 × (𝑡) = ∑ 𝑓 × (𝑠)𝐻(𝑡 − 𝑑 × 𝑠)  (6)

where d is the dilation factor.  

 
Figure 3. (a) Inception layer. Multiple convolution kernels are used simultaneously in each layer for 
convolution operations. (b) Dilated casual convolutions with kernel size 2. With a dilation factor d, 
it picks inputs every d step. 

Figure 3. (a) Inception layer. Multiple convolution kernels are used simultaneously in each layer for
convolution operations. (b) Dilated casual convolutions with kernel size 2. With a dilation factor d, it
picks inputs every d step.



J. Mar. Sci. Eng. 2023, 11, 879 7 of 25

Second, we adopted dilated convolution [44] to efficiently capture a node’s temporal
trends. Dilated causal convolution networks allow an exponentially larger receptive field
by increasing the layer depth. Dilated convolution operates a standard convolution filter
on down-sampled inputs with a certain frequency. For example, where the dilation factor
is 4, it applies a standard convolution on an input sampled every four steps, as shown in
Figure 3b. In dilated causal convolution, we maintained temporal causal order by padding
the input with zeros, when the receptive field was larger than the input sequence length.
In inception layers with multiple convolution kernels, we aligned the convolution results
of different convolution kernels to the output length of the largest convolution kernel.
Thus, the maximum convolution kernel size and the dilation factor jointly determine the
receptive field. Following the work of [37], we let the dilation factor for each layer increase
exponentially at a rate of q. Supposing the initial dilation factor is 1 and k 1D convolution
layers of kernel size c, the receptive field size of a k layer dilated convolutional network
with kernel size c is:

R =

{
1 + m(c− 1)i f q = 1

1 +
(c−1)(qk−1)

q−1 i f q > 1
(7)

3.3. Graph Convolution Module

The graph convolution module aims to fuse a node’s information with its neighbors’
information to obtain new node features [32]. Recently, Li et al. [48] proposed a diffusion
convolution layer that has been shown to effectively capture the spatial–temporal informa-
tion of data, which model the diffusion process of graph signals with S finite steps. Letting
A ∈ RN×N denote the predefined normalized adjacency matrix, X ∈ RN×D denotes the
input signals. The diffusion convolution layer is detailed as follows:

Z= ∑S
s=0 PsXWs (8)

where Ws ∈ RD×M denotes the model parameters, Z ∈ RN×M denotes the output and
Ps ∈ RN×N represents the power series of transition matrix. In the case of a graph,
P = A/rowsum(A).

In this paper, we replaced the predefined matrix A with the matrix Â obtained via the
adaptive graph-learning method of Equation (3), i.e., P = Â. Furthermore, inspired by the
work in [49], we decoupled the information propagation and representation transformation
operations to alleviate the over-smoothing issue in deeper graph neural networks, and we
exploited the information selection layer to adaptively incorporate information from the
multi-hop neighbors of the learned graph Â. Finally, the graph convolution operation in
this paper is detailed as follows:

∼
Z = Wsconcat(P1X, . . . , PsX, X) (9)

where Ps is the power series of the transition matrix Â learned via Equation (3), Ws is
implemented with a 1 × 1 convolution operation, with an input channel of c(s + 1) and
output channel of c. Ws is the information selection layer to select important information
produced at each transition matrix. The reason for introducing the information selection
module is that the node hidden states converge to a single point as the number of graph
convolution layers tends to infinity. In an extreme case, i.e., where there are no dependencies
among variables, aggregating information just adds noise to each node. In such a case,
Equation (9) still preserves nodes’ own information by adjusting Ws to 0 for P1X, . . . , PsX.

3.4. Output Module and Train Process

As shown in Figure 2, in a stacked graph and temporal convolution operations, each
layer is connected to the output module via a skip connection. The skip connection is the
convolution operation 1 × hi, where hi is the sequence length of the input ith layer. The
output module of the model is composed of two 1 × 1 convolutional layers that convert the
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channels of the input into the output dimension. For example, when predicting wind speed
at L future moments, the output dimension of the last layer in the output module is L.

The full algorithm process of our network is shown in Algorithm 1. As we can see,
our framework does not rely on an a priori graph structure and only needs to initialize
a node embedding M. Our model constructs relationship matrixes based on the M and
dynamic input (Equations (2) and (3)). The input X and learned matrix are subjected to
feature transformation by TCN and GCN (Equations (4) and (9)). In the stacked convolution
operations, each layer is connected to the output module by the skip connection. Finally,
we update node embedding and model parameters according to the prediction loss Lloss
via back propagation.

Algorithm 1: General Framework for SDGL

Input: The dataset O ∈ RN×Len,
Parameter: M, H, L, iter, K, B, epoch
Output: prediction value Ŷ
Initial model parameter Θ, M

1. For r in 1: epoch do
2. For i in 1: iter do
3. Sample X ∈ RB×N×H , Y ∈ RB×N×L from dataset O
4. Calculate received fields using Equation (7)
5. hT ← {M, X} using Equation (2) {obtain fusion information based on M and X}
6. Â← {hT} using Equation (3) {obtain graph adjacent matrix of input time window T}
7. For j in 1: K do
8. H j ← {X} using Equation (4) {temporal convolution operations}
9. Zi

f ← {H j, Â} using Equation (9) {graph convolution operations based on learned graph}

10. X← Zi
f and Output += H j {iterate the result Zi

f and add connection to output}

11. end for
12. Ŷ← {Output} using output module
13. Lloss = L1loss (Ŷ, Y) {the prediction loss}
14. Back-propagate Lloss to update model weights Θ and M {in training phase only}
15. i← i + 1
16. end for
17. r← r + 1
18. end for

4. Results

This section is organized as follows. We first present the dataset, including prediction
areas and evaluation metrics of the experiment, define the baseline methods, and then com-
pare and analyze the prediction performance on multi-scale wind speed predictions, where
the baselines include GNN methods and non-GNN methods. After that, we investigate the
hyper-parameters of the model. Finally, to emphasize the essential differences between our
method and previous GNN methods, we analyze the learned graphs with the pre-defined
graph, independently, as a discussion.

4.1. Data Sets

The dataset used for the experiments was CCMP V2.0 Wind Product, which is
produced by Remote Sensing Systems and sponsored by NASA Earth Science funding
(www.remss.com, accessed on 2 February 2023). The CCMP adopted a variational assimila-
tion analysis method to fuse a wide range of grid vector wind data, incorporating remote
sensing systems, a global precipitation measurement microwave imager, buoy data from
the national data buoy center, ERA interim data from the European Centre for Medium-
Range Weather Forecasts [50]. The product has a spatial resolution of 0.25◦ and a temporal
resolution of 6 h, i.e., it produces four grids of vector wind per day, where the vector wind
is the radial and latitudinal wind speed at 10 m from the sea surface. There were several

www.remss.com
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reasons for utilizing CCMP as experimental data. Firstly, CCMP is an assimilated analytical
product that undergoes quality control, addressing issues of data sparseness and dispersion
in weather stations, buoys, and ship data collected in the past. Secondly, CCMP data are
known to be more accurate and closer to actual observations compared to other reanalysis
datasets such as ERA (European Centre for Medium-Range Weather Forecast Reanalysis)
and NCEP (National Centers for Environmental Prediction) [20].

Wind data sets were extracted from the CCMP grid data in experiments covering the
China Sea from 16◦ N to 42◦ N, 105◦ E to 127◦ E, as shown in Figure 4a. The experiment
dataset was a gridded product with a spatial resolution of 0.25◦, including the four major
seas of China: the Bohai Sea, Yellow Sea, East Sea and South Sea. As shown in Figure 4b,
we randomly selected 120 points from the entire experimental area (red dashed box). The
temporal span of data was from January 2010 to April 2019, for a total of ten years. Because
of the 6 h temporal resolution of the data, there were a total of 13,624 samples. We split the
dataset into a training set (70%), validation set (10%), and test set (20%) in chronological
order. The selection method and data in this paper were exactly the same as the main
comparative baseline method STGN [21].
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4.2. Setups

In this paper, we employed root mean squared error (RMSE) and mean absolute
error (MAE) to evaluate our models, both of which are widely used in regression tasks.
Specifically, assuming yi is the ground truth of ith node and

∼
y i is the predicted value of ith

node, where N denotes the number of nodes, they were defined as follows:

MAE =
1
N ∑N

i=1

∣∣∣yi −
∼
y i

∣∣∣ (10)

RMSE =

√
1
N ∑N

i=1 (yi −
∼
y i)

2
(11)

MAPE =
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N ∑N
i=1

∣∣∣∣∣yi −
∼
y i

yi

∣∣∣∣∣ (12)
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In Equation (10), the MAE is the average of the absolute error between the true values
and prediction values, which can reflect the overall prediction performance. The RMSE in
Equation (11) is average of the square of the differences between the actual and predicted
values. Compared to MAE, RMSE is more sensitive to values with large prediction errors in
the data. For MAE and RMSE, lower values are better. In addition, when making a further
comparison in the ablation experiment, we added mean absolute percentage error (MAPE)
for observation, as shown in Equation (12). The closer the MAPE value is to 0%, the better
the regression fit will be.

Implementation details. To demonstrate the good prediction performance of the
model, experiments were conducted for both short- and long-term forecasts for wind speed
prediction, with prediction scales of 6 h, 12 h, 18 h, 24 h (1 d), 48 h (2 d), 72 h (3 d), 96 h
(4 d), 120 h (5 d), 144 h (6 d), and 168 h (7 d). Following the work of [20], the length of the
time window was 12 and the step size was 1. We used the Adam optimizer [51] to train
the wind speed prediction models. The batch size was 64 and the training epoch was 100.
The learning rate started from 0.001 and the learning rate decay was ReduceLROnPlateau,
where the patience was 20, the cooldown was 30 and the factor was 0.3. The CPU of the
experimental device was i5-8400H, and GPU was NVIDIA’s GTX 1080 Ti. Our proposed
method and model was implemented with pytorch-1.1.

4.3. Results and Analysis

We comprehensively evaluated the prediction performance of the proposed model
AGLCN and eight other baseline methods based on wind datasets for the multi-scale pre-
diction tasks. In order to have a fair and reasonable comparison, we used three types
of baseline methods: (1) Methods that do not model multi-node spatial associations.
(2) Non-graph structure methods that model multi-node spatial associations. (3) Modeling
multi-node spatial associations using a predefined graph structure. Details of the baseline
methods are described below.

Methods that do not model multi-node spatial associations. Wavelet-DBN-RF [52]:
This model proposes a hybrid approach of deep learning and ensemble learning. It first
decomposes the wind speed sequence using wavelet transform (WT) and extracts the high-
dimensional features of the decomposed signal using a deep belief network (DBN). Each
subsequence processed by the DBN is predicted using a light gradient boosting machine
(LGBM) and random forest (RF). The experimental results show that the network improves
the prediction performance of short-term wind speed prediction. DLinear [53]: This model
decomposes the time series into trend series and residual series through a simple structure
and uses two single-layer linear networks to extract the features of data.

Non-graph structure methods that model multi-node spatial associations. (1) PD-
CNN [31]: This work investigates the problem of predicting wind speed at multiple sites
simultaneously and proposes a wind speed prediction model with a spatio-temporal cor-
relation PDCNN. It integrates CNN and MLP to extract spatial features and temporal
relationships, respectively. Experimental results show that the PDCNN outperforms tradi-
tional machine learning models. (2) CGRU [54]: This model uses both CNN and recurrent
networks GRU to extract the spatio-temporal correlations of data. Experiments show
a good performance on time series data. (3) TPA [55]: This work proposes a recurrent
neural network with an attention mechanism. It uses RNN to extract temporal depen-
dencies in multivariate time series data, while capturing unknown associations between
variables using the attention mechanism. It achieves state-of-the-art performance on several
real-world datasets.

Modeling multi-node spatial associations using predefined graph structures.
(1) Multi-LSTMs [56]: This work models the spatio-temporal information in wind speed
data through graphs and proposes a framework to obtain forecasts for all nodes in the
graph simultaneously. Experiments on real wind power data demonstrate that the model
improves short-term prediction performance. (2). SGNN [7]: This work constructs a
graph structure of wind machines using geographic location information and proposes
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an SGNN (superposition graph neural network) for feature extraction. Experiments show
that the method not only improves the prediction performance but also has good robustness.
(3). STGN [20]: This paper proposes spatio-temporal correlation graph neural networks that
use graph convolution and channel attention to capture spatial correlation in multi-node wind
speed data. The graph structure is constructed based on geographical distance information.

4.3.1. Comprehensive Comparison of Experimental Results

To verify the effectiveness of the proposed model by this paper, we conducted wind
speed prediction experiments at multiple prediction scales and with different numbers of
nodes. The overall prediction performances for wind speed, that are the averaged MAE
and RMSE results for the 40-node and 120-node multi-scale wind forecasts, are shown
in Tables 1–4. The bold text in the table indicates the best prediction performance and
underlining indicates the second-best prediction performance. Several observations from
these results are worth highlighting:

(1) Our method achieves the best prediction performance at all prediction scales of 40 and
120 nodes; the details are shown in Tables 1–4. Compared to the best baseline method,
STGN, our method improves by an average of 9% in MAE and RMSE for 40-node wind
speed predictions and 6% in MAE and RMSE for 120-node wind speed predictions.
Long-term prediction of wind speed is a challenging task due to cumulative error, but
our method still maintains a good performance. For wind speed prediction at nodes
40 and 120, the 7-day prediction errors of MAE and RMSE of our AGLCN method are
lower than the 3-day and 4-day prediction errors of STGN, respectively.

(2) Methods that use attention mechanisms to model spatial associations (TPA) outper-
form the methods that use CNN (PDCNN, CGRU) and the methods that do not
explicitly model spatial associations (Wavelet-DBN-RF) in short-term predictions
(12 h). It shows that correct spatial modeling is effective. The important feature
of CNN is translation invariance [57], yet for the complex spatial patterns of wind
data, it is rather a bottleneck that limits the performance of the model. In long-term
wind speed prediction (time horizon > 4-day), PDCNN and CGRU are better than
TPA. The input time window is 12 and the forecast length is greater than 4-day (pre-
diction length > 24). It means that the input data information no longer provides
enough information to support the long-term forecasts. In this case, the attention
mechanism approach, TPA, which relies entirely on the extraction of relationships
from the data, is inferior to the relationship extraction approach with inductive bias,
i.e., CNN (PDCNN, CGRU). DLinear are implemented based on a transformer and
have excellent long-time-series prediction capability. Although they did not carry
out spatial modeling for data, they still have a remarkable prediction ability. As a
result, their performance exceeds STGN when under a long prediction scale but is still
inferior to AGLCN.

(3) Multi-LSTM and SGNN require a predefined graph structure to model spatial associa-
tions between multiple nodes. These two methods perform worse than the attention
mechanism method, TPA, for the short-term prediction, but achieve better perfor-
mance for the long-term prediction. Compared to Multi-LSTM, SGNN uses graph
convolution operations, i.e., information propagation based on the graph, which
also allows SGNN to achieve better results in long-term prediction. STGN basically
achieves the second-best results (only worse than our AGLCN method) in both short-
and long-term forecasting. The reason is that the model integrates the advantages of
GNN and attention mechanisms.
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Table 1. MAE of forecasting methods for 40 nodes.

Prediction
Scale

No Spatial Modeling Non-Graph Predefined Graph Graph-Learning

Wavelet-DBN-RF Dlinear PDCNN CGRU TPA Multi-LSTMs SGNN STGN AGLCN Improvement

6 h 1.330 1.098 1.970 1.403 1.080 1.220 1.938 1.048 1.008 4%
12 h 1.497 1.246 1.971 1.576 1.363 1.523 1.947 1.238 1.138 8%
18 h 1.650 1.360 2.282 1.754 1.590 1.749 1.958 1.409 1.247 12%
1 d 1.741 1.452 2.427 1.884 1.759 1.919 1.968 1.509 1.334 8%
2 d 2.004 1.714 2.659 2.263 2.262 2.421 1.998 1.781 1.596 7%
3 d 2.086 1.857 2.776 2.381 2.577 2.666 2.022 1.965 1.729 7%
4 d 2.122 1.935 2.813 2.447 2.909 2.797 2.063 2.015 1.810 6%
5 d 2.140 1.991 2.819 2.482 3.194 2.873 2.094 2.033 1.865 6%
6 d 2.159 2.034 2.828 2.532 3.429 2.925 2.125 2.093 1.906 6%
7 d 2.165 2.064 2.845 2.573 3.653 2.958 2.143 2.138 1.933 6%

Table 2. RMSE of forecasting methods for 40 nodes.

Prediction
Scale

No Spatial Modeling Non-Graph Predefined Graph Graph-Learning

Wavelet-DBN-RF Dlinear PDCNN CGRU TPA Multi-LSTMs SGNN STGN AGLCN Improvement

6 h 1.693 1.464 2.449 1.785 1.405 1.546 2.462 1.392 1.344 3%
12 h 1.904 1.672 2.450 2.018 1.765 1.931 2.474 1.638 1.517 7%
18 h 2.091 1.829 2.852 2.253 2.051 2.220 2.488 1.867 1.659 11%
1 d 2.193 1.993 3.045 2.424 2.267 2.431 2.506 1.989 1.771 11%
2 d 2.495 2.268 3.371 2.883 2.869 3.033 2.540 2.317 2.090 8%
3 d 2.586 2.405 3.515 3.040 3.206 3.335 2.566 2.525 2.245 7%
4 d 2.625 2.502 3.541 3.079 3.553 3.492 2.619 2.579 2.342 6%
5 d 2.647 2.561 3.535 3.112 3.844 3.581 2.665 2.598 2.403 6%
6 d 2.671 2.607 3.539 3.180 4.073 3.646 2.708 2.671 2.452 6%
7 d 2.677 2.642 3.556 3.227 4.283 3.689 2.732 2.717 2.493 6%

Table 3. MAE of forecasting methods for 120 nodes.

Prediction
Scale

No Spatial Modeling Non-Graph Predefined Graph Graph-Learning

Wavelet-DBN-RF Dlinear PDCNN CGRU TPA Multi-LSTMs SGNN STGN AGLCN Improvement

6 h 1.451 1.145 2.025 1.658 1.203 1.312 2.542 1.084 1.045 4%
12 h 1.597 1.306 2.026 1.795 1.552 1.645 2.562 1.281 1.192 7%
18 h 1.749 1.432 2.385 1.937 1.803 1.914 2.573 1.407 1.305 7%
1 d 1.836 1.528 2.551 2.038 1.984 2.129 2.578 1.523 1.392 9%
2 d 2.087 1.818 2.959 2.290 2.432 2.610 2.583 1.809 1.667 8%
3 d 2.162 1.947 3.011 2.401 2.667 2.748 2.618 1.942 1.809 7%
4 d 2.200 2.022 3.012 2.478 2.836 2.793 2.666 2.046 1.911 5%
5 d 2.217 2.080 2.971 2.525 2.959 2.818 2.695 2.073 1.949 6%
6 d 2.232 2.124 2.918 2.556 3.027 2.842 2.712 2.137 1.998 6%
7 d 2.243 2.155 2.877 2.594 3.045 2.867 2.716 2.189 2.032 6%

Table 4. RMSE of forecasting methods for 120 nodes.

Prediction
Scale

No Spatial Modeling Non-Graph Predefined Graph Graph-Learning

Wavelet-DBN-RF Dlinear PDCNN CGRU TPA Multi-LSTMs SGNN STGN AGLCN Improvement

6 h 1.855 1.528 2.561 2.100 1.562 1.663 3.222 1.430 1.389 3%
12 h 2.038 1.745 2.562 2.277 1.997 2.079 3.246 1.697 1.582 7%
18 h 2.226 1.913 3.033 2.461 2.319 2.415 3.264 1.863 1.728 7%
1 d 2.328 2.037 3.243 2.594 2.544 2.679 3.270 2.013 1.834 9%
2 d 2.617 2.366 3.750 2.911 3.082 3.257 3.275 2.358 2.176 8%
3 d 2.703 2.516 3.824 3.042 3.383 3.420 3.328 2.514 2.345 7%
4 d 2.744 2.604 3.833 3.141 3.598 3.477 3.392 2.631 2.463 5%
5 d 2.766 2.666 3.789 3.198 3.745 3.510 3.431 2.649 2.504 5%
6 d 2.788 2.721 3.727 3.245 3.825 3.540 3.453 2.717 2.559 6%
7 d 2.798 2.748 3.675 3.285 3.842 3.573 3.458 2.771 2.606 5%
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In summary, attention mechanisms are effective at capturing relationships in the data
for short-term forecasting, while graph structure plays an important role in long-term
forecasting. Our AGLCN approach, on the other hand, constructs multi-node spatial
correlations from an adaptive learned graph based on downstream tasks, achieving the best
results in both short-term and long-term predictions, as shown in Figure 5. It demonstrates
the power of the graph structure in modeling spatial associations and the effectiveness of
the designed graph-learning approach. A further analysis of the learned graph structure
can be seen in Section 5.
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Figure 5. The performance in the multi-scale wind speed prediction on 120 nodes.

Figure 6 illustrates the visualization of the prediction results. Figure 6a presents the
visualization using the best baseline method at 106 data points, while Figure 6b displays
the visualization of our method’s prediction results at different scales. It is evident from
Figure 6a that our method achieves more accurate prediction results. Additionally, Figure 6b
shows that our method maintains a strong prediction performance across multiple scales.
For further visualization of the prediction results, please refer to Figure A4 in Appendix A.
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4.3.2. Hyper-Parameter Study

In this section, we present the hyper-parameter study of the proposed model and
compare the detailed performance of the model under different hyper parameters.

Table 5 shows the hyper-parameter search process for our proposed model, with the
list of main parameters on the left, the search range in the middle, and the best hyper-
parameter settings on the right. The number of channels refers to the channels in the TCN
and GCN modules, K is the number of stacking layers of TCN and GCN, and d is dilation
factor which determines the received field of the model. During the training process,
the model was trained by the Adam optimizer with a gradient clip of 5. The learning
rate decay was ReduceLROnPlateau, where patience was 20, the cooldown was 30, and
factor was 0.3. The selection range for the following hyper parameters was as follows:
the number of channels was [4, +∞], the number of layers of model K and dilation factor
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d was [1, +∞], the dimension of the node embedding was [1, +∞], the learning rate was
(0, +∞]. The reason that the number of channels was at least four was that we conducted
the convolution operation with four different convolution kernel size simultaneously in
TCN, so the number of channels was preferably a multiple of four [47]. For the number of
channels and the dimension of node embedding, too-small settings lead to a poor model-
learning ability, while too-large settings lead to too many model parameters and thus an
overfitting phenomenon. Together, the number of layers of the model and the dilation
factor d determine the receptive field of the model. A receptive field that is too small will
result in a model that does not take full advantage of the input data, while a receptive field
that is too large will result in a model that is overfilled with zeros and affects performance.
Thus, the general receptive field will be slightly longer than the length of the input window.

Table 5. Detail of hyper parameters.

Hyper-Parameters Search Range Selected Value

The number of channels {4, 8,16} 8
K and dilation factor d {(2,1), (2,2), (3,1), (3,2)} (3,1)
Dimension of Node Embedding {5, 10, 20, 40, 60, 80, 100} 10
Learning rate {0.1, 0.01, 0.001, 0.0001} 0.001

We first investigated the effect of the number of channels on the prediction perfor-
mance of our model. Since we used four convolutions simultaneously in our temporal
convolution (Equation (8)) to extract temporal dependencies, the number of channels was
best set to a multiple of four. Here, we show experiments with three channel counts of 4, 8
and 16, as shown in Figure 7. To better show the effect of the number of channels on the
performance, we have also included the model STGN, which achieved the best performance
in the baseline approach, as a comparison. As shown in the figure, our model maintains a
stable prediction performance for a different number of channels, all outperforming STGN.
The larger number of channels represents more model parameters, but our model maintains
excellent performance even with a small number of channels, demonstrating the validity of
the model. On balance, we choose eight as the number of channels in the model.

Then, we investigated the effects of stacking layers K and dilation factor d on the
model performance. The receptive field is jointly affected by the number of stacked layers
and the dilation factor. When the dilation factor is equal to 1, it is a standard convolutional
operation. Given the time window length 12, we conducted the four combinations (2,1),
(2,2), (3,1) and (3,2) with receptive fields of 13, 19, 19 and 43, respectively, as shown in
Table 6. When the receptive field was larger than the input time window, we padded
the input with 0. As shown in Table 6, we can observe that our model maintains good
performance for different combinations of stacking layers k and dilation factors d, all
outperforming the baseline method STGN. Overall, the combination of (3,1) achieved the
best results.

Table 6. RMSE of forecasting methods of different K and dilation factor d for 40 nodes.

Prediction Scale STGN 2 Layer 1 d 2 Layer 2 d 3 Layer 1 d 3 Layer 2 d

6 h 1.392 1.3502 1.3519 1.3444 1.3543
12 h 1.638 1.5268 1.5239 1.5172 1.5226
18 h 1.867 1.6658 1.6604 1.6597 1.6574
1 d 1.989 1.7744 1.7733 1.7706 1.7755
2 d 2.317 2.0936 2.0942 2.0902 2.0877
3 d 2.525 2.2567 2.2587 2.2453 2.2478
4 d 2.579 2.3413 2.3579 2.3418 2.3642
5 d 2.598 2.4323 2.4168 2.4029 2.4137
6 d 2.671 2.4672 2.4777 2.4520 2.4586
7 d 2.717 2.5122 2.5009 2.4926 2.505
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Here, we study the influence of the node-embedding dimension in our network. We
find that the model AGLCN achieves good performance in all embedding dimensions. To
better demonstrate the correlation between node-embedding dimensions and prediction
performance, we counted the variance of different node-embedding dimensions. The
result is shown in Figure 8a, where the horizontal coordinates are the prediction scales,
the vertical coordinates are the variances, and the size of the circles represents the number
of model parameters in different dimensions (the larger the dimension, the larger the
number of parameters). The mean values of the RMSE for different node embedding
dimensions at different prediction scales (6 h, 12 h, 18 h, 1 d, 2 d, 3 d, 4 d 5 d, 6 d, 7 d) are
1.345, 1.523, 1.660, 1.774, 2.090, 2.251, 2.334, 2.411, 2.456, 2.500 m/s. We can observe that
our model also maintains a strong robustness in the node-embedding dimension, i.e., the
node embedding expresses little correlation with the prediction performance (the variance
random). Altogether, we set the node-embedding dimension to 10.
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We visualized the training process of the models at different learning rates at 40 nodes
as shown in Figure 8b, where the solid line represents the training MAE and the dashed
line represents the validation MAE. We randomly initialized the seed and train of each
model three times with the same optimizer and parameters. From the figure, we can see
that the learning rate has a greater impact on the model compared to the other hyper
parameters. Specifically, when the learning rate was 0.1, the learning rate was too large
leading to difficulties in convergence and large fluctuations in both training and validation
losses (blue curve). The best results for training and validation loss were achieved when
the learning rate was 0.001 (green curve). At a learning rate of 0.01, there was a higher
validation loss (yellow curve), and at a learning rate of 0.0001, the training and validation
loss converged more slowly (tomato curve). These four learning rates (0.1, 0.01, 0.001,
0.0001) on the test set produced a MAE of 1.804, 1.744, 1.729 and 1.74 and a RMSE of 2.342,
2.264, 2.245 and 2.263.

4.3.3. Time Complexity

We analyzed the time complexity of the main components of the proposed model
AGLCN, which is summarized in Table 7. Our model contains three main components,
the graph-learning module, the graph convolution and the time convolution module.
The graph-learning layer operations are focused on computing the graph matrix with
time complexity O(N2M), where N denotes the number of nodes, and M represents the
dimension of node embedding. Since we decoupled the information propagation and
feature transformation operations in graph convolution, the main operation of graph
convolution is the information propagation on the graph. The time complexity of the
graph convolution layer was O(SN2D), where S represents the information diffusion step,
N represents the number of nodes and D is the input dimension. The time complexity
of the temporal convolution module equalled O(Nlcico/d), where l is the input sequence
length, ci is the number of input channels, co is the number of output channels, and d is the
dilation factor. The time complexity of the temporal convolution module mainly depends
on N×l, which is the size of the input feature map.

Table 7. Results of the time complexity analysis.

Components Time Complexity

Graph-Learning Layer O(N2M)
Graph Convolution Layer O(SN2D)
Temporal Convolution Layer O(Nlcico/d)

4.3.4. Statistical Analysis

To ensure that the AGLCN can improve prediction accuracy, we conducted a statistical
test [58]. Specifically, we utilized a paired two-tailed t-test to assess the predictive ability
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between the proposed AGLCN model and the baseline methods. The methods used an
α = 0.05 significance level and were based on the “one-to-one” rule, i.e., we compared the
AGLCN’s predicted values with the predicted values of other models one by one. Table 8
shows the statistical results of the paired two-tailed t-test. The results illustrate that our
model has significant differences with the other state-of-the-art models. The statistical
analysis proves that the forecasting performance of our model is superior to the other
models at a 5% statistical significance level.

Table 8. The results of the statistical tests.

Compared Models
Paired Two-Tailed t-Tests
(Significance Level α = 0.05)

t-Statistic p-Value

PDCNN −28.569 0.00000
CGRU −17.564 0.00000
Wavelet-DBN-RF −15.376 0.00000
Multi-LSTMs −27.417 0.00000
TPA −23.359 0.00000
SGNN −9.287 0.00000
STGN −4.962 0.00000
Dlinear −4.743 0.00000

4.3.5. Ablation Study

To validate the effectiveness of our proposed key components, we conducted a series of
ablation experiments on the different components of the model and carried out prediction
with a prediction window of 6 h on 40-node datasets. AGLCN and its variants are defined
as follows:

(1) AGLCN-NE. In this variant, the graph-learning module is based on only the trainable
node embedding.

(2) AGLCN-DI. In this variant, the graph-learning module is based on only the dynamic
node-level input.

(3) AGLCN-PE. In this variant, we replaced the graph-learning module with the prede-
fined graph structure.

(4) AGLCN-SO. In this variant, we removed the softmax function of Equation (3) to
demonstrate the effect of using the function to normalize the graph matrix.

The results of the ablation study are shown in Table 9. Compared to the AGLCN-NE
and AGLCN-DI, a better performance is achieved for all information (node embedding and
node-level input) considered, indicating the information fusion of the node embedding and
input is important. The prediction performance of AGLCN is better than that of AGCLN-
SO, which demonstrates the importance of using softmax in graph-learning methods. In
fact, it is a popular practice to normalize the graph matrix using the softmax function [35,41].
The prediction performance of variants using predefined graph structures (AGCLN-PE) is
worse than AGCLN, indicating the effectiveness of adaptive graph learning. Overall, it can
be seen that the key components all contribute to the improvement of the proposed model.

Table 9. The prediction results of the ablation study at 40 nodes.

Prediction
Scale

AGCLN-PE AGCLN-DI AGCLN-NE AGCLN-SO AGLCN

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

6 h 1.051 26.59% 1.411 1.046 26.63% 1.406 1.014 26.74% 1.351 1.014 26.86% 1.353 1.008 26.11% 1.344
12 h 1.190 30.26% 1.600 1.183 31.70% 1.580 1.139 29.44% 1.519 1.143 29.49% 1.521 1.138 29.23% 1.517
18 h 1.296 33.82% 1.733 1.299 34.44% 1.734 1.251 32.18% 1.664 1.251 31.95% 1.672 1.247 30.98% 1.659
1 d 1.380 35.17% 1.843 1.372 34.69% 1.834 1.341 34.11% 1.776 1.343 34.79% 1.779 1.334 34.17% 1.771
2 d 1.634 42.02% 2.240 1.630 42.31% 2.232 1.604 41.52% 2.113 1.599 40.59% 2.103 1.596 40.13% 2.090
3 d 1.760 46.12% 2.285 1.761 45.10% 2.288 1.742 45.36% 2.257 1.733 45.33% 2.248 1.729 45.08% 2.245
4 d 1.862 49.33% 2.471 1.845 48.61% 2.468 1.819 47.91% 2.349 1.826 47.78% 2.357 1.810 47.56% 2.342
5 d 1.891 50.30% 2.431 1.884 48.69% 2.432 1.881 49.65% 2.423 1.886 48.15% 2.413 1.865 47.96% 2.403
6 d 1.933 50.62% 2.498 1.9268 49.91% 2.480 1.908 48.90% 2.461 1.913 49.56% 2.469 1.906 48.37% 2.452
7 d 2.011 51.13% 2.591 1.956 51.47% 2.529 1.947 50.15% 2.515 1.940 49.70% 2.507 1.933 49.67% 2.493
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4.4. Conclusions

To comprehensively demonstrate the validity of the proposed AGLCN, we performed
validation on the real-world public CCMP V2.0 Wind Product. Detailed data descriptions
and experimental settings are provided in Sections 4.1 and 4.2. The experiment results
on 40-node and 120-node multi-scale wind forecasts tasks proved the effectiveness of the
proposed method, as detailed in Section 4.3.1. In addition, we used statistical analysis
to ensure the superiority of the proposed approach compared to the baseline method, as
detailed in Section 4.3.4. The hyper-parametric experiment in Section 4.3.3 proved that our
method has good robustness. The detailed time complexity of each module of the model
can be found in Section 4.3.3.

5. Discussion

In this section, we visualize and analyze the graph matrix obtained by the model
learning under different prediction scales, as illustrated in Figure 9 (For more detail, refer to
Figures A1–A3 in the Appendix A). It represents the node associations captured adaptively
at different prediction scales (6 h, 4-day and 7-day), where the heat map of the edge weights
of the matrix is shown above, and we visualize the association on the actual map below for
a better view. The shades of orange in the heat map represent the strength of the correlation
between two wind speed points, including the correlations of the points with themselves.
The horizontal and vertical axes, respectively, contain 40 points taken at different longitudes
and latitudes, ordered from 0 to 40 in ascending order of latitude, or in ascending order of
longitude if the latitudes are the same.
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It can be observed that: 1. The graph structure is adaptively learned based on down-
stream tasks; 2. The graph structure can capture associations over long distances. Compar-
ing the three heat maps in Figure 9, we can find that the learned graph structures are very
different. The graph matrices obtained by our model are trained under different prediction
scales independently, i.e., different downstream tasks. A more obvious local focus (i.e.,
the influence relationship is distance-dependent; the closer the distance, the greater the
influence) is found in the heat map of Figure 9a; for example, the region where nodes
11–19, 32–39 are located shows a stronger association (darker colors). As the prediction
scale is extended, we find that the local focus becomes weaker and weaker. For example, in
the heat map in Figure 9b, the region where nodes 11–19 are located still shows a strong
association, but the local focus in the region where nodes 32–39 are located has disappeared.
In Figure 9c, the local focus has disappeared and only a few points are affecting the global
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nodes, i.e., a few very distinct vertical lines. This phenomenon is proved by projecting
the edge weights from the heat map onto the real map. It is in line with practice, because
the impact lagged in the process, so the influence of the surrounding nodes is greater in
short-term forecasts. In the medium- and long-term forecasts, the influence between long
distances gradually dominates, with the surrounding point effects still clearly observable
in the 4-day forecast and long distance effects clearly dominating in the 7-day forecast. In
medium- to long-term forecasting, our model captures long-range correlations well, free
from the limitations of distance-based graphs.

It is important to note that the end purpose of this work is to improve forecasting
performance using the adaptive learning graph, rather than identifying the causal relation-
ship of the nodes. Inferring causality among multivariate time series requires a nontrivial
extension that spans beyond the current study. A perfect golden and standard measure for
the quality of the learned graph does not exist, except forecasting accuracy. In summary,
our work demonstrates the ability to use adaptive graph structures for multi-node wind
speed prediction and the potential to capture spatial dependence between nodes.

6. Conclusions

In this paper, we propose a general graph neural network framework for multi-node
offshore wind speed named adaptive graph-learning convolutional networks (AGLCN).
It aims to address the difficulty of existing methods to capture the unknown complex
spatial dependencies between nodes and frees the need for an a priori graph structure. The
proposed graph-learning method can automatically construct a graph structure based on
dynamic wind speed data. To efficiently and effectively capture temporal dependencies
in data, we employed a gated temporal convolutional network because of the parallel
computational efficiency and gradient stability. We designed a general network framework
AGLCN to integrate graph learning, as well as temporal and graph convolutional modules
in a framework to jointly optimize these features. Experiments were conducted using real-
world wind speed data from the China Sea, which demonstrated that our model achieved
state-of-the-art results in all multi-scale wind speed predictions.

However, our SDGL has two potential limitations. The time complexity of the graph-
learning method is O(N2), indicating that the computation cost grows quadratically with
the number of nodes, which is not feasible in the face of large graphs with thousands of
nodes. In addition, the spatial relationships between variables in the short-term view could
differ from it in the long-term. Thus, we would like to further investigate these two topics
in the future. Graph-learning methods with linear complexity will be studied to efficiently
process large-scale graph nodes in the real world. Second, it is essential to learn multiple
graph structures to capture the scale-specific spatial relationships among nodes.
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Appendix B. More Ablation Study

Model architecture. They are currently divided into two main architectures, which are
represented by DCRNN [48] and GraphWaveNet [42], respectively. The former combines
GNN with recurrent neural network (RNN) to obtain spatial and temporal representations,
respectively, while the latter uses a stacking convolutional neural network (CNN) instead
of a recursive structure to improve training stability and efficiency. To demonstrate the
effect of the model architecture on the predictive performance of multi-node wind speed,
we combined the proposed graph-learning module with the DCRNN architecture. The
predefined graph structure in the DCRNN was replaced with adaptive graph-learning
method, and the results are shown as follows.
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Table A1. The results of forecasting methods for 40 nodes.

Prediction Scale
DCRNN-AGL AGLCN

MAE RMSE MAE RMSE

6 h 1.021 1.367 1.008 1.344
12 h 1.187 1.623 1.138 1.517
18 h 1.349 1.804 1.247 1.659
1 d 1.405 1.932 1.334 1.771
2 d 1.722 2.191 1.596 2.090
3 d 1.883 2.354 1.729 2.245
4 d 1.948 2.408 1.810 2.342
5 d 1.994 2.496 1.865 2.403
6 d 2.042 2.591 1.906 2.452
7 d 2.067 2.538 1.933 2.493

Appendix C. More Study of Hyper Parameters

We conducted a parameter study on dropout, which influences the model performance,
on the prediction window of 6 h on 40-node datasets. Dropout is a powerful method of
regularizing a broad family of models to improve the generalization performance of the
module, where the range is (0, 1]. Too small a value may lead to overfitting of the model,
while too large a value may lead to underfitting of the model. The results are shown in
Table A2. It indicates the best performance is achieved when dropout is 0.3.

Table A2. The prediction results of parameter study at 40 nodes.

6 h
Dropout

MAE MAPE RMSE

0.1 1.049 27.95% 1.389
0.2 1.012 27.36% 1.367
0.3 1.008 26.11% 1.344
0.4 1.029 26.81% 1.351
0.5 1.059 26.92% 1.373
0.6 1.049 27.18% 1.398
0.7 1.069 27.12% 1.435
0.8 1.064 27.13% 1.421
0.9 1.087 27.03% 1.455
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